Recent Progress in Torovirus Molecular Biology
Abstract
:1. Introduction
2. Animal and Human ToVs
2.1. Equine ToV (EToV)
2.2. Bovine ToV (BToV)
2.3. Porcine ToV (PToV)
2.4. Human ToV (HToV)
3. Electron Microscopy Study of ToV Morphogenesis and Double-Membrane Vesicles
3.1. Virion Structure and Morphogenesis
3.2. Double-Membrane Vesicles (DMVs)
4. Genome
4.1. Genome Organisation
- The 3’ proximal one-third of the CoV genome encodes four structural proteins in the order 5’-(HE)-S-E-M-N-3’ (if HE is present) and contains a variety of species-specific accessory proteins. In contrast, that of ToVs encodes 5’-S-M-(HE)-N-3’ in that order, with HE as the only accessory protein.
- ToV lacks envelope (E) protein, which is important for virion assembly in CoV [87], and the N protein (~160 amino acid [aa]) of ToV is significantly smaller than that of CoV (~450 aa).
- Two deduced CUG-initiated ORFs encoding U1 and U2 proteins are found in the 5’-UTR and within ORF1a [81].
- ToVs lack guanosine N7-methyltransferase (N-MT), which is conserved in CoV and ronivirus of the nidoviruses [88].
- The 3’-end of ORF1a of ToV encodes 2’, 5’-phosphodiesterase (PDE). Interestingly, related PDE (NS2) was identified only in a lineage A beta-CoV and encoded at a different genome location, being translated from subgenomic (sg) mRNA 2 as an accessory protein (Figure 2b) [85]. Only lineage A beta-CoV have an HE gene.
4.2. Recombination
4.3. Replication and Transcription
5. Non-Structural Proteins (nsps)
5.1. 3C-like Protease/Main Protease (3CLpro/Mpro)
5.2. Papain-Like Protease (PLpro)
5.3. Capping Enzyme
5.4. 2′,5′- Phosphodiesterase (PDE)
5.5. U1 and U2 Proteins
6. Structural Proteins
6.1. Spike (S) Protein
6.2. Haemagglutinin-Esterase (HE) Protein
6.3. Membrane (M) Protein
6.4. Nucleocapsid (N) Protein
7. Reverse Genetics
8. Concluding Remarks and Future Perspectives
- In addition to BToV, PToV is widespread globally, while the occurrence of HToV is not clear.
- An ultrastructural study examined the membranous structures in ToV-infected cells. ToVs induce DMVs, but not additional membrane structures, such as the CMs, zippered ER, or DMSs observed in CoV.
- There is frequent inter- and intra-recombination in BToV and PToV. Moreover, an EV-G that obtained ToV-like PLpro via heterologous recombination has been detected in many countries.
- ToVs use a transcription strategy unique among the nidoviruses, and use combined discontinuous/continuous transcription to synthesise a set of sg mRNAs.
- Two deduced ORFs encoding proteins of unknown function, U1 and U2, translated from an unconventional CUG initiation codon, are found in the 5’ -UTR and within ORF1a in the genome.
- The N proteins of BToV, which replicates in the cytoplasm, predominantly accumulate in the nuclear compartments during all infection processes, despite being a main structural protein. The different subcellular localisation of N proteins suggests a different virion assembly mechanism in ToV and CoV.
- The three-dimensional structures of BToV and PToV HE proteins have been resolved, and their substrate specificities characterised.
- BToV has been isolated and propagated in HRT18 cells.
- A reverse genetics system for BToV has been established.
- Research to be conducted on the transcriptional mechanism of ToVs includes the following:
- ➢
- To determine whether the highly conserved sequence (CUUUAGA) of L-TRS and each B-TRS is actually intolerant of mutations, as suggested by initial observations.
- ➢
- To determine whether complementarity between L-TRS and anti-B-TRS is required for ToV replication, since the template switch driven by base pairing between L-TRS and anti-B-TRS does not occur in ToV.
- ➢
- To determine whether the highly conserved L-TRS and B-TRS have other roles in this region beyond acting as a terminator signal on genome (i.e., extended TRS:CACN3–4CUUUAGA) and promoter signal of sg mRNA (ACN3–4CUUUAGA).
- ➢
- To determine what the structure and sequence of HP, and the 23-nt homology sequence following L-TRS and HP play roles in the discontinuous transcription of mRNA2.
- ➢
- To determine whether discontinuous transcription is inhibited by introducing B-TRS upstream of the S gene or insertion of non-coding intergenic regions including B-TRS between the ORF1b and S genes, and, if so, to analyse the phenotype of the recombinant ToVs.
- Further study should determine whether U1 and U2 proteins are actually translated from unconventional CUG initial codons in infected cells. If so, their functions in virus infection and the protein(s) essential for viral growth in infected cells should be identified.
- The roles of these functional domains in nsps conserved in nidovirals have been extensively studied using CoVs. However, whether the knockout recombinant BToVs of the corresponding domains of ToVs show the same phenotype remains unknown.
- The ligand and substrate specificity of ToV HE are 9-O-Ac-Sias; however, the substrate specificity of the ToV S protein in Sias-mediated hemagglutination activity remains unknown. Further study should also be conducted to determine whether the ToV S and HE proteins are functionally related.
- The function of the region of structural proteins that significantly differs from that of CoVs, such as the CT of the S protein, should be identified, along with the phenotype of a recombinant virus with mutations in this region.
- BToV N proteins accumulate predominantly in nuclear compartments during infection. The nuclear or nucleolar function of BToV N proteins should be investigated.
- The ease and efficiency of analysing cell entry mechanisms or anti-viral drug screening of ToVs should be improved using recombinant ToVs carrying reporter genes.
- Reverse genetics can provide attractive new ideas and strategies for the development of new vaccines. For example, a recombinant BToV in which the HE gene is replaced with the S1 region of BCoV containing the major antigenic determinants may become a bivalent vaccine that protects from both BToV and BCoVs.
- Identification of the functional receptors of ToVs.
- Resolution of the three-dimensional structure of major proteins such as the S protein.
- Analysis of the full-genome sequence and successful cell isolation of HToV, which will definitively prove its existence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICTV (International Committee on Taxonomy of Virus). Virus Taxonomy: 2019 Release; ICTV, 2019. [Google Scholar]
- Woode, G.; Reed, D.; Runnels, P.; Herrig, M.; Hill, H. Studies with an unclassified virus isolated from diarrheic calves. Vet. Microbiol. 1982, 7, 221–240. [Google Scholar] [CrossRef]
- Weiss, M.; Steck, F.; Horzinek, M.C. Purification and Partial Characterization of a New Enveloped RNA Virus (Berne Virus). J. Gen. Virol. 1983, 64 Pt 9. [Google Scholar] [CrossRef]
- Fagerland, J.A.; Pohlenz, J.F.L.; Woode, G.N. A Morphological Study of the Replication of Breda Virus (Proposed Family Toroviridae) in Bovine Intestinal Cells. J. Gen. Virol. 1986, 67 Pt 7. [Google Scholar] [CrossRef]
- Weiss, M.; Horzinek, M.C. Morphogenesis of Berne Virus (Proposed Family Toroviridae). J. Gen. Virol. 1986, 67, 1305–1314. [Google Scholar] [CrossRef]
- Horzinek, M.C.; Flewett, T.H.; Saif, L.J.; Spaan, W.J.; Weiss, M.; Woode, G.N. A New Family of Vertebrate Viruses: Toroviridae. Intervirology 1987, 27. [Google Scholar] [CrossRef] [PubMed]
- Beards, G.; Green, J.; Hall, C.; Flewett, T.; Lamouliatte, F.; Pasquier, P. An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves. Lancet 1984, 323. [Google Scholar] [CrossRef]
- Kroneman, A.; Cornelissen, L.A.H.M.; Horzinek, M.C.; De Groot, R.J.; Egberink, H.F. Identification and Characterization of a Porcine Torovirus. J. Virol. 1998, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoet, A.E.; Saif, L.J. Bovine torovirus (Breda virus) revisited. Anim. Heal. Res. Rev. 2004, 5. [Google Scholar] [CrossRef]
- Petric, M. VI, 1. Epidemiology of toroviruses. In Perspectives in Medical Virology; Elsevier: Amsterdam, The Netherlands, 2003; Volume 9, pp. 625–632. [Google Scholar] [CrossRef]
- Hu, Z.-M.; Yang, Y.-L.; Xu, L.-D.; Wang, B.; Qin, P.; Huang, Y.-W. Porcine Torovirus (PToV)—A Brief Review of Etiology, Diagnostic Assays and Current Epidemiology. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; Horzinek, M.C. Toroviruses: Replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol. 1993, 74 Pt 11, 2305–2316. [Google Scholar] [CrossRef]
- Koopmans, M.; Horzinek, M.C. Toroviruses of Animals And Humans: A Review. Adv. Virus Res. 1994, 43. [Google Scholar] [CrossRef]
- Horzinek, M.C. Molecular Evolution of Corona-And Toroviruses. Adv. Exp. Med. Biol. 1999, 473, 61–72. [Google Scholar] [CrossRef]
- Weiss, M.; Steck, F.; Kaderli, R.; Horzinek, M. Antibodies to berne virus in horses and other animals. Vet. Microbiol. 1984, 9. [Google Scholar] [CrossRef]
- Brown, D.W.; Beards, G.M.; Flewett, T.H. Detection of Breda virus antigen and antibody in humans and animals by enzyme immunoassay. J. Clin. Microbiol. 1987, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, P.; Harbour, D.A.; Gruffydd-Jones, T.J.; Howard, P.E.; Hopper, C.D.; Gruffydd-Jones, E.A.; Broadhead, H.M.; Clarke, C.M.; Jones, M.E. A clinical and microbiological study of cats with protruding nictitating membranes and diarrhoea: Isolation of a novel virus. Vet. Rec. 1990, 127, 324–330. [Google Scholar] [PubMed]
- Chong, R.; Shi, M.; Grueber, C.E.; Holmes, E.C.; Hogg, C.J.; Belov, K.; Barrs, V.R. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwabara, M.; Wada, K.; Maeda, Y.; Miyazaki, A.; Tsunemitsu, H. First Isolation of Cytopathogenic Bovine Torovirus in Cell Culture from a Calf with Diarrhea. Clin. Vaccine Immunol. 2007, 14, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woode, G.N.; Saif, L.J.; Quesada, M.; Winand, N.J.; Pohlenz, J.F.; Gourley, N.K. Comparative studies on three isolates of Breda virus of calves. Am. J. Vet. Res. 1985, 46, 1003–1010. [Google Scholar] [PubMed]
- Ito, T.; Katayama, S.; Okada, N.; Masubuchi, K.; Fukuyama, S.-I.; Shimizu, M. Genetic and Antigenic Characterization of Newly Isolated Bovine Toroviruses from Japanese Cattle. J. Clin. Microbiol. 2010, 48, 1795–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aita, T.; Kuwabara, M.; Murayama, K.; Sasagawa, Y.; Yabe, S.; Higuchi, R.; Tamura, T.; Miyazaki, A.; Tsunemitsu, H. Characterization of epidemic diarrhea outbreaks associated with bovine torovirus in adult cows. Arch. Virol. 2011, 157, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Tsuchiaka, S.; Naoi, Y.; Otomaru, K.; Sato, M.; Masuda, T.; Haga, K.; Oka, T.; Yamasato, H.; Omatsu, T.; et al. Whole genome analysis of Japanese bovine toroviruses reveals natural recombination between porcine and bovine toroviruses. Infect. Genet. Evol. 2016, 38, 90–95. [Google Scholar] [CrossRef]
- Ujike, M.; Etoh, Y.; Urushiyama, N.; Taguchi, F.; Enjuanes, L.; Kamitani, W. Reverse Genetics with a Full-length Infec-tious cDNA Clone of Bovine Torovirus. BioRxiv 2020. preprint. [Google Scholar]
- Pohlenz, J.F.L.; Cheville, N.F.; Woode, G.N.; Mokresh, A.H. Cellular Lesions in Intestinal Mucosa of Gnotobiotic Calves Experimentally Infected with a New Unclassified Bovine Virus (Breda Virus). Vet. Pathol. 1984, 21. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, M.; Cremers, H.; Woode, G.; Horzinek, M.C. Breda virus (Toroviridae) infection and systemic antibody response in sentinel calves. Am. J. Vet. Res. 1990, 51, 1443–1448. [Google Scholar]
- Ito, T.; Okada, N.; Okawa, M.; Fukuyama, S.-I.; Shimizu, M. Detection and characterization of bovine torovirus from the respiratory tract in Japanese cattle. Vet. Microbiol. 2009, 136. [Google Scholar] [CrossRef]
- Gülaçtı, I.; Işıdan, H.; Sözdutmaz, I. Detection of bovine torovirus in fecal specimens from calves with diarrhea in Turkey. Arch. Virol. 2014, 159. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.S.; Asano, K.M.; De Souza, S.P.; Brandão, P.E.; Richtzenhain, L.J. First detection and molecular diversity of Brazilian bovine torovirus (BToV) strains from young and adult cattle. Res. Vet. Sci. 2013, 95. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Oh, E.-H.; Park, S.-I.; Kim, H.-H.; Jeong, Y.-J.; Lim, G.-K.; Hyun, B.-H.; Cho, K.-O. Molecular epidemiology of bovine toroviruses circulating in South Korea. Vet. Microbiol. 2008, 126. [Google Scholar] [CrossRef]
- Ito, T.; Okada, N.; Fukuyama, S.-I. Epidemiological analysis of bovine torovirus in Japan. Virus Res. 2007, 126, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Haschek, B.; Klein, D.; Benetka, V.; Herrera, C.; Sommerfeld-Stur, I.; Vilcek, S.; Moestl, K.; Baumgartner, W. Detection of Bovine Torovirus in Neonatal Calf Diarrhoea in Lower Austria and Styria (Austria). J. Vet. Med. Ser. B Infect. Dis. Vet. Public Health 2006, 53. [Google Scholar] [CrossRef]
- Hoet, A.E.; Nielsen, P.R.; Hasoksuz, M.; Thomas, C.; Wittum, T.E.; Saif, L.J. Detection of Bovine Torovirus and other Enteric Pathogens in Feces from Diarrhea Cases in Cattle. J. Vet. Diagn. Investig. 2003, 15. [Google Scholar] [CrossRef] [Green Version]
- Matiz, K.; Kecskeméti, S.; Kiss, I.; Adám, Z.; Tanyi, J.; Nagy, B. Torovirus detection in faecal specimens of calves and pigs in Hungary: Short communication. Acta Vet. Hung. 2002, 50. [Google Scholar] [CrossRef] [PubMed]
- Duckmanton, L.; Carman, S.; Nagy, E.; Petric, M. Detection of Bovine Torovirus in Fecal Specimens of Calves with Diarrhea from Ontario Farms. J. Clin. Microbiol. 1998, 36. [Google Scholar] [CrossRef] [Green Version]
- Pérez, E.; Kummeling, A.; Janssen, M.; Jimenez, C.; Alvarado, R.; Caballero, M.; Donado, P.; Dwinger, R. Infectious agents associated with diarrhoea of calves in the canton of Tilarán, Costa Rica. Prev. Vet. Med. 1998, 33. [Google Scholar] [CrossRef]
- Scott, F.M.M.; Holliman, A.; Jones, G.W.; Gray, E.W.; Fitton, J. Evidence of torovirus infection in diarrhoeic cattle. Vet. Rec. 1996, 138. [Google Scholar] [CrossRef] [PubMed]
- Vorster, J.H.; Gredes, G.H. Breda virus-like particles in calves in South Africa. J. S. Afr. Vet. Assoc. 1993, 64, 58. [Google Scholar]
- Horzinek, M.C.; Koopmans, M.P.; Wuijckhuise-Sjouke, L.V.; Schukken, Y.H.; Cremers, H. Association of diarrhea in cattle with torovirus infections on farms. Am. J. Vet. Res. 1991, 52, 1769–1773. [Google Scholar]
- Kirisawa, R.; Takeyama, A.; Koiwa, M.; Iwai, H. Detection of Bovine Torovirus in Fecal Specimens of Calves with Diarrhea in Japan. J. Vet. Med. Sci. 2007, 69, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Wang, W.; Chen, C.; Zhang, X.; Wang, J.; Xu, Z.; Lan, Y. First report and genetic characterization of bovine torovirus in diarrhoeic calves in China. BMC Vet. Res. 2020, 16. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Yue, H.; Tang, C. First detection and genomic characteristics of bovine torovirus in dairy calves in China. Arch. Virol. 2020, 165. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-H.; Shin, S.-U.; Choi, K.-S. Molecular surveillance of viral pathogens associated with diarrhea in pre-weaned Korean native calves. Trop. Anim. Heal. Prod. 2020, 52. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Kim, H.-Y.; Choi, E.W.; Kim, D. Causative agents and epidemiology of diarrhea in Korean native calves. J. Vet. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.F.; Mansour, S.M.G.; El-Araby, I.E.; Mor, S.K.; Goyal, S.M. Molecular detection of enteric viruses from diarrheic calves in Egypt. Arch. Virol. 2016, 162. [Google Scholar] [CrossRef]
- Koopmans, M.; Boom, U.V.D.; Woode, G.; Horzinek, M. Seroepidemiology of Breda virus in cattle using ELISA. Vet. Microbiol. 1989, 19. [Google Scholar] [CrossRef]
- Durham, P.J.; Hassard, L.E.; Norman, G.B.; Yemen, R.L. Viruses and virus-like particles detected during examination of feces from calves and piglets with diarrhea. Can. Vet. J. 1989, 30, 876–881. [Google Scholar]
- Penrith, M.L.; Gerdes, G.H. Breda virus-like particles in pigs in South Africa. J. S. Afr. Vet. Assoc. 1992, 63, 102. [Google Scholar]
- Shin, D.-J.; Park, S.-I.; Jeong, Y.-J.; Hosmillo, M.; Kim, H.-H.; Kim, H.-J.; Kwon, H.-J.; Kang, M.-I.; Park, S.-J.; Cho, K.-O. Detection and molecular characterization of porcine toroviruses in Korea. Arch. Virol. 2010, 155. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Zhu, L.; Xu, Z. Molecular Detection of Porcine Torovirus in Piglets with Diarrhea in Southwest China. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, H.; Zhou, Y.; Xu, Z.; Zhu, L.; Horne, J. Molecular epidemiology of Porcine torovirus (PToV) in Sichuan Province, China: 2011–2013. Virol. J. 2014, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, Y.; Yang, F.; Liu, P.; Cai, Y.; Huang, J.; Zhu, L.; Xu, Z. Rapid and sensitive detection of porcine torovirus by a reverse transcription loop-mediated isothermal amplification assay (RT-LAMP). J. Virol. Methods 2016, 228. [Google Scholar] [CrossRef]
- Fujii, Y.; Kashima, Y.; Sunaga, F.; Aoki, H.; Imai, R.; Sano, K.; Katayama, Y.; Omatsu, T.; Oba, M.; Furuya, T.; et al. Complete genome sequencing and genetic analysis of a Japanese porcine torovirus strain detected in swine feces. Arch. Virol. 2019, 165. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Pignatelli, J.; Simon-Grifé, M.; Plazuelo, S.; Casal, J.; Rodríguez, D. Seroprevalence of porcine torovirus (PToV) in Spanish farms. BMC Res. Notes 2012, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beards, D.G.M.; Brown, J.G.; Flewett, T.H. Preliminary Characterisation of Torovirus-Like Particles of Humans: Comparison With Berne Virus of Horses and Breda Virus of Calves. J. Med. Virol. 1986, 20. [Google Scholar] [CrossRef]
- Koopmans, M.; Petric, M.; I Glass, R.; Monroe, S.S. Enzyme-linked immunosorbent assay reactivity of torovirus-like particles in fecal specimens from humans with diarrhea. J. Clin. Microbiol. 1993, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, T.; Naik, T.N. Electronmicroscopic evidence of torovirus like particles in children with diarrhoea. Indian J. Med Res. 1997, 105, 108–110. [Google Scholar] [PubMed]
- Duckmanton, L.; Luan, B.; Devenish, J.; Tellier, R.; Petric, M. Characterization of Torovirus from Human Fecal Specimens. Virology 1997, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopmans, M.P.G.; Goosen, E.S.M.; Lima, A.A.M.; McAuliffe, I.T.; Nataro, J.P.; Barrett, L.J.; Glass, R.I.; Guerrant, R.L. Association of torovirus with acute and persistent diarrhea in children. Pediatr. Infect. Dis. J. 1997, 16. [Google Scholar] [CrossRef]
- Jamieson, F.B.; Wang, E.E.L.; Bain, C.; Good, J.; Duckmanton, L.; Petric, M. Human Torovirus: A New Nosocomial Gastrointestinal Pathogen. J. Infect. Dis. 1998, 178. [Google Scholar] [CrossRef] [PubMed]
- Waters, V.; Ford-Jones, E.L.; Petric, M.; Fearon, M.; Corey, P.; Moineddein, R. Etiology of community-acquired pediatric viral diarrhea: A prospective longitudinal study in hospitals, emergency departments, pediatric practices and child care centers during the winter rotavirus outbreak, 1997 to 1998. Pediatr. Infect. Dis. J. 2000, 19. [Google Scholar] [CrossRef] [PubMed]
- Lodha, A.; De Silva, N.; Petric, M.; Moore, A.M. Human torovirus: A new virus associated with neonatal necrotizing enterocolitis. Acta Paediatr. 2007, 94. [Google Scholar] [CrossRef] [PubMed]
- Gubbay, J.; Al-Rezqi, A.; Hawkes, M.; Williams, L.; Richardson, S.; Matlow, A. The role of torovirus in nosocomial viral gastroenteritis at a large tertiary pediatric centre. Can. J. Infect. Dis. Med Microbiol. 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- ICTV. Coronaviridae: Report ICTV 9th. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae (accessed on 2 February 2021).
- Ávila-Pérez, G.; Rejas, M.T.; Rodríguez, D. Ultrastructural characterization of membranous torovirus replication factories. Cell. Microbiol. 2016, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horzinek, M.C.; Kaeffer, B.; Kooten, P.V.; Ederveen, J.; Eden, W.V. Properties of monoclonal antibodies against Berne virus (Toroviridae). Am. J. Vet. Res. 1989, 50, 1131–1137. [Google Scholar]
- Ujike, M.; Kawachi, Y.; Matsunaga, Y.; Etho, Y.; Asanuma, H.; Kamitani, W.; Taguchi, F. Characterization of Localization and Export Signals of Bovine Torovirus Nucleocapsid Protein Responsible for Extensive Nuclear and Nucleolar Accumulation and Their Importance for Virus Growth. J. Virol. 2020, 95. [Google Scholar] [CrossRef] [PubMed]
- Harak, C.; Lohmann, V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015, 479–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, G.; Melia, C.E.; Snijder, E.J.; Bárcena, M. Double-Membrane Vesicles as Platforms for Viral Replication. Trends Microbiol. 2020, 28, 1022–1033. [Google Scholar] [CrossRef]
- Scutigliani, E.M.; Kikkert, M. Interaction of the innate immune system with positive-strand RNA virus replication organelles. Cytokine Growth Factor Rev. 2017, 37, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Doyle, N.; Hawes, P.C.; Simpson, J.; Adams, L.H.; Maier, H.J. The Porcine Deltacoronavirus Replication Organelle Comprises Double-Membrane Vesicles and Zippered Endoplasmic Reticulum with Double-Membrane Spherules. Viruses 2019, 11, 1030. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.J.; Hawes, P.C.; Cottam, E.M.; Mantell, J.; Verkade, P.; Monaghan, P.; Wileman, T.; Britton, P. Infectious Bronchitis Virus Generates Spherules from Zippered Endoplasmic Reticulum Membranes. MBio 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- De Wilde, A.H.; Raj, V.S.; Oudshoorn, D.; Bestebroer, T.; Van Nieuwkoop, S.; Limpens, R.W.A.L.; Posthuma, C.; Van Der Meer, Y.; Bárcena, M.; Haagmans, B.; et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J. Gen. Virol. 2013, 94. [Google Scholar] [CrossRef]
- Zhou, X.; Cong, Y.; Veenendaal, T.; Klumperman, J.; Shi, D.; Mari, M.; Reggiori, F. Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection. Viruses 2017, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Ulasli, M.; Verheije, M.H.; De Haan, C.A.M.; Reggiori, F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell. Microbiol. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Knoops, K.; Kikkert, M.; Worm, S.H.E.V.D.; Zevenhoven-Dobbe, J.C.; Van Der Meer, Y.; Koster, A.J.; Mommaas, A.M.; Snijder, E.J. SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biol. 2008, 6. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; Limpens, R.W.A.L.; De Wilde, A.H.; De Jong, A.W.M.; Zevenhoven-Dobbe, J.C.; Maier, H.J.; Faas, F.F.G.A.; Koster, A.J.; Bárcena, M. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biol. 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Wolff, G.; Limpens, R.W.A.L.; Zevenhoven-Dobbe, J.C.; Laugks, U.; Zheng, S.; De Jong, A.W.M.; Koning, R.I.; Agard, D.A.; Grünewald, K.; Koster, A.J.; et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 2020, 369. [Google Scholar] [CrossRef]
- Draker, R.; Roper, R.L.; Petric, M.; Tellier, R. The complete sequence of the bovine torovirus genome. Virus Res. 2006, 115. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lan, D.; Lu, L.; Chen, M.; Wang, C.; Hua, X. Molecular characterization and phylogenetic analysis of the genome of porcine torovirus. Arch. Virol. 2013, 159. [Google Scholar] [CrossRef]
- Stewart, H.; Brown, K.; Dinan, A.M.; Irigoyen, N.; Snijder, E.J.; Firth, A.E. Transcriptional and Translational Landscape of Equine Torovirus. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Zhou, J.; Chen, Y.; Tong, X.; Wang, Z.; Guo, J.; Chen, J.; Fang, L.; Wang, D.; Xiao, S. Characterization of Self-Processing Activities and Substrate Specificities of Porcine Torovirus 3C-Like Protease. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Van Boheemen, S.; De Graaf, M.; Lauber, C.; Bestebroer, T.; Raj, V.S.; Zaki, A.; Osterhaus, A.; Haagmans, B.; Gorbalenya, A.; Snijder, E.; et al. Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Saberi, A.; Gulyaeva, A.A.; Brubacher, J.L.; Newmark, P.A.; Gorbalenya, A.E. A planarian nidovirus expands the limits of RNA genome size. PLOS Pathog. 2018, 14. [Google Scholar] [CrossRef] [Green Version]
- Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006, 117. [Google Scholar] [CrossRef]
- Zeng, C.; Wu, A.; Wang, Y.; Xu, S.; Tang, Y.; Jin, X.; Wang, S.; Qin, L.; Sun, Y.; Fan, C.; et al. Identification and Characterization of a Ribose 2′-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. J. Virol. 2016, 90. [Google Scholar] [CrossRef] [Green Version]
- Ruch, T.R.; Machamer, C.E. The Coronavirus E Protein: Assembly and Beyond. Viruses 2012, 4, 363–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nga, P.T.; Parquet, M.D.C.; Lauber, C.; Parida, M.; Nabeshima, T.; Yu, F.; Thuy, N.T.; Inoue, S.; Ito, T.; Okamoto, K.; et al. Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathog. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
- Smits, S.L.; Lavazza, A.; Matiz, K.; Horzinek, M.C.; Koopmans, M.P.; De Groot, R.J. Phylogenetic and Evolutionary Relationships among Torovirus Field Variants: Evidence for Multiple Intertypic Recombination Events. J. Virol. 2003, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignatelli, J.; Alonso-Padilla, J.; Rodríguez, D. Lineage specific antigenic differences in porcine torovirus hemagglutinin-esterase (PToV-HE) protein. Vet. Res. 2013, 44, 126. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, J.; Jimenez, M.; Luque, J.; Rejas, M.; Lavazza, A.; Rodríguez, D. Molecular characterization of a new PToV strain. Evolutionary implications. Virus Res. 2009, 143, 33–43. [Google Scholar] [CrossRef]
- De Groot, R.J. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj. J. 2006, 23, 59–72. [Google Scholar] [CrossRef]
- Conceição-Neto, N.; Theuns, S.; Cui, T.; Zeller, M.; Yinda, C.K.; Christiaens, I.; Heylen, E.; Van Ranst, M.; Carpentier, S.; Nauwynck, H.J.; et al. Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus Evol. 2017, 3. [Google Scholar] [CrossRef]
- Knutson, T.P.; Velayudhan, B.T.; Marthaler, D.G. A porcine enterovirus G associated with enteric disease contains a novel papain-like cysteine protease. J. Gen. Virol. 2017, 98. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Misra, S.; Hause, B.; Fang, Y. A Naturally Occurring Recombinant Enterovirus Expresses a Torovirus Deubiquitinase. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiaka, S.; Naoi, Y.; Imai, R.; Masuda, T.; Ito, M.; Akagami, M.; Ouchi, Y.; Ishii, K.; Sakaguchi, S.; Omatsu, T.; et al. Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Lee, C. First detection of novel enterovirus G recombining a torovirus papain-like protease gene associated with diarrhoea in swine in South Korea. Transbound. Emerg. Dis. 2018, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, R.; Nagai, M.; Oba, M.; Sakaguchi, S.; Ujike, M.; Kimura, R.; Kida, M.; Masuda, T.; Kuroda, M.; Wen, R.; et al. A novel defective recombinant porcine enterovirus G virus carrying a porcine torovirus papain-like cysteine protease gene and a putative anti-apoptosis gene in place of viral structural protein genes. Infect. Genet. Evol. 2019, 75. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Liu, Z.; Fu, X.; Yuan, J.; Zhao, J.; Lin, Y.; Shen, Q.; Wang, X.; Deng, X.; et al. Full-length and defective enterovirus G genomes with distinct torovirus protease insertions are highly prevalent on a Chinese pig farm. Arch. Virol. 2018, 163. [Google Scholar] [CrossRef]
- Zirkel, F.; Roth, H.; Kurth, A.; Drosten, C.; Ziebuhr, J.; Junglen, S. Identification and Characterization of Genetically Divergent Members of the Newly Established Family Mesoniviridae. J. Virol. 2013, 87. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, S.G.; Sawicki, D.L. Coronaviruses use Discontinuous Extension for Synthesis of Subgenome-Length Negative Strands. Adv. Exp. Med. Biol. 1995, 380. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, A.O.; Spaan, W.J.M.; Snijder, E.J. Nidovirus transcription: How to make sense…? J. Gen. Virol. 2006, 87. [Google Scholar] [CrossRef]
- Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A Contemporary View of Coronavirus Transcription. J. Virol. 2006, 81. [Google Scholar] [CrossRef] [Green Version]
- Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annu. Rev. Virol. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.Y.; Krishnan, R.; A Brian, D. The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. J. Virol. 1996, 70. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.D.; Simon, A.E. New Insights into the Mechanisms of RNA Recombination. Virol. 1997, 235. [Google Scholar] [CrossRef] [Green Version]
- Dufour, D.; Mateos-Gomez, P.A.; Enjuanes, L.; Gallego, J.; Sola, I. Structure and Functional Relevance of a Transcription-Regulating Sequence Involved in Coronavirus Discontinuous RNA Synthesis. J. Virol. 2011, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zúñiga, S.; Sola, I.; Alonso, S.; Enjuanes, L. Sequence Motifs Involved in the Regulation of Discontinuous Coronavirus Subgenomic RNA Synthesis. J. Virol. 2004, 78. [Google Scholar] [CrossRef] [Green Version]
- Cowley, J.A.; Dimmock, C.M.; Walker, P.J. Gill-associated nidovirus of Penaeus monodon prawns transcribes 3′-coterminal subgenomic mRNAs that do not possess 5′-leader sequences. J. Gen. Virol. 2002, 83. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, A.L.W.; Smits, S.L.; Rottier, P.J.M.; De Groot, R.J. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J. 2002, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, S.L.; Van Vliet, A.L.W.; Segeren, K.; El Azzouzi, H.; Van Essen, M.; De Groot, R.J. Torovirus Non-Discontinuous Transcription: Mutational Analysis of a Subgenomic mRNA Promoter. J. Virol. 2005, 79. [Google Scholar] [CrossRef] [Green Version]
- Snijder, E.; Decroly, E.; Ziebuhr, J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv. Virus Res. 2016, 96. [Google Scholar] [CrossRef]
- Enjuanes, L.; Almazán, F.; Sola, I.; Zuñiga, S. Biochemical Aspects of Coronavirus Replication and Virus-Host Interaction. Annu. Rev. Microbiol. 2006, 60. [Google Scholar] [CrossRef] [Green Version]
- Masters, P.S. The Molecular Biology of Coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef] [PubMed]
- V’Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Genet. 2020, 155–170. [Google Scholar] [CrossRef]
- V’Kovski, P.; Gerber, M.; Kelly, J.; Pfaender, S.; Ebert, N.; Lagache, S.B.; Simillion, C.; Portmann, J.; Stalder, H.; Gaschen, V.; et al. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. Elife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Volk, A.; Hackbart, M.; Deng, X.; Cruz-Pulido, Y.; O’Brien, A.; Baker, S.C. Coronavirus Endoribonuclease and Deubiquitinating Interferon Antagonists Differentially Modulate the Host Response during Replication in Macrophages. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Sakai, Y.; Kawachi, K.; Terada, Y.; Omori, H.; Matsuura, Y.; Kamitani, W. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 2017, 510, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Cowley, T.J.; Steinbrenner, A.D.; Phillips, J.M.; Yount, B.L.; Baric, R.S.; Weiss, S.R. The nsp1, nsp13, and M Proteins Contribute to the Hepatotropism of Murine Coronavirus JHM.WU. J. Virol. 2015, 89, 3598–3609. [Google Scholar] [CrossRef] [Green Version]
- Eckerle, L.D.; Lu, X.; Sperry, S.M.; Choi, L.; Denison, M.R. High Fidelity of Murine Hepatitis Virus Replication Is Decreased in nsp14 Exoribonuclease Mutants. J. Virol. 2007, 81, 12135–12144. [Google Scholar] [CrossRef] [Green Version]
- Kindler, E.; Gil-Cruz, C.; Spanier, J.; Li, Y.; Wilhelm, J.; Rabouw, H.H.; Züst, R.; Hwang, M.; V’Kovski, P.; Stalder, H.; et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLOS Pathog. 2017, 13, e1006195. [Google Scholar] [CrossRef]
- Ziebuhr, J.; Gorbalenya, A.E.; Snijder, E.J. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 2000, 81. [Google Scholar] [CrossRef]
- Smits, S.L.; Snijder, E.J.; De Groot, R.J. Characterization of a Torovirus Main Proteinase. J. Virol. 2006, 80, 4157–4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulferts, R.; Mettenleiter, T.C.; Ziebuhr, J. Characterization of Bafinivirus Main Protease Autoprocessing Activities. J. Virol. 2011, 85, 1348–1359. [Google Scholar] [CrossRef] [Green Version]
- Ziebuhr, J.; Bayer, S.; Cowley, J.A.; Gorbalenya, A.E. The 3C-Like Proteinase of an Invertebrate Nidovirus Links Coronavirus and Potyvirus Homologs. J. Virol. 2003, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanck, S.; Stinn, A.; Tsiklauri, L.; Zirkel, F.; Junglen, S.; Ziebuhr, J. Characterization of an Alphamesonivirus 3C-Like Protease Defines a Special Group of Nidovirus Main Proteases. J. Virol. 2014, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijder, E.J.; Wassenaar, A.L.M.; Van Dinten, L.C.; Spaan, W.J.M.; Gorbalenya, A.E. The Arterivirus Nsp4 Protease Is the Prototype of a Novel Group of Chymotrypsin-like Enzymes, the 3C-like Serine Proteases. J. Biol. Chem. 1996, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Lu, G.; Gao, F.; Peng, H.; Feng, Y.; Ma, G.; Bartlam, M.; Tian, K.; Yan, J.; Hilgenfeld, R.; et al. Structure and Cleavage Specificity of the Chymotrypsin-Like Serine Protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). J. Mol. Biol. 2009, 392. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 2002, 21. [Google Scholar] [CrossRef]
- Fan, K.; Wei, P.; Feng, Q.; Chen, S.; Huang, C.; Ma, L.; Lai, B.; Pei, J.; Liu, Y.; Chen, J.; et al. Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase. J. Biol. Chem. 2004, 279. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, T.; Takemoto, C.; Kim, Y.-T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA 2016, 113. [Google Scholar] [CrossRef] [Green Version]
- Hegyi, A.; Ziebuhr, J. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 2002, 83, 595–599. [Google Scholar] [CrossRef]
- Mielech, A.M.; Chen, Y.; Mesecar, A.D.; Baker, S.C. Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res. 2014, 194. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Yoo, H.M.; Chung, C.H. ISG15 and immune diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2010, 1802, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Decroly, E.; Ferron, F.; Lescar, J.; Canard, B. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 2011, 10, 51–65. [Google Scholar] [CrossRef]
- Ivanov, K.A.; Thiel, V.; Dobbe, J.C.; Van Der Meer, Y.; Snijder, E.J.; Ziebuhr, J. Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase. J. Virol. 2004, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cai, H.; Pan, J.; Xiang, N.; Tien, P.; Ahola, T.; Guo, D. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. USA 2009, 106. [Google Scholar] [CrossRef] [Green Version]
- Decroly, E.; Imbert, I.; Coutard, B.; Bouvet, M.; Selisko, B.; Alvarez, K.; Gorbalenya, A.E.; Snijder, E.J.; Canard, B. Coronavirus Nonstructural Protein 16 Is a Cap-0 Binding Enzyme Possessing (Nucleoside-2′O)-Methyltransferase Activity. J. Virol. 2008, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B.W.; Ziebuhr, J.; Szretter, K.J.; Baker, S.C.; Barchet, W.; Diamond, M.S.; et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Daffis, S.; Szretter, K.J.; Schriewer, J.; Li, J.; Youn, S.; Errett, J.; Lin, T.-Y.; Schneller, S.W.; Zust, R.; Dong, H.; et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010, 468. [Google Scholar] [CrossRef]
- Silverman, R.H. Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. J. Virol. 2007, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Jha, B.K.; Wu, A.; Elliott, R.; Ziebuhr, J.; Gorbalenya, A.E.; Silverman, R.H.; Weiss, S.R. Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host Microbe 2012, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, S.A.; Thornbrough, J.M.; Zhang, R.; Jha, B.K.; Li, Y.; Elliott, R.; Quiroz-Figueroa, K.; Chen, A.I.; Silverman, R.H.; Weiss, S.R. Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, A.E.; Atkins, J.F. A case for a CUG-initiated coding sequence overlapping torovirus ORF1a and encoding a novel 30 kDa product. Virol. J. 2009, 6. [Google Scholar] [CrossRef] [Green Version]
- Fischer, F.; Peng, D.; Hingley, S.T.; Weiss, S.R.; Masters, P.S. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 1997, 71, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.W.; Ardern, Z.; Goldberg, T.L.; Meng, C.; Kuo, C.-H.; Ludwig, C.; Kolokotronis, S.-O.; Wei, X. Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. Elife 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Hilgenfeld, R. Acquisition of new protein domains by coronaviruses: Analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus. Virus Genes 2014, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelissen, L.A.; Wierda, C.M.; Van Der Meer, F.J.; A Herrewegh, A.; Horzinek, M.C.; Egberink, H.F.; De Groot, R.J. Hemagglutinin-esterase, a novel structural protein of torovirus. J. Virol. 1997, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijder, E.J.; Boon, J.A.D.; Spaan, W.J.; Weiss, M.; Horzinek, M.C. Primary structure and post-translational processing of the berne virus peplomer protein. Virology 1990, 178, 355–363. [Google Scholar] [CrossRef]
- Horzinek, M.C.; Ederveen, J.; Kaeffer, B.; De Boer, D.; Weiss, M. The Peplomers of Berne Virus. J. Gen. Virol. 1986, 67 Pt 11, 2475–2483. [Google Scholar] [CrossRef]
- Hulswit, R.J.; De Haan, C.A.; Bosch, B.J. Coronavirus Spike Protein and Tropism Changes. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 96, pp. 29–57. [Google Scholar] [CrossRef]
- Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 105, pp. 93–116. [Google Scholar] [CrossRef]
- Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015, 202, 120–134. [Google Scholar] [CrossRef]
- Heald-Sargent, T.; Gallagher, T. Ready, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence. Viruses 2012, 4, 557–580. [Google Scholar] [CrossRef] [Green Version]
- Zanoni, R.; Weiss, M.; Peterhans, E. The Haemagglutinating Activity of Berne Virus. J. Gen. Virol. 1986, 67 Pt 11, 2485–2488. [Google Scholar] [CrossRef]
- Shimabukuro, K.; Ujike, M.; Ito, T.; Tsunemitsu, H.; Oshitani, H.; Taguchi, F. Hemagglutination mediated by the spike protein of cell-adapted bovine torovirus. Arch. Virol. 2013, 158, 1561–1566. [Google Scholar] [CrossRef]
- Matsuyama, S.; Ujike, M.; Morikawa, S.; Tashiro, M.; Taguchi, F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA 2005, 102, 12543–12547. [Google Scholar] [CrossRef] [Green Version]
- Ujike, M.; Nishikawa, H.; Otaka, A.; Yamamoto, N.; Yamamoto, N.; Matsuoka, M.; Kodama, E.; Fujii, N.; Taguchi, F. Heptad Repeat-Derived Peptides Block Protease-Mediated Direct Entry from the Cell Surface of Severe Acute Respiratory Syndrome Coronavirus but Not Entry via the Endosomal Pathway. J. Virol. 2007, 82, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 2005, 102, 11876–11881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2. J. Virol. 2010, 84, 12658–12664. [Google Scholar] [CrossRef] [Green Version]
- Bosch, B.J.; Bartelink, W.; Rottier, P.J.M. Cathepsin L Functionally Cleaves the Severe Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than Adjacent to the Fusion Peptide. J. Virol. 2008, 82, 8887–8890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belouzard, S.; Madu, I.G.; Whittaker, G.R. Elastase-mediated Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein at Discrete Sites within the S2 Domain. J. Biol. Chem. 2010, 285, 22758–22763. [Google Scholar] [CrossRef] [Green Version]
- Shirato, K.; Kawase, M.; Matsuyama, S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. J. Virol. 2013, 87, 12552–12561. [Google Scholar] [CrossRef] [Green Version]
- Millet, J.K.; Whittaker, G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA 2014, 111, 15214–15219. [Google Scholar] [CrossRef] [Green Version]
- Burkard, C.; Verheije, M.H.; Wicht, O.; Van Kasteren, S.I.; Van Kuppeveld, F.J.; Haagmans, B.L.; Pelkmans, L.; Rottier, P.J.M.; Bosch, B.J.; De Haan, C.A.M. Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. PLoS Pathog. 2014, 10, e1004502. [Google Scholar] [CrossRef] [Green Version]
- Ujike, M.; Taguchi, F.; Nippon Veterinary and Life Science University (NVLU), Tokyo, Japan. Subcellular localisation of BToV S proteins. 2021.
- Weiss, M.; Horzinek, M. Resistance of Berne virus to physical and chemical treatment. Vet. Microbiol. 1986, 11, 41–49. [Google Scholar] [CrossRef]
- Costello, D.A.; Millet, J.K.; Hsia, C.-Y.; Whittaker, G.R.; Daniel, S. Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials 2013, 34, 7895–7904. [Google Scholar] [CrossRef]
- Petit, C.M.; Chouljenko, V.N.; Iyer, A.; Colgrove, R.; Farzan, M.; Knipe, D.M.; Kousoulas, K. Palmitoylation of the cysteine-rich endodomain of the SARS–coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 2007, 360, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ujike, M.; Taguchi, F. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions. Viruses 2015, 7, 1700–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vennema, H.; Godeke, G.J.; Rossen, J.W.; Voorhout, W.F.; Horzinek, M.C.; Opstelten, D.J.; Rottier, P.J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996, 15, 2020–2028. [Google Scholar] [CrossRef]
- Thorp, E.B.; Boscarino, J.A.; Logan, H.L.; Goletz, J.T.; Gallagher, T.M. Palmitoylations on Murine Coronavirus Spike Proteins Are Essential for Virion Assembly and Infectivity. J. Virol. 2006, 80, 1280–1289. [Google Scholar] [CrossRef] [Green Version]
- Ujike, M.; Huang, C.; Shirato, K.; Matsuyama, S.; Makino, S.; Taguchi, F. Two palmitylated cysteine residues of the severe acute respiratory syndrome coronavirus spike (S) protein are critical for S incorporation into virus-like particles, but not for M-S co-localization. J. Gen. Virol. 2012, 93, 823–828. [Google Scholar] [CrossRef]
- Winter, C.; Schwegmann-Wessels, C.; Neumann, U.; Herrler, G. The Spike Protein of Infectious Bronchitis Virus Is Retained Intracellularly by a Tyrosine Motif. J. Virol. 2007, 82, 2765–2771. [Google Scholar] [CrossRef] [Green Version]
- McBride, C.E.; Li, J.; Machamer, C.E. The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein. J. Virol. 2006, 81, 2418–2428. [Google Scholar] [CrossRef] [Green Version]
- Lontok, E.; Corse, E.; Machamer, C.E. Intracellular Targeting Signals Contribute to Localization of Coronavirus Spike Proteins near the Virus Assembly Site. J. Virol. 2004, 78, 5913–5922. [Google Scholar] [CrossRef] [Green Version]
- Schwegmann-Wessels, C.; Al-Falah, M.; Escors, D.; Wang, Z.; Zimmer, G.; Deng, H.; Enjuanes, L.; Naim, H.Y.; Herrler, G. A Novel Sorting Signal for Intracellular Localization Is Present in the S Protein of a Porcine Coronavirus but Absent from Severe Acute Respiratory Syndrome-associated Coronavirus. J. Biol. Chem. 2004, 279, 43661–43666. [Google Scholar] [CrossRef] [Green Version]
- Ujike, M.; Huang, C.; Shirato, K.; Makino, S.; Taguchi, F. The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles. J. Gen. Virol. 2016, 97, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Opstelten, D.-J.E.; Raamsman, M.J.B.; Wolfs, K.; Horzinek, M.C.; Rottier, P.J.M. Envelope glycoprotein interactions in coronavirus assembly. J. Cell Biol. 1995, 131, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langereis, M.A.; Zeng, Q.; Gerwig, G.J.; Frey, B.; Von Itzstein, M.; Kamerling, J.P.; De Groot, R.J.; Huizinga, E.G. Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. Proc. Natl. Acad. Sci. USA 2009, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.C.; Dong, W.J.; Milewska, A.; Golda, A.; Qi, Y.H.; Zhu, Q.K.; Marasco, W.A.; Baric, R.S.; Sims, A.C.; Pyrc, K.; et al. Human Coronavirus HKU1 Spike Protein UsesO-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. J. Virol. 2015, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlasak, R.; Luytjes, W.; Spaan, W.; Palese, P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA 1988, 85, 4526–4529. [Google Scholar] [CrossRef] [Green Version]
- Desforges, M.; Desjardins, J.; Zhang, C.; Talbot, P.J. The Acetyl-Esterase Activity of the Hemagglutinin-Esterase Protein of Human Coronavirus OC43 Strongly Enhances the Production of Infectious Virus. J. Virol. 2013, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkers, M.J.; Lang, Y.; Feitsma, L.J.; Hulswit, R.J.; De Poot, S.A.; Van Vliet, A.L.; Margine, I.; De Groot-Mijnes, J.D.; Van Kuppeveld, F.J.; Langereis, M.A.; et al. Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host Microbe 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.K.; Jiang, G.S.; Holmes, K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 1991, 88. [Google Scholar] [CrossRef] [Green Version]
- Langereis, M.A.; Van Vliet, A.L.W.; Boot, W.; De Groot, R.J. Attachment of Mouse Hepatitis Virus to O-Acetylated Sialic Acid Is Mediated by Hemagglutinin-Esterase and Not by the Spike Protein. J. Virol. 2010, 84. [Google Scholar] [CrossRef] [Green Version]
- Yokomori, K.; Banner, L.R.; Lai, M.M. Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 1991, 183. [Google Scholar] [CrossRef]
- Luytjes, W.; Bredenbeek, P.J.; Noten, A.F.; Horzinek, M.C.; Spaan, W.J. Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology 1988, 166. [Google Scholar] [CrossRef]
- Lissenberg, A.; Vrolijk, M.M.; Van Vliet, A.L.W.; Langereis, M.A.; De Groot-Mijnes, J.D.F.; Rottier, P.J.M.; De Groot, R.J. Luxury at a Cost? Recombinant Mouse Hepatitis Viruses Expressing the Accessory Hemagglutinin Esterase Protein Display Reduced Fitness In Vitro. J. Virol. 2005, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horzinek, M.C.; Weiss, M.; Ederveen, J. Berne virus is not “coronavirus-like”. J. Gen. Virol. 1984, 65 Pt 3. [Google Scholar] [CrossRef] [PubMed]
- Smits, S.L.; Gerwig, G.J.; Van Vliet, A.L.; Lissenberg, A.; Briza, P.; Kamerling, J.P.; Vlasak, R.; De Groot, R.J. Nidovirus Sialate-O-Acetylesterases. J. Biol. Chem. 2005, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regl, G.; Kaser, A.; Iwersen, M.; Schmid, H.; Kohla, G.; Strobl, B.; Vilas, U.; Schauer, R.; Vlasak, R. The Hemagglutinin-Esterase of Mouse Hepatitis Virus Strain S Is a Sialate-4-O-Acetylesterase. J. Virol. 1999, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langereis, M.A.; Bakkers, M.J.; Deng, L.; Padler-Karavani, V.; Vervoort, S.J.; Hulswit, R.J.; Van Vliet, A.L.; Gerwig, G.J.; De Poot, S.A.; Boot, W.; et al. Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Rep. 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Bakkers, M.J.G.; Zeng, Q.; Feitsma, L.J.; Hulswit, R.J.G.; Li, Z.; Westerbeke, A.; Van Kuppeveld, F.J.M.; Boons, G.-J.; Langereis, M.A.; Huizinga, E.G.; et al. Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proc. Natl. Acad. Sci. USA 2016, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, Y.; Li, W.; Li, Z.; Koerhuis, D.; Burg, A.C.S.V.D.; Rozemuller, E.; Bosch, B.-J.; Van Kuppeveld, F.J.M.; Boons, G.-J.; Huizinga, E.G.; et al. Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc. Natl. Acad. Sci. USA 2020, 117. [Google Scholar] [CrossRef] [PubMed]
- Boon, J.A.D.; Snijder, E.J.; Locker, J.K.; Horzinek, M.C.; Rottier, P.J. Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology 1991, 182, 655–663. [Google Scholar] [CrossRef]
- Machamer, C.E.; Rose, J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987, 105, 1205–1214. [Google Scholar] [CrossRef] [Green Version]
- Klumperman, J.; Locker, J.K.; Meijer, A.; Horzinek, M.C.; Geuze, H.J.; Rottier, P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol. 1994, 68, 6523–6534. [Google Scholar] [CrossRef] [Green Version]
- Locker, J.K.; Klumperman, J.; Oorschot, V.; Horzinek, M.C.; Geuze, H.J.; Rottier, P.J. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J. Biol. Chem. 1994, 269, 28263–28269. [Google Scholar] [CrossRef]
- Suzuki, T.; Ujike, M.; Nippon Veterinary and Life Science University (NVLU), Tokyo, Japan. Subcellular localisation of BToV M proteins. 2021.
- Corse, E.; Machamer, C.E. Infectious Bronchitis Virus E Protein Is Targeted to the Golgi Complex and Directs Release of Virus-Like Particles. J. Virol. 2000, 74, 4319–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kida, M.; Ujike, M.; Nippon Veterinary and Life Science University (NVLU), Tokyo, Japan. Attempt to form BToV VLP. 2021.
- Horzinek, M.C.; Ederveen, J.; Weiss, M. The Nucleocapsid of Berne Virus. J. Gen. Virol. 1985, 66, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; Boon, J.A.D.; Spaan, W.J.M.; Verjans, G.M.G.M.; Horzinek, M.C. Identification and Primary Structure of the Gene Encoding the Berne Virus Nucleocapsid Protein. J. Gen. Virol. 1989, 70, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- McBride, R.; Van Zyl, M.; Fielding, B.C. The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses 2014, 6, 2991–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiscox, J.A.; Wurm, T.; Wilson, L.; Britton, P.; Cavanagh, D.; Brooks, G. The Coronavirus Infectious Bronchitis Virus Nucleoprotein Localizes to the Nucleolus. J. Virol. 2001, 75, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Wurm, T.; Chen, H.; Hodgson, T.; Britton, P.; Brooks, G.; Hiscox, J.A. Localization to the Nucleolus Is a Common Feature of Coronavirus Nucleoproteins, and the Protein May Disrupt Host Cell Division. J. Virol. 2001, 75, 9345–9356. [Google Scholar] [CrossRef] [Green Version]
- Garzón, A.; Maestre, A.M.; Pignatelli, J.; Rejas, M.T.; Rodríguez, D.; Merens, A.M.M. New Insights on the Structure and Morphogenesis of Berne Virus. Adv. Exp. Med. Biol. 2006, 581, 175–180. [Google Scholar] [CrossRef]
- Reed, M.L.; Dove, B.K.; Jackson, R.M.; Collins, R.; Brooks, G.; Hiscox, J.A. Delineation and Modelling of a Nucleolar Retention Signal in the Coronavirus Nucleocapsid Protein. Traffic 2006, 7, 833–848. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.L.; Howell, G.; Harrison, S.M.; Spencer, K.-A.; Hiscox, J.A. Characterization of the Nuclear Export Signal in the Coronavirus Infectious Bronchitis Virus Nucleocapsid Protein. J. Virol. 2007, 81, 4298–4304. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Lv, M.; Chen, J.; Shi, H.; Zhang, S.; Zhang, X.; Feng, L. Molecular Characterizations of Subcellular Localization Signals in the Nucleocapsid Protein of Porcine Epidemic Diarrhea Virus. Viruses 2014, 6, 1253–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wurm, T.; Britton, P.; Brooks, G.; Hiscox, J.A. Interaction of the Coronavirus Nucleoprotein with Nucleolar Antigens and the Host Cell. J. Virol. 2002, 76, 5233–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Huang, Y.; Du, Q.; Dong, F.; Zhao, X.; Zhang, W.; Xu, X.; Tong, D. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling. Biochem. Biophys. Res. Commun. 2014, 445, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Rowland, R.; Kervin, R.; Kuckleburg, C.; Sperlich, A.; A Benfield, D. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 1999, 64, 1–12. [Google Scholar] [CrossRef]
- Yoo, D.; Wootton, S.K.; Li, G.; Song, C.; Rowland, R.R. Colocalization and Interaction of the Porcine Arterivirus Nucleocapsid Protein with the Small Nucleolar RNA-Associated Protein Fibrillarin. J. Virol. 2003, 77, 12173–12183. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Hodgins, D.; Calvert, J.G.; Welch, S.-K.W.; Jolie, R.; Yoo, D. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology 2006, 346, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Hodgins, D.C.; Lee, C.; Calvert, J.G.; Welch, S.-K.W.; Jolie, R.; Keith, M.; Yoo, D. Functional mapping of the porcine reproductive and respiratory syndrome virus capsid protein nuclear localization signal and its pathogenic association. Virus Res. 2008, 135, 107–114. [Google Scholar] [CrossRef]
- Almazán, F.; Sola, I.; Zuñiga, S.; Marquez-Jurado, S.; Morales, L.; Becares, M.; Enjuanes, L. Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Res. 2014, 189, 262–270. [Google Scholar] [CrossRef]
- Almazán, F.; González, J.M.; Pénzes, Z.; Izeta, A.; Calvo, E.; Plana-Durán, J.; Enjuanes, L. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 2000, 97, 5516–5521. [Google Scholar] [CrossRef] [Green Version]
- Yount, B.; Curtis, K.M.; Baric, R.S. Strategy for Systematic Assembly of Large RNA and DNA Genomes: Transmissible Gastroenteritis Virus Model. J. Virol. 2000, 74, 10600–10611. [Google Scholar] [CrossRef] [Green Version]
- Thiel, V.; Herold, J.; Schelle, B.; Siddell, S.G. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J. Gen. Virol. 2001, 82, 1273–1281. [Google Scholar] [CrossRef]
- Thao, T.T.N.; Labroussaa, F.; Ebert, N.; V’Kovski, P.; Stalder, H.; Portmann, J.; Kelly, J.; Steiner, S.; Holwerda, M.; Kratzel, A.; et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020, 582, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, Z.; Dong, L.; Yang, T.; Xiao, S. Reverse genetic systems: Rational design of coronavirus live attenuated vaccines with immune sequelae. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2020; Volume 107, pp. 383–416. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395. [Google Scholar] [CrossRef] [Green Version]
- Muth, D.; Meyer, B.; Niemeyer, D.; Schroeder, S.; Osterrieder, N.; Müller, M.A.; Drosten, C. Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning. J. Gen. Virol. 2017, 98, 2461–2469. [Google Scholar] [CrossRef]
- Terada, Y.; Kuroda, Y.; Morikawa, S.; Matsuura, Y.; Maeda, K.; Kamitani, W. Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Terada, Y.; Enjuanes, L.; Ohashi, S.; Kamitani, W. S1 Subunit of Spike Protein from a Current Highly Virulent Porcine Epidemic Diarrhea Virus Is an Important Determinant of Virulence in Piglets. Viruses 2018, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Scobey, T.; Yount, B.L.; Sims, A.C.; Donaldson, E.F.; Agnihothram, S.S.; Menachery, V.D.; Graham, R.L.; Swanstrom, J.; Bove, P.F.; Kim, J.D.; et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 2013, 110, 16157–16162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujike, M.; Taguchi, F. Recent Progress in Torovirus Molecular Biology. Viruses 2021, 13, 435. https://doi.org/10.3390/v13030435
Ujike M, Taguchi F. Recent Progress in Torovirus Molecular Biology. Viruses. 2021; 13(3):435. https://doi.org/10.3390/v13030435
Chicago/Turabian StyleUjike, Makoto, and Fumihiro Taguchi. 2021. "Recent Progress in Torovirus Molecular Biology" Viruses 13, no. 3: 435. https://doi.org/10.3390/v13030435