Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Cells
2.3. Virus Isolation
2.4. RNA Extraction and Real-Time RT-PCR
2.5. Hemagglutination and HI Assays and Genetic Analysis
2.6. Statistical Analysis
3. Results
3.1. IAV-S Isolation from Clinical Specimens of Swine Origin
3.2. Comparative Susceptibility of MDCK Cell Lines for IAV-S Isolation
3.3. Comparative Statistical Analyses Using the McNemar’s Test
3.4. Effects of Clinical Specimen PCR Cycle Threshold (CT) Values on the Outcomes of IAV-S Isolation
3.5. Determining HA Activity and Subtyping of IAV-S Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loving, C.L.; Brockmeier, S.L.; Vincent, A.L.; Palmer, M.V.; Sacco, R.E.; Nicholson, T.L. Influenza Virus Coinfection with Bordetella Bronchiseptica Enhances Bacterial Colonization and Host Responses Exacerbating Pulmonary Lesions. Microb. Pathog. 2010, 49, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and Evolutionary Genomics of the 2009 Swine-Origin H1N1 Influenza A Epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemae, N.; Nguyen, T.; Ngo, L.T.; Hiromoto, Y.; Uchida, Y.; Pham, V.P.; Kageyama, T.; Kasuo, S.; Shimada, S.; Yamashita, Y.; et al. Antigenic Variation of H1N1, H1N2 and H3N2 Swine Influenza Viruses in Japan and Vietnam. Arch. Virol. 2013, 158, 859–876. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.P.; Gordon, M.L. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020, 9, 355. [Google Scholar] [CrossRef]
- Shope, R.E. Swine Influenza: III. Filtration Experiments and Etiology. J. Exp. Med. 1931, 54, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Meguro, H.; Bryant, J.D.; Torrence, A.E.; Wright, P.F. Canine Kidney Cell Line for Isolation of Respiratory Viruses. J. Clin. Microbiol. 1979, 9, 175–179. [Google Scholar] [CrossRef]
- Katz, J.M.; Webster, R.G. Amino Acid Sequence Identity between the HA1 of Influenza A (H3N2) Viruses Grown in Mammalian and Primary Chick Kidney Cells. J. Gen. Virol. 1992, 73, 1159–1165. [Google Scholar] [CrossRef]
- Schepetiuk, S.K.; Kok, T. The Use of MDCK, MEK and LLC-MK2 Cell Lines with Enzyme Immunoassay for the Isolation of Influenza and Parainfluenza Viruses from Clinical Specimens. J. Virol. Methods 1993, 42, 241–250. [Google Scholar] [CrossRef]
- De Ona, M.; Melon, S.; De la Iglesia, P.; Hidalgo, F.; Verdugo, A.F. Isolation of Influenza Virus in Human Lung Embryonated Fibroblast Cells (MRC-5) from Clinical Samples. J. Clin. Microbiol. 1995, 33, 1948–1949. [Google Scholar] [CrossRef] [Green Version]
- Reina, J.; Fernandez-Baca, V.; Blanco, I.; Munar, M. Comparison of Madin-Darby Canine Kidney Cells (MDCK) with a Green Monkey Continuous Cell Line (Vero) and Human Lung Embryonated Cells (MRC-5) in the Isolation of Influenza a Virus from Nasopharyngeal Aspirates by Shell Vial Culture. J. Clin. Microbiol. 1997, 35, 1900–1901. [Google Scholar] [CrossRef] [Green Version]
- Schultz-Cherry, S.; Dybdahl-Sissoko, N.; Mcgregor, M.; Hinshaw, V.S. Mink Lung Epithelial Cells: Unique Cell Line That Supports Influenza A and B Virus Replication. J. Clin. Microbiol. 1998, 36, 3718–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swenson, S.L.; Vincent, L.L.; Lute, B.M.; Janke, B.H.; Lechtenberg, K.F.; Landgraf, G.; Schmitt, B.J.; Kinker, D.R.; Mcmillen, J.K. A Comparison of Diagnostic Assays for the Detection of Type A Swine Influenza Virus from Nasal Swabs and Lungs. J. Vet. Diagn. Investig. 2001, 13, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Gauger, P. Isolation of Swine Influenza Virus in Cell Cultures and Embryonated Chicken Eggs. Methods Mol. Biol. 2014, 1161, 265–276. [Google Scholar]
- Rogers, G.N.; Paulson, J.C. Receptor Determinants of Human and Animal Influenza Virus Isolates: Differences in Receptor Specificity of the H3 Hemagglutinin Based on Species of Origin. Virology 1983, 127, 361–373. [Google Scholar] [CrossRef]
- Böttcher-Friebertshäuser, E.; Garten, W.; Matrosovich, M.; Klenk, H.D. The Hemagglutinin: A Determinant of Pathogenicity. Curr. Top. Microbiol. Immunol. 2014, 385, 3–34. [Google Scholar]
- Steinhauer, D.A. Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus. Virology 1999, 258, 1–20. [Google Scholar] [CrossRef]
- Clavijo, A.; Tresnan, D.B.; Jolie, R.; Zhou, E.M. Comparison of Embryonated Chicken Eggs with MDCK Cell Culture for the Isolation of Swine Influenza Virus. Can. J. Vet. Res. 2002, 66, 117–121. [Google Scholar]
- Takada, K.; Kawakami, C.; Fan, S.; Chiba, S.; Zhong, G.; Gu, C.; Shimizu, K.; Takasaki, S.; Sakai-Tagawa, Y.; Lopes, T.J.S.; et al. A Humanized MDCK Cell Line for the Efficient Isolation and Propagation of Human Influenza Viruses. Nat. Microbiol. 2019, 4, 1268–1273. [Google Scholar] [CrossRef]
- Lee, H.K.; Tang, J.W.T.; Kong, D.H.L.; Loh, T.P.; Chiang, D.K.L.; Lam, T.T.Y.; Koay, E.S.C. Comparison of Mutation Patterns in Full-Genome a/H3N2 Influenza Sequences Obtained Directly from Clinical Samples and the Same Samples after a Single MDCK Passage. PLoS ONE 2013, 8, e79252. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.; Chen, L.-M.; Carney, P.J.; Garten, R.; Foust, A.; Le, J.; Pokorny, B.A.; Manojkumar, R.; Silverman, J.; Devis, R.; et al. Receptor Specificity of Influenza A H3N2 Viruses Isolated in Mammalian Cells and Embryonated Chicken Eggs. J. Virol. 2010, 84, 8287–8299. [Google Scholar] [CrossRef] [Green Version]
- de Jong, J.C.; Smith, D.J.; Lapedes, A.S.; Donatelli, I.; Campitelli, L.; Barigazzi, G.; Van Reeth, K.; Jones, T.C.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; et al. Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe. J. Virol. 2007, 81, 4315–4322. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Jayaraman, A.; Raman, R.; Pappas, C.; Zeng, H.; Cox, N.J.; Katz, J.M.; Sasisekharan, R.; Tumpey, T.M. Effect of D222G Mutation in the Hemagglutinin Protein on Receptor Binding, Pathogenesis and Transmissibility of the 2009 Pandemic H1N1 Influenza Virus. PLoS ONE 2011, 6, e25091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schild, G.C.; Oxford, J.S.; De Jongt, J.C.; Webster, R.G. Evidence for Host-Cell Selection of Influenza Virus Antigenic Variants. Nature 1983, 6, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Gaush, C.R.; Hard, W.L.; Smith, T.F. Characterization of an Established Line of Canine Kidney Cells (MDCK). Proc. Soc. Exp. Biol. Med. 1966, 122, 931–935. [Google Scholar] [CrossRef]
- Bowman, A.S.; Nelson, S.W.; Edwards, J.L.; Hofer, C.C.; Nolting, J.M.; Davis, I.C.; Slemons, R.D. Comparative Effectiveness of Isolation Techniques for Contemporary Influenza A Virus Strains Circulating in Exhibition Swine. J. Vet. Diagn. Investig. 2013, 25, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, T.; Dotti, S.; Renzi, S.; Ferrari, M. Susceptibility of Different Cell Lines to Avian and Swine Influenza Viruses. J. Virol. Methods 2012, 185, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, A.; Soleimanjahi, H.; Jamali, A.; Mehrbod, P.; Gholami, S.; Kianmehr, Z.; Feizi, N.; Saleh, M.; Bahrami, F.; Mokhtari-Azad, T.; et al. Comparison between MDCK and MDCK-SIAT1 Cell Lines as Preferred Host for Cell Culture-Based Influenza Vaccine Production. Biotechnol. Lett. 2016, 38, 941–948. [Google Scholar] [CrossRef]
- Ito, T.; Suzuki, Y.; Takada, A.; Kawamoto, A.; Otsuki, K.; Masuda, H.; Yamada, M.; Suzuki, T.; Kida, H.; Kawaoka, Y. Differences in Sialic Acid-Galactose Linkages in the Chicken Egg Amnion and Allantois Influence Human Influenza Virus Receptor Specificity and Variant Selection. J. Virol. 1997, 71, 3357–3362. [Google Scholar] [CrossRef] [Green Version]
- Connor, R.J.; Kawaoka, Y.; Webster, R.G.; Paulson, J.C. Receptor Specificity in Human, Avian, and Equine H2 and H3 Influenza Virus Isolates. Virology 1994, 15, 17–23. [Google Scholar] [CrossRef]
- Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J.K.; Palese, P.; Paulson, J.C.; Wilson, I.I. Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. J. Mol. Biol. 2006, 355, 1143–1155. [Google Scholar] [CrossRef]
- Van Riel, D.; Munster, V.J.; De Wit, E.; Rimmelzwaan, G.F.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Kuiken, T. H5N1 Virus Attachment to Lower Respiratory Tract. Science 2006, 312, 399. [Google Scholar] [CrossRef] [Green Version]
- Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Influenza Virus Receptors in the Human Airway. Nature 2006, 440, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Sriwilaijaroen, N.; Kondo, S.; Yagi, H.; Takemae, N.; Saito, T.; Hiramatsu, H.; Kato, K.; Suzuki, Y. N-Glycans from Porcine Trachea and Lung: Predominant NeuAcα2-6Gal Could Be a Selective Pressure for Influenza Variants in Favor of Human-Type Receptor. PLoS ONE 2011, 6, e16302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatakeyama, S.; Sakai-Tagawa, Y.; Kiso, M.; Goto, H.; Kawakami, C.; Mitamura, K.; Sugaya, N.; Suzuki, Y.; Kawaoka, Y. Enhanced Expression of an A2,6-Linked Sialic Acid on MDCK Cells Improves Isolation of Human Influenza Viruses and Evaluation of Their Sensitivity to a Neuraminidase Inhibitor. J. Clin. Microbiol. 2005, 43, 4139–4146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matrosovich, M.; Matrosovich, T.; Carr, J.; Roberts, N.A.; Klenk, H.-D. Overexpression of the α-2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. J. Virol. 2003, 77, 8418–8425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.Y.; Barr, I.G.; Mosse, J.A.; Laurie, K.L. MDCK-SIAT1 Cells Show Improved Isolation Rates for Recent Human Influenza Viruses Compared to Conventional MDCK Cells. J. Clin. Microbiol. 2008, 46, 2189–2194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gauger, P.C. Animal Influenza Virus: Methods and Protocols, Erica Spackman; Humana Press: New York, NY, USA, 2020. [Google Scholar]
- OIE. Avian Influenza. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; OIE: Paris, France, 2021. [Google Scholar]
- Weingartl, H.M.; Berhane, Y.; Hisanaga, T.; Neufeld, J.; Kehler, H.; Emburry-Hyatt, C.; Hooper-McGreevy, K.; Kasloff, S.; Dalman, B.; Bystrom, J.; et al. Genetic and Pathobiologic Characterization of Pandemic H1N1 2009 Influenza Viruses from a Naturally Infected Swine Herd. J. Virol. 2010, 84, 2245–2256. [Google Scholar] [CrossRef] [Green Version]
- Nfon, C.K.; Berhane, Y.; Hisanaga, T.; Zhang, S.; Handel, K.; Kehler, H.; Labrecque, O.; Lewis, N.S.; Vincent, A.L.; Copps, J.; et al. Characterization of H1N1 Swine Influenza Viruses Circulating in Canadian Pigs in 2009. J. Virol. 2011, 85, 8667–8679. [Google Scholar] [CrossRef] [Green Version]
- Lugovtsev, V.Y.; Melnyk, D.; Weir, J.P. Heterogeneity of the MDCK Cell Line and Its Applicability for Influenza Virus Research. PLoS ONE 2013, 8, e75014. [Google Scholar] [CrossRef]
- Detmer, S.E.; Patnayak, D.P.; Jiang, Y.; Gramer, M.R.; Goyal, S.M. Detection of Influenza A Virus in Porcine Oral Fluid Samples. J. Vet. Diagn. Investig. 2011, 23, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.C.; Kappes, M.A.; Chen, M.C.; Lin, C.C.; Wang, T.T. Distinct Susceptibility and Applicability of MDCK Derivatives for Influenza Virus Research. PLoS ONE 2017, 12, e0172299. [Google Scholar]
- Tsai, H.C.; Lehman, C.W.; Lin, C.C.; Tsai, S.W.; Chen, C.M. Functional Evaluation for Adequacy of MDCK-Lineage Cells in Influenza Research. BMC Res. Notes 2019, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Chambers, B.S.; Li, Y.; Hodinka, R.L.; Hensley, S.E. Recent H3N2 Influenza Virus Clinical Isolates Rapidly Acquire Hemagglutinin or Neuraminidase Mutations When Propagated for Antigenic Analyses. J. Virol. 2014, 88, 10986–10989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piralla, A.; Daleno, C.; Pariani, E.; Conaldi, P.; Esposito, S.; Zanetti, A.; Baldanti, F. Virtual Quantification of Influenza A Virus Load by Real-Time RT-PCR. J. Clin. Virol. 2013, 56, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Decorte, I.; Steensels, M.; Lambrecht, B.; Cay, A.B.; De, N. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine. PLoS ONE 2015, 10, e0139586. [Google Scholar]
Specimen Types | Total Tested (n) | Total Confirmed Positive by PCR (n) | Proportion Positive (%) |
---|---|---|---|
Nasal swab | 58 | 34 | 58.6 |
Lung | 32 | 21 | 65.63 |
Oral fluid | 40 | 14 | 35 |
Specimens | Tested | MDCK-SIAT1 | MDCK-London | MDCK.2 | MDCK | ||||
---|---|---|---|---|---|---|---|---|---|
+ve | % +ve | +ve | % +ve | +ve | % +ve | +ve | % +ve | ||
Nasal swab | 58 | 34 | 58.62 | 21 | 36.21 | 16 | 27.58 | 16 | 27.58 |
Lung | 32 | 19 | 59.38 | 13 | 40.63 | 10 | 31.25 | 6 | 18.75 |
Oral fluid | 40 | 14 | 35 | 2 | 5 | 3 | 7.5 | 3 | 7.5 |
Specimens | Tested in SIAT1 | London+ | London− | MDCK.+ | MDCK.− | MDCK+ | MDCK− |
---|---|---|---|---|---|---|---|
Nasal swab (n = 58) | SIAT1+ (34) | 21 | 13 | 16 | 18 | 16 | 18 |
SIAT1− (24) | 0 | 24 | 0 | 24 | 0 | 24 | |
Lung(n = 32) | SIAT1+ (19) | 11 | 8 | 10 | 9 | 6 | 13 |
SIAT1− (13) | 2 | 11 | 0 | 13 | 0 | 13 |
Samples | Tested in London (n) | MDCK.2 + | MDCK.2 − | MDCK+ | MDCK − | Tested in MDCK (n) | MDCK.2+ | MDCK.2 − |
---|---|---|---|---|---|---|---|---|
Nasal swab (n = 58) | London+ (21) | 14 | 7 | 15 | 6 | MDCK+ (16) | 14 | 2 |
London− (37) | 2 | 35 | 1 | 36 | MDCK − (42) | 2 | 40 | |
Lung (n = 32) | London+ (13) | 8 | 5 | 6 | 7 | MDCK+ (6) | 5 | 1 |
London− (19) | 2 | 17 | 0 | 19 | MDCK − (26) | 5 | 21 |
Samples | Ct Values of Original Samples | Total Tested (n) | SIAT1 (n, %) | London (n, %) | MDCK.2 (n, %) | MDCK (n, %) |
---|---|---|---|---|---|---|
Nasal swab | <20 | 8 | 6 (75) | 6 (75) | 5 (62.5) | 3 (37.5) |
21–25 | 33 | 24 (72.7) | 15 (45.5) | 11 (33.3) | 13 (39.4) | |
>26 | 17 | 4 (23.5) | 0 (0) | 0 (0) | 0 (0) | |
Lung | <20 | 19 | 12 (63.2) | 10 (52.6) | 7 (36.8) | 5 (26.3) |
21–25 | 10 | 6 (60) | 3 (30) | 3 (30) | 1 (10) | |
>26 | 3 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Oral fluid | <20 | 11 | 7 (63.6) | 1 (9) | 2 (18.2) | 2 (18.2) |
21–25 | 15 | 4 (26.7) | 1 (6.7) | 1 (6.7) | 1 (6.7) | |
>26 | 14 | 3 (21.4) | 0 (0) | 0 (0) | 0 (0) |
Samples | +ve PCR | H3N2 IV | H3N2 IVB | H1N1pdm | H1N1-β | H1N2-α | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
+ve | %+ve | +ve | %+ve | +ve | %+ve | +ve | %+ve | +ve | %+ve | ||
Nasal swab | 34 | 8 | 23.5 | 6 | 17.6 | 6 | 17.6 | 3 | 8.8 | 11 | 32.4 |
Lung | 18 | 1 | 5.6 | 4 | 22.2 | 4 | 22.2 | 1 | 5.6 | 2 | 11.1 |
Oral fluid | 14 | 1 | 7.1 | 4 | 28.6 | 4 | 28.6 | 3 | 21.4 | 1 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suderman, M.; Moniwa, M.; Alkie, T.N.; Ojkic, D.; Broes, A.; Pople, N.; Berhane, Y. Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens. Viruses 2021, 13, 2346. https://doi.org/10.3390/v13122346
Suderman M, Moniwa M, Alkie TN, Ojkic D, Broes A, Pople N, Berhane Y. Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens. Viruses. 2021; 13(12):2346. https://doi.org/10.3390/v13122346
Chicago/Turabian StyleSuderman, Matthew, Mariko Moniwa, Tamiru N. Alkie, Davor Ojkic, Andre Broes, Neil Pople, and Yohannes Berhane. 2021. "Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens" Viruses 13, no. 12: 2346. https://doi.org/10.3390/v13122346
APA StyleSuderman, M., Moniwa, M., Alkie, T. N., Ojkic, D., Broes, A., Pople, N., & Berhane, Y. (2021). Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens. Viruses, 13(12), 2346. https://doi.org/10.3390/v13122346