Prognostic Values of Serum Ferritin and D-Dimer Trajectory in Patients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Optimal Cutoffs
3.3. Validation
3.4. Trajectories of Measurements
3.5. Sensitivity Analysis
4. Discussion
4.1. Limitations
4.2. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | novel coronavirus |
CSS | cytokine storm syndrome |
IVD | invasive ventilator dependence |
LOINC | Logical Observation Identifiers Names and Codes |
IRB | institutional review board |
CCI | Charlson comorbidity index |
ROC | receiver operating characteristic |
AUC | area under the curve |
CI | confidence interval |
ICC | intraclass correlation |
CV | cross-validation |
MPCC | mean percentage of correct classifications |
SE | standard error |
PCC | percentages of correct classification |
R2 | coefficient of determination |
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Lei, J.; Li, J.; Li, X.; Qi, X. CT imaging of the 2019 novel Coronavirus (2019-nCoV) pneumonia. Radiology 2020, 295, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernan, K.F.; Carcillo, J.A. Hyperferritinemia and inflammation. Int. Immunol. 2017, 29, 401–409. [Google Scholar] [CrossRef]
- Eloseily, E.M.; Weiser, P.; Crayne, C.B.; Haines, H.; Mannion, M.L.; Stoll, M.L.; Beukelman, T.; Atkinson, T.P.; Cron, R.Q. Benefit of anakinra in treating pediatric secondary hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol. 2020, 72, 326–334. [Google Scholar] [CrossRef]
- Colafrancesco, S.; Alessandri, C.; Conti, F.; Priori, R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun. Rev. 2020, 19, 102573. [Google Scholar] [CrossRef]
- Taneri, P.E.; Gómez-Ochoa, S.A.; Llanaj, E.; Raguindin, P.F.; Rojas, L.Z.; Roa-Díaz, Z.M.; Salvador, D.; Groothof, D.; Minder, B.; Kopp-Heim, D.; et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur. J. Epidemiol. 2020, 35, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of Coronavirus disease 2019. Crit. Care Med. 2020, 48, 1358–1364. [Google Scholar] [CrossRef]
- Shorr, A.F.; Thomas, S.J.; Alkins, S.A.; Fitzpatrick, T.M.; Ling, G.S. D-dimer correlates with proinflammatory cytokine levels and outcomes in critically Ill patients. Chest 2002, 121, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Li, X.; Chen, J.; Ouyang, M.; Zhang, H.; Zhao, X.; Tang, L.; Luo, Q.; Xu, M.; Yang, L.; et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: A retrospective analysis. J. Thromb. Thrombolysis 2020, 50, 548–557. [Google Scholar] [CrossRef]
- Cerner. COVID-19 De-Identified Data Cohort Access Offer for Academic Researchers. 2020. Available online: https://www.cerner.com/-/media/covid-19/response/2263471793_covid-19-de-identified-data-cohort-access-offer-faq_v1.aspx (accessed on 1 November 2020).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Menendez, M.E.; Neuhaus, V.; Van Dijk, N.C.; Ring, D. The elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery. Clin. Orthop. Relat. Res. 2014, 472, 2878–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genders, T.S.S.; Spronk, S.; Stijnen, T.; Steyerberg, E.W.; Lesaffre, E.; Hunink, M.G.M. Methods for calculating sensitivity and specificity of clustered data: A tutorial. Radiology 2012, 265, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Indrayan, A.; Malhotra, R.K. Medical Biostatistics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Adams, P. Management of elevated serum ferritin levels. Gastroenterol. Hepatol. 2008, 4, 333–3334. [Google Scholar]
- Canna, S.W.; Behrens, E.M. Making sense of the cytokine storm: A conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr. Clin. N. Am. 2012, 59, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Gandini, O.; Criniti, A.; Gagliardi, M.; Ballesio, L.; Giglio, S.; Balena, A.; Caputi, A.; Angeloni, A.; Lubrano, C. Sex-disaggregated data confirm serum ferritin as an independent predictor of disease severity both in male and female COVID-19 patients. J. Infect. 2020. [Google Scholar] [CrossRef]
- Zietz, M.; Tatonetti, N.P. Testing the association between blood type and COVID-19 infection, intubation, and death. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020, 18, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.; Tremblay, D.; Thibaud, S.; Kessler, A.; Naymagon, L. Ferritin levels in patients with COVID-19: A poor predictor of mortality and hemophagocytic lymphohistiocytosis. Int. J. Lab. Hematol. 2020, 42, 773–779. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total n (% 1) | Ferritin n (% 1) | D-Dimer n (% 1) |
---|---|---|---|
Total 4 | 52,411 (100.00) | 14,958 (28.5) | 15,005 (28.6) |
Charlson weighted comorbidity index | |||
0 | 24,713 (47.2) | 4801 (32.1) | 5033 (33.5) |
1–2 | 15,065 (28.7) | 5413 (36.2) | 5170 (34.5) |
3–4 | 5112 (9.8) | 2067 (13.8) | 2058 (13.7) |
≥5 | 7521 (14.1) | 2677 (17.9) | 2744 (18.3) |
Chronic diseases 2 | |||
Myocardial infarction | 2624 (5.0) | 1015 (6.8) | 1121 (7.5) |
Congestive heart failure | 6333 (12.1) | 2292 (15.3) | 2351 (15.7) |
Peripheral vascular disease | 4019 (7.7) | 1325 (8.9) | 1335 (8.9) |
Cerebrovascular disease | 3999 (7.6) | 1542 (10.3) | 1577 (10.5) |
Dementia | 4303 (8.2) | 1760 (11.8) | 1788 (11.9) |
Chronic pulmonary disease | 10,815 (20.6) | 3205 (21.4) | 3162 (21.1) |
Rheumatic disease | 1112 (2.1) | 351 (2.3) | 340 (2.3) |
Peptic ulcer disease | 863 (1.6) | 208 (1.4) | 243 (1.6) |
Mild liver disease | 3368 (6.4) | 1021 (6.8) | 1012 (6.7) |
Diabetes without chronic complication | 13,606 (26.0) | 5646 (37.7) | 5442 (36.3) |
Diabetes with chronic complication | 4152 (7.9) | 1531 (10.2) | 1623 (10.8) |
Hemiplegia or paraplegia | 1144 (2.2) | 417 (2.8) | 445 (3.0) |
Renal disease | 9913 (18.9) | 3798 (25.4) | 3963 (26.4) |
Any malignancy, including lymphoma and leukemia, except malignant neoplasm of the skin | 2878 (5.5) | 880 (5.9) | 958 (6.4) |
Moderate or severe liver disease | 550 (1.0) | 174 (1.2) | 180 (1.2) |
Metastatic solid tumor | 667 (1.3) | 194 (1.3) | 185 (1.2) |
HIV/AIDS | 377 (0.7) | 136 (0.9) | 127 (0.8) |
Clinical complications | |||
Hospitalized | 27,774 (53.0) | 13,366 (89.4) | 12,864 (85.7) |
Invasive ventilator dependence (IVD) | 6150 (11.7) | 3828 (25.6) | 3713 (24.7) |
In-hospital mortality among ventilator dependent | 2665 (43.3 3) | 1701 (44.4 3) | 1671 (45.0 3) |
In-hospital mortality | 4502 (8.6) | 2480 (16.6) | 2523 (16.8) |
Ventilator dependence among in-hospital deceased | 2665 (59.2 3) | 1701 (68.6 3) | 1671 (66.2 3) |
Characteristic | Total n (% 5) | Ferritin 1 n (% 5) | D-Dimer 2 n (% 5) |
---|---|---|---|
Total 3 | 52,411 (100.00) | 14,958 (28.5) | 15,005 (28.6) |
Median Age (Years) 4 | 53 (35–68) | 61 (49–73) | 61 (47–73) |
Gender | |||
Female | 26,512 (50.6) | 6862 (45.9) | 7021 (46.8) |
Male | 25,800 (49.2) | 8059 (53.9) | 7945 (52.9) |
Other/Unknown | 99 (0.2) | 37 (0.2) | 39 (0.3) |
Race/Ethnicity | |||
Non-Hispanic American Indian or Alaska Native | 1070 (2.0) | 384 (2.6) | 386 (2.6) |
Non-Hispanic Asian or Pacific Islander | 1447 (2.8) | 427 (2.9) | 443 (3.0) |
Non-Hispanic Black or African American | 10,667 (20.4) | 3723 (24.9) | 3945 (26.3) |
Non-Hispanic White | 15,048 (28.7) | 4396 (29.4) | 4744 (31.6) |
Non-Hispanic Multiracial/Other/Unknown | 5754 (11.0) | 2092 (14.0) | 2271 (15.1) |
Hispanic or Latino | 18,425 (35.2) | 3936 (26.3) | 3216 (21.4) |
Health insurance | |||
Private | 18,015 (34.4) | 4640 (31.0) | 4515 (30.1) |
Government/Miscellaneous | 1853 (3.5) | 509 (3.4) | 583 (3.9) |
Medicaid | 8597 (16.4) | 2103 (14.1) | 2206 (14.7) |
Medicare | 11,791 (22.5) | 4927 (32.9) | 5061 (33.7) |
Self-Pay | 4906 (9.4) | 784 (5.2) | 757 (5.0) |
Missing | 7249 (13.8) | 1995 (13.3) | 1883 (12.5) |
Region of admission 6 | |||
0 | 6210 (11.8) | 2618 (17.5) | 2926 (19.5) |
1 | 5593 (10.7) | 2213 (14.8) | 2476 (16.5) |
2 | 8139 (15.5) | 3067 (20.5) | 3391 (22.6) |
3 | 9867 (18.8) | 2040 (13.6) | 1389 (9.3) |
4 | 2701 (5.2) | 1092 (7.3) | 1255 (8.4) |
5 | 337 (0.6) | 81 (0.5) | 101 (0.7) |
6 | 1551 (3.0) | 382 (2.6) | 455 (3.0) |
7 | 3116 (5.9) | 806 (5.4) | 463 (3.1) |
8 | 3321 (6.3) | 881 (5.9) | 965 (6.4) |
9 | 9012 (17.2) | 1691 (11.3) | 1526 (10.2) |
Missing | 2564 (4.9) | 87 (0.6) | 58 (0.4) |
Category | In-Hospital Mortality | InvasiveVentilator Dependence (IVD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | Cutoff 1 | OR 4 (95% CI) | AUC | n5 | ICC 6 | Cutoff | OR 4 (95% CI) | AUC | n5 | ICC 6 | |
Ferritin | 654 (325–1153) 2 | 714.3 | 3.7 (2.8, 4.8) | 0.997 | 74,758 | 0.956 | 501.6 | 3.4 (2.8, 4.2) | 0.996 | 74,758 | 0.955 |
Gender | |||||||||||
Female | 413 (202–787) | 433.3 | 5.1 (3.2, 8.1) | 0.996 | 29,981 | 0.951 | 270.0 | 3.0 (2.0, 4.4) | 0.998 | 29,981 | 0.961 |
Male | 845 (473–1458) | 740.0 | 3.4 (2.4, 4.8) | 0.998 | 44,597 | 0.961 | 860.4 | 3.4 (2.5, 4.6) | 0.998 | 44,597 | 0.967 |
Charlson Index | |||||||||||
0 | 653 (323–1180) | 610.0 | 3.8 (1.9, 7.8) | 0.994 | 21,252 | 0.952 | 462.2 | 3.4 (2.1, 5.7) | 0.999 | 21,252 | 0.961 |
1–2 | 641 (334–1148) | 1039.5 | 3.7 (2.2, 6.2) | 0.998 | 28,235 | 0.959 | 906.9 | 4.0 (2.6, 6.4) | 0.998 | 28,235 | 0.966 |
3–4 | 625 (317–1270) | 1613.9 | 8.3 (3.5, 19.4) | 0.998 | 11,799 | 0.963 | 1194.7 | 2.4 (1.1, 5.0) | 0.997 | 11,799 | 0.968 |
≥5 | 710 (318–1456) | 786.4 | 3.5 (2.1, 5.7) | 0.996 | 13,472 | 0.955 | 677.9 | 3.3 (2.0, 5.3) | 0.995 | 13,472 | 0.962 |
D-dimer | 1.7 (0.8–4.0) | 2.1 3 | 6.8 (5.3, 8.8) | 0.997 | 79,643 | 0.953 | 2.0 | 6.4 (5.1, 8.1) | 0.998 | 79,643 | 0.958 |
Gender | |||||||||||
Female | 1.5 (0.8–3.6) | 1.9 | 5.9 (4.0, 8.7) | 0.996 | 32,121 | 0.948 | 1.3 | 5.4 (3.8, 7.7) | 0.998 | 32,121 | 0.955 |
Male | 1.8 (0.9–4.3) | 2.5 | 7.0 (5.0, 9.9) | 0.997 | 47,387 | 0.957 | 2.3 | 7.9 (5.7, 11.0) | 0.999 | 47,387 | 0.961 |
Charlson Index | |||||||||||
0 | 1.3 (0.7–3.3) | 6.5 | 7.1 (3.3, 15.0) | 0.997 | 22,078 | 0.950 | 1.4 | 5.2 (3.4, 8.0) | 0.999 | 22,078 | 0.950 |
1–2 | 1.7 (0.8–3.9) | 1.4 | 8.8 (5.3, 14.7) | 0.998 | 28,975 | 0.957 | 1.8 | 10.5 (6.9, 16.1) | 0.999 | 28,975 | 0.959 |
3–4 | 1.8 (0.9–4.5) | 2.6 | 5.5 (2.9, 10.6) | 0.999 | 12,654 | 0.961 | 2.6 | 6.2 (3.2, 11.9) | 0.997 | 12,654 | 0.964 |
≥5 | 2.1 (1.1–4.5) | 1.3 | 7.2 (4.2, 12.3) | 0.998 | 15,936 | 0.961 | 1.9 | 4.8 (3.1, 7.5) | 0.997 | 15,936 | 0.964 |
Outcome | Predictor | PCC 1 for the Complete Set 4 | MPCC 2 (SE 3) for the Training Set 5 | MPCC (SE) for the Test Set 6 | PCC for the Independent Set 7 |
---|---|---|---|---|---|
In-Hospital Mortality | |||||
Ferritin | 0.997 | 0.999 (3.59 × 10−7) | 0.996 (3.57 × 10−5) | 0.999 | |
D-Dimer | 0.997 | 0.999 (4.55 × 10−7) | 0.997 (3.45 × 10−5) | 0.999 | |
Invasive Ventilator Dependence | |||||
Ferritin | 0.996 | 0.999 (4.33 × 10−7) | 0.997 (2.42 × 10−5) | 0.999 | |
D-Dimer | 0.998 | 0.999 (4.21 × 10−7) | 0.998 (2.04 × 10−5) | 0.999 |
Ferritin | D-Dimer | |||
---|---|---|---|---|
2 (95% CI) | R2 | 2 (95% CI) | R2 | |
Elapsed time 1 by death status | 0.88 | 0.74 | ||
Alive | 0.85 (0.84, 0.86) | 0.93 (0.92, 0.94) | ||
Deceased | 1.04 (1.03, 1.05) | 1.14 (1.13, 1.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qeadan, F.; Tingey, B.; Gu, L.Y.; Packard, A.H.; Erdei, E.; Saeed, A.I. Prognostic Values of Serum Ferritin and D-Dimer Trajectory in Patients with COVID-19. Viruses 2021, 13, 419. https://doi.org/10.3390/v13030419
Qeadan F, Tingey B, Gu LY, Packard AH, Erdei E, Saeed AI. Prognostic Values of Serum Ferritin and D-Dimer Trajectory in Patients with COVID-19. Viruses. 2021; 13(3):419. https://doi.org/10.3390/v13030419
Chicago/Turabian StyleQeadan, Fares, Benjamin Tingey, Lily Y. Gu, Ashley Hafen Packard, Esther Erdei, and Ali I. Saeed. 2021. "Prognostic Values of Serum Ferritin and D-Dimer Trajectory in Patients with COVID-19" Viruses 13, no. 3: 419. https://doi.org/10.3390/v13030419
APA StyleQeadan, F., Tingey, B., Gu, L. Y., Packard, A. H., Erdei, E., & Saeed, A. I. (2021). Prognostic Values of Serum Ferritin and D-Dimer Trajectory in Patients with COVID-19. Viruses, 13(3), 419. https://doi.org/10.3390/v13030419