Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Sequence for hCoV-19/South Africa/KRISP-K005325/2020 Used in This Study
2.2. Propagation of hCoV-19/South Africa/KRISP-K005325/2020 by BEI Resources
2.3. Sequencing and Bioinformatic Analysis of hCoV-19/South Africa/KRISP-K005325/2020 Stocks Propagated by BEI Resources
2.4. Propagation of hCoV-19/South Africa/KRISP-K005325/2020 by BIOQUAL
2.5. Infection of Syrian Hamsters with BQ-RSA-p4
2.6. Sequencing and Bioinformatic Analysis of hCoV-19/South Africa/KRISP-K005325/2020 Stocks Propagated by BIOQUAL
3. Results
3.1. hCoV-19/South Africa/KRISP-K005325/2020 Passage Description
3.2. hCoV-19/South Africa/KRISP-K005325/2020, Propagation, and Sequencing at BEI Resources
3.3. hCoV-19/South Africa/KRISP-K005325/2020 Propagation and Sequencing at BIOQUAL
3.4. BQ-RSA-p4 Retained Pathogenicity in Hamsters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Pouwels, K.B.; Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; Vihta, K.D.; House, T.; Hay, J.; Bell, J.I.; Newton, J.N.; et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat. Med. 2021. [Google Scholar] [CrossRef]
- Mercado, N.B.; Zahn, R.; Wegmann, F.; Loos, C.; Chandrashekar, A.; Yu, J.; Liu, J.; Peter, L.; McMahan, K.; Tostanoski, L.H.; et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020, 586, 583–588. [Google Scholar] [CrossRef]
- Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020, 383, 1544–1555. [Google Scholar] [CrossRef]
- Case, J.B.; Bailey, A.L.; Kim, A.S.; Chen, R.E.; Diamond, M.S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 2020, 548, 39–48. [Google Scholar] [CrossRef]
- Jureka, A.S.; Silvas, J.A.; Basler, C.F. Propagation, Inactivation, and Safety Testing of SARS-CoV-2. Viruses 2020, 12, 622. [Google Scholar] [CrossRef]
- Ren, X.; Glende, J.; Al-Falah, M.; de Vries, V.; Schwegmann-Wessels, C.; Qu, X.; Tan, L.; Tschernig, T.; Deng, H.; Naim, H.Y.; et al. Analysis of ACE2 in polarized epithelial cells: Surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J. Gen. Virol. 2006, 87, 1691–1695. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef]
- Ogando, N.S.; Dalebout, T.J.; Zevenhoven-Dobbe, J.C.; Limpens, R.W.; van der Meer, Y.; Caly, L.; Druce, J.; de Vries, J.C.; Kikkert, M.; Bárcena, M.; et al. SARS-coronavirus-2 replication in Vero E6 cells: Replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 2020, 101, 925–940. [Google Scholar] [CrossRef]
- Lau, S.Y.; Wang, P.; Mok, B.W.; Zhang, A.J.; Chu, H.; Lee, A.C.; Deng, S.; Chen, P.; Chan, K.H.; Song, W.; et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 2020, 9, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Klimstra, W.B.; Tilston-Lunel, N.L.; Nambulli, S.; Boslett, J.; McMillen, C.M.; Gilliland, T.; Dunn, M.D.; Sun, C.; Wheeler, S.E.; Wells, A.; et al. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. J. Gen. Virol. 2020, 101, 1156–1169. [Google Scholar] [CrossRef]
- Funnell, S.P.; Afrough, B.; Baczenas, J.J.; Berry, N.; Bewley, K.R.; Bradford, R.; Florence, C.; Duff, Y.L.; Lewis, M.; Moriarty, R.V.; et al. A cautionary perspective regarding the isolation and serial propagation of SARS-CoV-2 in Vero cells. NPJ Vaccines 2021, 6, 83. [Google Scholar] [CrossRef]
- Johnson, B.A.; Xie, X.; Bailey, A.L.; Kalveram, B.; Lokugamage, K.G.; Muruato, A.; Zou, J.; Zhang, X.; Juelich, T.; Smith, J.K.; et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 2021, 591, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Caly, L.; Druce, J.; Roberts, J.; Bond, K.; Tran, T.; Kostecki, R.; Yoga, Y.; Naughton, W.; Taiaroa, G.; Seemann, T.; et al. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust. 2020, 212, 459–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtz, N.; Penant, G.; Jardot, P.; Duclos, N.; La Scola, B. Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 477–484. [Google Scholar] [CrossRef]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Uemura, K.; Sato, A.; Toba, S.; Sanaki, T.; Maenaka, K.; Hall, W.W.; Orba, Y.; Sawa, H. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog. 2021, 17, e1009233. [Google Scholar] [CrossRef]
- Li, F.; Han, M.; Dai, P.; Xu, W.; He, J.; Tao, X.; Wu, Y.; Tong, X.; Xia, X.; Guo, W.; et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat. Commun. 2021, 12, 866. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Breugem, T.I.; Riesebosch, S.; Schipper, D.; van den Doel, P.B.; Rottier, R.J.; Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife 2021, 10, e64508. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Mykytyn, A.Z.; Breugem, T.I.; Wang, Y.; Wu, D.C.; Riesebosch, S.; van den Doel, P.B.; Schipper, D.; Bestebroer, T.; Wu, N.C.; et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife 2021, 10, e66815. [Google Scholar] [CrossRef]
- Wibmer, C.K.; Ayres, F.; Hermanus, T.; Madzivhandila, M.; Kgagudi, P.; Oosthuysen, B.; Lambson, B.E.; de Oliveira, T.; Vermeulen, M.; van der Berg, K.; et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 2021, 27, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Alleva, D.G.; Delpero, A.R.; Scully, M.M.; Murikipudi, S.; Ragupathy, R.; Greaves, E.K.; Sathiyaseelan, T.; Haworth, J.R.; Shah, N.J.; Rao, V.; et al. Development of an IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine 2021, 39, 6601–6613. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Boudewijns, R.; Foo, C.S.; Seldeslachts, L.; Sanchez-Felipe, L.; Zhang, X.; Delang, L.; Maes, P.; Kaptein, S.F.; Weynand, B.; et al. Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine 2021, 68, 103403. [Google Scholar] [CrossRef] [PubMed]
- Tostanoski, L.H.; Wegmann, F.; Martinot, A.J.; Loos, C.; McMahan, K.; Mercado, N.B.; Yu, J.; Chan, C.N.; Bondoc, S.; Starke, C.E.; et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 2020, 26, 1694–1700. [Google Scholar] [CrossRef]
- Imai, M.; Iwatsuki-Horimoto, K.; Hatta, M.; Loeber, S.; Halfmann, P.J.; Nakajima, N.; Watanabe, T.; Ujie, M.; Takahashi, K.; Ito, M.; et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 2020, 117, 16587–16595. [Google Scholar] [CrossRef]
- Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953–1966. [Google Scholar] [CrossRef]
- Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David, R.Y.; et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 2021, 6, 899–909. [Google Scholar] [CrossRef]
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54009 and NR-54974 | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|
1059 | 1057 | C | T | T | Nsp2 | T85I |
5230 | 5228 | G | T | T | Nsp3 | K837N |
10,323 | 10,321 | A | G | G | Nsp5 | K90R |
14,408 | 14,397 | C | T | T | Nsp12 | P323L |
21,614 | 21,603 | C | T | T | Spike | L18F |
21,801 | 21,790 | A | C | C | Spike | D80A |
22,206 | 22,195 | A | G | G | Spike | D215G |
22,813 | 22,793 | G | T | T | Spike | K417N |
23,012 | 22,992 | G | A | A | Spike | E484K |
23,063 | 23,043 | A | T | T | Spike | N501Y |
23,403 | 23,383 | A | G | G | Spike | D614G |
23,664 | 23,644 | C | T | T | Spike | A701V |
25,563 | 25,543 | G | T | T | ORF3a | Q57H |
25,784 | 25,764 | G | T | T | ORF3a | W131L |
25,904 | 25,884 | C | T | T | ORF3a | S171L |
26,456 | 26,436 | C | T | T | E | P71L |
27,670 | 27,650 | G | T | T | ORF7a | V93F |
28,887 | 28,867 | C | T | T | N | T205I |
11,287 * | 11,285 * | GTCTGGTTTT | G | G | Nsp6 | ΔSGF (aa106–108) |
22,286 * | 22,275 * | CTTGCTTTAC | C | C | Spike | ΔLAL (aa242–244) |
174 | 172 | G | T | T | 5′UTR | No AA Change |
241 | 239 | C | T | T | 5′UTR | No AA Change |
2692 | 2690 | A | T | T | Nsp2 | No AA Change |
3037 | 3035 | C | T | T | Nsp3 | No AA Change |
28,253 | 28,233 | C | T | T | ORF8 | No AA Change |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54009 | Variant Frequency | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|
10,809 | 10,807 | C | C | T | 54% | Nsp5 | P252L |
11,750 | 11,739 | C | C | T | 10% | Nsp6 | L260F |
17,339 | 17,328 | C | C | T | 7% | Nsp13 | A368V |
21,651 | 21,640 | A | A | C | 12% | Spike | N30T |
23,593 | 23,573 | G | G | T | 90% | Spike | Q677H |
23,606 | 23,586 | C | C | T | 90% | Spike | R682W |
25,810 | 25,790 | C | C | T | 14% | ORF3a | L140F |
26,822 | 26,802 | C | C | T | 7% | M | No AA Change |
26,984 | 26,964 | C | C | T | 6% | M | No AA Change |
27,393 | 27,373 | C | C | T | 63% | btw ORF6/7 | No AA Change |
27,627 | 27,607 | T | T | A | 28% | ORF7a | No AA Change |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54974 | Variant Frequency | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|
3721 | 3719 | T | T | C | 9% | Nsp3 | No AA Change |
8821 | 8819 | A | A | G | 9% | Nsp4 | No AA Change |
10,082 | 10,080 | T | T | C | 5% | Nsp5 | S10L |
10,451 | 10,449 | A | A | G | 9% | Nsp5 | N133D |
15,909 | 15,898 | T | T | C | 6% | Nsp12 | No AA Change |
Stock Number | Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54009 or NR-54974 | Variant Frequency | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|---|
NR-54974 | 1963 | 1961 | T | T | C | 9% | Nsp2 | No AA Change |
NR-54974 | 1963 | 1961 | T | T | G | 6% | Nsp2 | No AA Change |
NR-54009 | 1963 | 1961 | T | T | A | 6% | Nsp2 | No AA Change |
NR-54974 | 11,020 | 11,018 | C | C | T | 95% | Nsp6 | No AA Change |
NR-54009 | 11,020 | 11,018 | C | C | T | 25% | Nsp6 | No AA Change |
NR-54974 | 13,339 | 13,328 | T | T | G | 94% | Nsp10 | N105K |
NR-54009 | 13,339 | 13,328 | T | T | G | 26% | Nsp10 | N105K |
NR-54974 | 14,679 | 14,668 | T | T | C | 22% | Nsp12 | No AA Change |
NR-54009 | 14,679 | 14,668 | T | T | C | 18% | Nsp12 | No AA Change |
NR-54974 | 22,114 | 22,103 | T | T | C | 12% | Spike | No AA Change |
NR-54009 | 22,114 | 22,103 | T | T | C | 11% | Spike | No AA Change |
NR-54974 | 25,806 | 25,786 | A | A | G | 6% | ORF3a | No AA Change |
NR-54009 | 25,806 | 25,786 | A | A | G | 5% | ORF3a | No AA Change |
NR-54974 | 28,237 | 28,217 | G | G | T | 6% | ORF8 | R115L |
NR-54009 | 28,237 | 28,217 | G | G | T | 90% | ORF8 | R115L |
NR-54974 | 28,368 | 28,348 | G | G | A | 90% | N | R32H |
NR-54009 | 28,368 | 28,348 | G | G | A | 9% | N | R32H |
NR-54974 | 29,821 | 29,801 | T | T | G | 92% | 3′UTR | noncoding |
NR-54009 | 29,821 | 29,801 | T | T | G | 12% | 3′UTR | noncoding |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54009 and NR-54974 | Variant Frequency BQ-RSA-p4 | Variant Frequency BQ-RSA-P5 | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|---|
174 | 172 | G | T | T | 95% | 100% | 5′ UTR | No AA Change |
241 | 239 | C | T | T | 94% | 100% | 5′ UTR | No AA Change |
1059 | 1057 | C | T | T | 94% | 100% | Nsp2 | T85I |
2692 | 2690 | A | T | T | 90% | 100% | Nsp2 | No AA Change |
3037 | 3035 | C | T | T | 94% | 100% | Nsp3 | No AA Change |
5230 | 5228 | G | T | T | 74% | 100% | Nsp3 | K837N |
10,323 | 10,321 | A | G | G | 95% | 100% | Nsp5 | K90R |
11,287–11,295 | 11,285 | GTCTGGTTTT | G/indel | G/indel | 71% | 100% | Nsp6 | ΔSGF (aa106–108) |
14,408 | 14,397 | C | T | T | 97% | 100% | Nsp12 | P323L |
21,614 | 21,603 | C | T | T | 78% | 100% | Spike | L18F |
21,801 | 21,790 | A | C | C | 96% | 100% | Spike | D80A |
22,206 | 22,195 | A | G | G | 93% | 100% | Spike | D215G |
22,281–22,289 | 22,275 | CTTGCTTAC | C/indel | C/indel | 92% | 100% | Spike | ΔLAL (aa242–244) |
22,813 | 22,793 | G | T | T | 90% | 100% | Spike | K417N |
23,012 | 22,992 | G | A | A | 96% | 100% | Spike | E484K |
23,063 | 23,043 | A | T | T | 96% | 100% | Spike | N501Y |
23,403 | 23,383 | A | G | G | 96% | 100% | Spike | D614G |
23,664 | 23,644 | C | T | T | 90% | 100% | Spike | A701V |
25,563 | 25,543 | G | T | T | 95% | 100% | ORF3a | Q57H |
25,784 | 25,764 | G | T | T | 89% | 100% | ORF3a | W131L |
25,904 | 25,884 | C | T | T | 89% | 100% | ORF3a | S171L |
26,456 | 26,436 | C | T | T | 88% | 100% | E gene | P71L |
27,670 | 27,650 | G | T | T | 90% | 100% | ORF7a | V93F |
28,253 | 28,233 | C | T | T | 99% | 92% | ORF8 | No AA Change |
28,887 | 28,867 | C | T | T | 98% | 99% | N gene | T205I |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide in NR-54974 | Variant Frequency BQ-RSA-p4 | Variant Frequency BQ-RSA-P5 | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|---|
11,020 | 11,018 | C | C | T | 87% | 99% | Nsp6 | No AA Change |
13,339 | 13,328 | T | T | G | 89% | 95% | Nsp10 | N105K |
28,368 | 28,348 | G | G | A | 93% | 99% | N gene | R32H |
29,821 | 29,801 | T | T | G | 90% | 98% | 3′ UTR | noncoding |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide Variant in BQ-RSA-p4 and -p5 | Variant Frequency BQ-RSA-p4 | Variant Frequency BQ-RSA-p5 | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|---|
2969 | 2967 | A | A | G | 3% | 16% | Nsp3 | M902V |
18,535 | 18,524 | A | A | G | 9% | 56% | Nsp14 | I6091V |
21,633 | 21,622 | T | T | C | 1% | 8% | S | L24S |
23,044 | 23,024 | A | A | G | 4% | 17% | S | No AA Change |
24,619 | 24,599 | A | A | G | 4% | 16% | S | No AA Change |
26,250 | 26,230 | C | C | T | 16% | 11% | E | No AA Change |
26,453 | 26,533 | T | T | G | 8% | 54% | E | V70G |
26,465 | 26,545 | T | T | C | 3% | 16% | E | L74P |
Position in MN908947 Wuhan-Hu-1 Sequence | Position in EPI_ISL_ 678615 Reference Sequence | Reported MN908947 Wuhan-Hu-1 Sequence | Reported EPI_ISL_ 678615 Reference Sequence | Nucleotide Variant in NR-54974-p5 | Variant Frequency | Gene | Amino Acid Mutation |
---|---|---|---|---|---|---|---|
9693 | 9691 | C | C | T | 13% | Nsp4 | A3143V |
25,406 | 25,386 | T | T | G | 12% | ORF3a | M5R |
25,418 | 25,398 | C | C | T | 5% | ORF3a | Y9I |
26,250 | 26,230 | C | C | T | 45% | E | No AA Change |
26,461 | 26,442 | CTTCTG | CTTCTG | C | 13% | E | 5nt deletion |
29,274 | 29,254 | C | C | T | 9% | N | T334I |
29,659 | 29,639 | C | C | T | 35% | ORF10 | No AA Change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baczenas, J.J.; Andersen, H.; Rashid, S.; Yarmosh, D.; Puthuveetil, N.; Parker, M.; Bradford, R.; Florence, C.; Stemple, K.J.; Lewis, M.G.; et al. Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses 2021, 13, 2434. https://doi.org/10.3390/v13122434
Baczenas JJ, Andersen H, Rashid S, Yarmosh D, Puthuveetil N, Parker M, Bradford R, Florence C, Stemple KJ, Lewis MG, et al. Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses. 2021; 13(12):2434. https://doi.org/10.3390/v13122434
Chicago/Turabian StyleBaczenas, John James, Hanne Andersen, Sujatha Rashid, David Yarmosh, Nikhita Puthuveetil, Michael Parker, Rebecca Bradford, Clint Florence, Kimberly J. Stemple, Mark G. Lewis, and et al. 2021. "Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike" Viruses 13, no. 12: 2434. https://doi.org/10.3390/v13122434
APA StyleBaczenas, J. J., Andersen, H., Rashid, S., Yarmosh, D., Puthuveetil, N., Parker, M., Bradford, R., Florence, C., Stemple, K. J., Lewis, M. G., & O’Connor, S. L. (2021). Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses, 13(12), 2434. https://doi.org/10.3390/v13122434