Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture Media
2.2. Expansion of SHIVC109P4 from Seed SHIV Stock
2.3. SIV p27 ELISA and TCID50 Titre in TZM-bl Cells
2.4. Animal Inoculations
2.5. Processing of Blood Sample
2.6. Virus Isolation from the Blood of SHIV-Infected Animals and the Generation of ChRM-Adapted SHIV Stock
2.7. Tropism and Co-Receptor Usage
2.8. Measurement of Plasma Viral RNA Levels
2.9. Measurement of Proviral DNA Levels in the Blood
2.10. Measurement of Viral RNA and Proviral DNA Levels in the Tissues
2.11. Measurement of Absolute CD4+ T Cells
2.12. IFN-γ ELISpot Assay
2.13. Virus Neutralization Assay
2.14. Full-Length Envelope Sequencing
3. Results
3.1. Characterization of SHIV Inoculum Stocks
3.2. Virus Isolation from the Peripheral Blood of IV-Infected Animals from Passages 1, 2 and 3
3.3. Plasma Viral RNA Loads of IV-Infected Animals from Passages 1, 2 and 3
3.4. Plasma Viral RNA Loads and Absolute CD4+ T Cell Counts of Animals Infected IR with Different Dilutions of SHIVC109P7
3.5. Viral RNA and Proviral DNA Loads in the Blood and Tissues
3.6. IFN-γ ELISpot Responses
3.7. Virus Neutralization Assay
3.8. Full-Length Envelope Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Del Prete, G.Q.; Lifson, J.D. Nonhuman primate models for studies of AIDS virus persistence during suppressive combination antiretroviral therapy. Curr. Top. Microbiol. Immunol. 2018, 417, 69–109. [Google Scholar] [CrossRef]
- Van Rompay, K.K.A. Tackling HIV and AIDS: Contributions by non-human primate models. Lab Anim. 2017, 46, 259–270. [Google Scholar] [CrossRef]
- Nishimura, Y.; Igarashi, T.; Donau, O.K.; Buckler-White, A.; Buckler, C.; Lafont, B.A.; Goeken, R.M.; Goldstein, S.; Hirsch, V.M.; Martin, M.A. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc. Natl. Acad. Sci. USA 2004, 101, 12324–12329. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. AIDS research. Vaccine studies stymied by shortage of animals. Science 2000, 287, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Ling, B.; Veazey, R.S.; Luckay, A.; Penedo, C.; Xu, K.; Lifson, J.D.; Marx, P.A. SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 2002, 16, 1489–1496. [Google Scholar] [CrossRef]
- Joag, S.V.; Stephens, E.B.; Adams, R.J.; Foresman, L.; Narayan, O. Pathogenesis of SIVmac infection in Chinese and Indian rhesus macaques: Effects of splenectomy on virus burden. Virology 1994, 200, 436–446. [Google Scholar] [CrossRef]
- Marthas, M.L.; Lu, D.; Penedo, M.C.; Hendrickx, A.G.; Miller, C.J. Titration of an SIVmac251 stock by vaginal inoculation of Indian and Chinese origin rhesus macaques: Transmission efficiency, viral loads, and antibody responses. AIDS Res. Hum. Retroviruses 2001, 17, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.; Nuttall, J.; Galmin, L.; Weiss, D.; Chung, H.K.; Romano, J. Characterization of vaginal transmission of a simian human immunodeficiency virus (SHIV) encoding the reverse transcriptase gene from HIV-1 in Chinese rhesus macaques. Virology 2009, 386, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Trichel, A.M.; Rajakumar, P.A.; Murphey-Corb, M. Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. J. Med. Primatol. 2002, 31, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bao, R.; Haigwood, N.L.; Persidsky, Y.; Ho, W.Z. SIV infection of rhesus macaques of Chinese origin: A suitable model for HIV infection in humans. Retrovirology 2013, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Mumbauer, A.; Gettie, A.; Blanchard, J.; Cheng-Mayer, C. Efficient mucosal transmissibility but limited pathogenicity of R5 SHIV SF162P3N in Chinese-origin rhesus macaques. J. Acquir. Immune. Defic. Syndr. 2013, 62, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Hemelaar, J.; Gouws, E.; Ghys, P.D.; Osmanov, S. Global trends in molecular epidemiology of HIV-1 during 2000–2007. AIDS 2011, 25, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Fleminger, I.; Kirtley, S.; Williams, B.; Gouws-Williams, E.; Ghys, P.D. Global and regional molecular epidemiology of HIV-1, 1990-2015: A systematic review, global survey, and trend analysis. Lancet Infect. Dis. 2019, 19, 143–155. [Google Scholar] [CrossRef]
- Hladik, F.; Hope, T.J. HIV infection of the genital mucosa in women. Curr. HIV/AIDS Rep. 2009, 6, 20–28. [Google Scholar] [CrossRef]
- Fujita, Y.; Otsuki, H.; Watanabe, Y.; Yasui, M.; Kobayashi, T.; Miura, T.; Igarashi, T. Generation of a replication-competent chimeric simian-human immunodeficiency virus carrying env from subtype C clinical isolate through intracellular homologous recombination. Virology 2013, 436, 100–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, Q.; Luo, Z.; Feng, Y.; Li, Z.; Wei, Q.; Shao, Y. Partial protection of SHIV-infected Chinese rhesus macaques against super-infection with heterologous SHIV isolate. Curr. HIV Res. 2012, 10, 627–635. [Google Scholar] [CrossRef]
- Ndung’u, T.; Lu, Y.; Renjifo, B.; Touzjian, N.; Kushner, N.; Pena-Cruz, V.; Novitsky, V.A.; Lee, T.H.; Essex, M. Infectious simian/human immunodeficiency virus with human immunodeficiency virus type 1 subtype C from an African isolate: Rhesus macaque model. J. Virol. 2001, 75, 11417–11425. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Mumbauer, A.; Gettie, A.; Seaman, M.S.; Russell-Lodrigue, K.; Blanchard, J.; Westmoreland, S.; Cheng-Mayer, C. Generation of lineage-related, mucosally transmissible subtype C R5 simian-human immunodeficiency viruses capable of AIDS development, induction of neurological disease, and coreceptor switching in rhesus macaques. J. Virol. 2013, 87, 6137–6149. [Google Scholar] [CrossRef] [Green Version]
- Siddappa, N.B.; Hemashettar, G.; Wong, Y.L.; Lakhashe, S.; Rasmussen, R.A.; Watkins, J.D.; Novembre, F.J.; Villinger, F.; Else, J.G.; Montefiori, D.C.; et al. Development of a tier 1 R5 clade C simian-human immunodeficiency virus as a tool to test neutralizing antibody-based immunoprophylaxis. J. Med. Primatol. 2011, 40, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Song, R.J.; Chenine, A.L.; Rasmussen, R.A.; Ruprecht, C.R.; Mirshahidi, S.; Grisson, R.D.; Xu, W.; Whitney, J.B.; Goins, L.M.; Ong, H.; et al. Molecularly cloned SHIV-1157ipd3N4: A highly replication- competent, mucosally transmissible R5 simian-human immunodeficiency virus encoding HIV clade C Env. J. Virol. 2006, 80, 8729–8738. [Google Scholar] [CrossRef] [Green Version]
- Asmal, M.; Luedemann, C.; Lavine, C.L.; Mach, L.V.; Balachandran, H.; Brinkley, C.; Denny, T.N.; Lewis, M.G.; Anderson, H.; Pal, R.; et al. Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology 2015, 475, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.W.; Tartaglia, L.J.; Whitney, J.B.; Lim, S.Y.; Sanisetty, S.; Lavine, C.L.; Seaman, M.S.; Rademeyer, C.; Williamson, C.; Ellingson-Strouss, K.; et al. Generation and evaluation of clade C simian-human immunodeficiency virus challenge stocks. J. Virol. 2015, 89, 1965–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wang, S.; Kong, R.; Ding, W.; Lee, F.H.; Parker, Z.; Kim, E.; Learn, G.H.; Hahn, P.; Policicchio, B.; et al. Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proc. Natl. Acad. Sci. USA 2016, 113, E3413–E3422. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Rasmussen, R.A.; Song, R.; Ong, H.; Sharma, P.; Chenine, A.L.; Kramer, V.G.; Siddappa, N.B.; Xu, W.; Else, J.G.; et al. SHIV-1157i and passaged progeny viruses encoding R5 HIV-1 clade C env cause AIDS in rhesus monkeys. Retrovirology 2008, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Ma, Y.; Yang, L.; Gettie, A.; Salas, J.; Russell, K.; Blanchard, J.; Davidow, A.; Pei, Z.; Chang, T.L.; et al. Fast disease progression in simian HIV-infected female macaque is accompanied by a robust local inflammatory innate immune and microbial response. AIDS 2015, 29, F1–F8. [Google Scholar] [CrossRef] [Green Version]
- Derdeyn, C.A.; Decker, J.M.; Bibollet-Ruche, F.; Mokili, J.L.; Muldoon, M.; Denham, S.A.; Heil, M.L.; Kasolo, F.; Musonda, R.; Hahn, B.H.; et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004, 303, 2019–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Salazar-Gonzalez, J.F.; Derdeyn, C.A.; Morris, L.; Williamson, C.; Robinson, J.E.; Decker, J.M.; Li, Y.; Salazar, M.G.; Polonis, V.R.; et al. Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J. Virol. 2006, 80, 11776–11790. [Google Scholar] [CrossRef] [Green Version]
- Seaman, M.S.; Janes, H.; Hawkins, N.; Grandpre, L.E.; Devoy, C.; Giri, A.; Coffey, R.T.; Harris, L.; Wood, B.; Daniels, M.G.; et al. Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J. Virol. 2010, 84, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Trouplin, V.; Salvatori, F.; Cappello, F.; Obry, V.; Brelot, A.; Heveker, N.; Alizon, M.; Scarlatti, G.; Clavel, F.; Mammano, F. Determination of coreceptor usage of human immunodeficiency virus type 1 from patient plasma samples by using a recombinant phenotypic assay. J. Virol. 2001, 75, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Whitcomb, J.M.; Huang, W.; Fransen, S.; Limoli, K.; Toma, J.; Wrin, T.; Chappey, C.; Kiss, L.D.; Paxinos, E.E.; Petropoulos, C.J. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob. Agents Chemother. 2007, 51, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Hofmann-Lehmann, R.; Swenerton, R.K.; Liska, V.; Leutenegger, C.M.; Lutz, H.; McClure, H.M.; Ruprecht, R.M. Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: Comparison of one- versus two-enzyme systems. AIDS Res. Hum. Retroviruses 2000, 16, 1247–1257. [Google Scholar] [CrossRef]
- Chege, G.K.; Burgers, W.A.; Stutz, H.; Meyers, A.E.; Chapman, R.; Kiravu, A.; Bunjun, R.; Shephard, E.G.; Jacobs, W.R., Jr.; Rybicki, E.P.; et al. Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model. J. Virol. 2013, 87, 5151–5160. [Google Scholar] [CrossRef] [Green Version]
- Sarzotti-Kelsoe, M.; Bailer, R.T.; Turk, E.; Lin, C.L.; Bilska, M.; Greene, K.M.; Gao, H.; Todd, C.A.; Ozaki, D.A.; Seaman, M.S.; et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 2014, 409, 131–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7552–7557. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; Kearney, M.; Maldarelli, F.; Halvas, E.K.; Bixby, C.J.; Bazmi, H.; Rock, D.; Falloon, J.; Davey, R.T., Jr.; Dewar, R.L.; et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J. Clin. Microbiol. 2005, 43, 406–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heipertz, R.A., Jr.; Sanders-Buell, E.; Kijak, G.; Howell, S.; Lazzaro, M.; Jagodzinski, L.L.; Eggleston, J.; Peel, S.; Malia, J.; Armstrong, A.; et al. Molecular epidemiology of early and acute HIV type 1 infections in the United States Navy and Marine Corps, 2005–2010. AIDS Res. Hum. Retroviruses 2013, 29, 1310–1320. [Google Scholar] [CrossRef]
- Wu, Y.; Beddall, M.H.; Marsh, J.W. Rev-dependent indicator T cell line. Curr. HIV Res. 2007, 5, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, F.; Pohlmann, S.; Hamacher, M.; Means, R.E.; Kraus, T.; Uberla, K.; Di, M.P. Simian immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified cofactor expressed in CEMx174 cells for efficient entry. J. Virol. 1997, 71, 6509–6516. [Google Scholar] [CrossRef] [Green Version]
- Burgers, W.A.; Chege, G.K.; Muller, T.L.; van Harmelen, J.H.; Khoury, G.; Shephard, E.G.; Gray, C.M.; Williamson, C.; Williamson, A.L. Broad, high-magnitude and multifunctional CD4+ and CD8+ T-cell responses elicited by a DNA and modified vaccinia Ankara vaccine containing human immunodeficiency virus type 1 subtype C genes in baboons. J. Gen. Virol. 2009, 90, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Burgers, W.A.; Ginbot, Z.; Shen, Y.J.; Chege, G.K.; Soares, A.P.; Muller, T.L.; Bunjun, R.; Kiravu, A.; Munyanduki, H.; Douglass, N.; et al. The novel capripoxvirus vector lumpy skin disease virus efficiently boosts modified vaccinia Ankara human immunodeficiency virus responses in rhesus macaques. J. Gen. Virol. 2014, 95, 2267–2272. [Google Scholar] [CrossRef]
- Chapman, R.; Jongwe, T.I.; Douglass, N.; Chege, G.; Williamson, A.L. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice. PLoS ONE 2017, 12, e0173352. [Google Scholar] [CrossRef]
- Chapman, R.; van Diepen, M.; Galant, S.; Kruse, E.; Margolin, E.; Ximba, P.; Hermanus, T.; Moore, P.; Douglass, N.; Williamson, A.L.; et al. Immunogenicity of HIV-1 vaccines expressing chimeric envelope glycoproteins on the surface of Pr55 Gag virus-like particles. Vaccines 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Chege, G.K.; Shephard, E.G.; Meyers, A.; van, H.J.; Williamson, C.; Lynch, A.; Gray, C.M.; Rybicki, E.P.; Williamson, A.L. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J. Gen. Virol. 2008, 89, 2214–2227. [Google Scholar] [CrossRef] [PubMed]
- Chege, G.K.; Thomas, R.; Shephard, E.G.; Meyers, A.; Bourn, W.; Williamson, C.; Maclean, J.; Gray, C.M.; Rybicki, E.P.; Williamson, A.L. A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 2009, 27, 4857–4866. [Google Scholar] [CrossRef]
- Chege, G.K.; Burgers, W.A.; Muller, T.L.; Gray, C.M.; Shephard, E.G.; Barnett, S.W.; Ferrari, G.; Montefiori, D.; Williamson, C.; Williamson, A.L. DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies. Vaccine 2017, 35, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Jongwe, T.I.; Chapman, R.; Douglass, N.; Chetty, S.; Chege, G.; Williamson, A.L. HIV-1 subtype C mosaic Gag expressed by BCG and MVA elicits persistent effector T Cell responses in a prime-boost regimen in mice. PLoS ONE 2016, 11, e0159141. [Google Scholar] [CrossRef] [Green Version]
- Margolin, E.; Chapman, R.; Meyers, A.E.; van Diepen, M.T.; Ximba, P.; Hermanus, T.; Crowther, C.; Weber, B.; Morris, L.; Williamson, A.L.; et al. Production and immunogenicity of soluble plant-produced HIV-1 subtype C envelope gp140 immunogens. Front. Plant Sci. 2019, 10, 1378. [Google Scholar] [CrossRef] [PubMed]
- Margolin, E.; Oh, Y.J.; Verbeek, M.; Naude, J.; Ponndorf, D.; Meshcheriakova, Y.A.; Peyret, H.; van Diepen, M.T.; Chapman, R.; Meyers, A.E.; et al. Co-expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. Plant Biotechnol. J. 2020, 18, 2109–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.J.; Shephard, E.; Douglass, N.; Johnston, N.; Adams, C.; Williamson, C.; Williamson, A.L. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV). Virol. J. 2011, 8, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shephard, E.; Burgers, W.A.; van Harmelen, J.H.; Monroe, J.E.; Greenhalgh, T.; Williamson, C.; Williamson, A.L. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res. Hum. Retroviruses 2008, 24, 207–217. [Google Scholar] [CrossRef] [PubMed]
- van Diepen, M.T.; Chapman, R.; Moore, P.L.; Margolin, E.; Hermanus, T.; Morris, L.; Ximba, P.; Rybicki, E.P.; Williamson, A.L. The adjuvant AlhydroGel elicits higher antibody titres than AddaVax when combined with HIV-1 subtype C gp140 from CAP256. PLoS ONE 2018, 13, e0208310. [Google Scholar] [CrossRef] [Green Version]
- van Diepen, M.T.; Chapman, R.; Douglass, N.; Galant, S.; Moore, P.L.; Margolin, E.; Ximba, P.; Morris, L.; Rybicki, E.P.; Williamson, A.L. Prime-boost immunizations with DNA, modified vaccinia virus Ankara, and protein-based vaccines elicit robust HIV-1 Tier 2 neutralizing antibodies against the CAP256 superinfecting virus. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Ximba, P.; Chapman, R.; Meyers, A.E.; Margolin, E.; van Diepen, M.T.; Williamson, A.L.; Rybicki, E.P. Characterization and immunogenicity of HIV envelope gp140 Zera((R)) tagged antigens. Front Bioeng. Biotechnol. 2020, 8, 321. [Google Scholar] [CrossRef] [PubMed]
- Churchyard, G.; Mlisana, K.; Karuna, S.; Williamson, A.L.; Williamson, C.; Morris, L.; Tomaras, G.D.; De Rosa, S.C.; Gilbert, P.B.; Gu, N.; et al. Sequential immunization with gp140 boosts immune responses primed by modified vaccinia ankara or DNA in HIV-uninfected South African participants. PLoS ONE 2016, 11, e0161753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, G.E.; Mayer, K.H.; Elizaga, M.L.; Bekker, L.G.; Allen, M.; Morris, L.; Montefiori, D.; De Rosa, S.C.; Sato, A.; Gu, N.; et al. Subtype C gp140 vaccine boosts immune responses primed by the South African AIDS vaccine initiative DNA-C2 and MVA-C HIV vaccines after more than a 2-Year Gap. Clin. Vaccine Immunol. 2016, 23, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, A.; Muller, T.L.; Chege, G.K.; Williamson, A.L.; Burgers, W.A. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine 2015, 33, 3435–3439. [Google Scholar] [CrossRef]
- Schmitz, J.E.; Kuroda, M.J.; Santra, S.; Sasseville, V.G.; Simon, M.A.; Lifton, M.A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B.J.; et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283, 857–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, J.E.; Simon, M.A.; Kuroda, M.J.; Lifton, M.A.; Ollert, M.W.; Vogel, C.W.; Racz, P.; Tenner-Racz, K.; Scallon, B.J.; Dalesandro, M.; et al. A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. Am. J. Pathol. 1999, 154, 1923–1932. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lai, C.; Wu, X.; Lu, Y.; Han, D.; Guo, W.; Fu, L.; Andrieu, J.M.; Lu, W. Variability of bio-clinical parameters in Chinese-origin Rhesus macaques infected with simian immunodeficiency virus: A nonhuman primate AIDS model. PLoS ONE 2011, 6, e23177. [Google Scholar] [CrossRef] [Green Version]
- Loffredo, J.T.; Bean, A.T.; Beal, D.R.; Leon, E.J.; May, G.E.; Piaskowski, S.M.; Furlott, J.R.; Reed, J.; Musani, S.K.; Rakasz, E.G.; et al. Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication. J. Virol. 2008, 82, 1723–1738. [Google Scholar] [CrossRef] [Green Version]
- Loffredo, J.T.; Friedrich, T.C.; Leon, E.J.; Stephany, J.J.; Rodrigues, D.S.; Spencer, S.P.; Bean, A.T.; Beal, D.R.; Burwitz, B.J.; Rudersdorf, R.A.; et al. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS ONE 2007, 2, e1152. [Google Scholar] [CrossRef] [Green Version]
- Loffredo, J.T.; Sidney, J.; Bean, A.T.; Beal, D.R.; Bardet, W.; Wahl, A.; Hawkins, O.E.; Piaskowski, S.; Wilson, N.A.; Hildebrand, W.H.; et al. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. J. Immunol. 2009, 182, 7763–7775. [Google Scholar] [CrossRef]
- Loffredo, J.T.; Sidney, J.; Piaskowski, S.; Szymanski, A.; Furlott, J.; Rudersdorf, R.; Reed, J.; Peters, B.; Hickman-Miller, H.D.; Bardet, W.; et al. The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B*01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239. J. Immunol. 2005, 175, 5986–5997. [Google Scholar] [CrossRef] [Green Version]
- Mothe, B.R.; Sidney, J.; Dzuris, J.L.; Liebl, M.E.; Fuenger, S.; Watkins, D.I.; Sette, A. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. J. Immunol. 2002, 169, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Mothe, B.R.; Weinfurter, J.; Wang, C.; Rehrauer, W.; Wilson, N.; Allen, T.M.; Allison, D.B.; Watkins, D.I. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol. 2003, 77, 2736–2740. [Google Scholar] [CrossRef] [Green Version]
- Wambua, D.; Henderson, R.; Solomon, C.; Hunter, M.; Marx, P.; Sette, A.; Mothe, B.R. SIV-infected Chinese-origin rhesus macaques express specific MHC class I alleles in either elite controllers or normal progressors. J. Med. Primatol. 2011, 40, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, M.; Whitney, J.B.; Seaman, M.; Barouch, D.H.; Penaloza-MacMaster, P. T-cell subset differentiation and antibody responses following antiretroviral therapy during simian immunodeficiency virus infection. Immunology 2018, 155, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasi, A.; Chiodi, F. Mechanisms regulating expansion of CD8+ T cells during HIV-1 infection. J. Intern. Med. 2018, 283, 257–267. [Google Scholar] [CrossRef]
- Etemad-Moghadam, B.; Rhone, D.; Steenbeke, T.; Sun, Y.; Manola, J.; Gelman, R.; Fanton, J.W.; Racz, P.; Tenner-Racz, K.; Axthelm, M.K.; et al. Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J. Virol. 2001, 75, 5646–5655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemad-Moghadam, B.; Rhone, D.; Steenbeke, T.; Sun, Y.; Manola, J.; Gelman, R.; Fanton, J.W.; Racz, P.; Tenner-Racz, K.; Axthelm, M.K.; et al. Understanding the basis of CD4(+) T-cell depletion in macaques infected by a simian-human immunodeficiency virus. Vaccine 2002, 20, 1934–1937. [Google Scholar] [CrossRef]
- Wibmer, C.K.; Gorman, J.; Anthony, C.S.; Mkhize, N.N.; Druz, A.; York, T.; Schmidt, S.D.; Labuschagne, P.; Louder, M.K.; Bailer, R.T.; et al. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. J. Virol. 2016, 90, 10220–10235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balla-Jhagjhoorsingh, S.S.; Corti, D.; Heyndrickx, L.; Willems, E.; Vereecken, K.; Davis, D.; Vanham, G. The N276 glycosylation site is required for HIV-1 neutralization by the CD4 binding site specific HJ16 monoclonal antibody. PLoS ONE 2013, 8, e68863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chege, G.K.; Adams, C.H.; Keyser, A.T.; Bekker, V.; Morris, L.; Villinger, F.J.; Williamson, A.-L.; Chapman, R.E. Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages. Viruses 2021, 13, 397. https://doi.org/10.3390/v13030397
Chege GK, Adams CH, Keyser AT, Bekker V, Morris L, Villinger FJ, Williamson A-L, Chapman RE. Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages. Viruses. 2021; 13(3):397. https://doi.org/10.3390/v13030397
Chicago/Turabian StyleChege, Gerald K., Craig H. Adams, Alana T. Keyser, Valerie Bekker, Lynn Morris, Francois J. Villinger, Anna-Lise Williamson, and Rosamund E. Chapman. 2021. "Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages" Viruses 13, no. 3: 397. https://doi.org/10.3390/v13030397
APA StyleChege, G. K., Adams, C. H., Keyser, A. T., Bekker, V., Morris, L., Villinger, F. J., Williamson, A.-L., & Chapman, R. E. (2021). Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages. Viruses, 13(3), 397. https://doi.org/10.3390/v13030397