The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Cell Lines
2.2. Animal
2.3. Virus
2.4. Vascular Fistula in Neonatal Piglets
2.5. Generation of Lymphocytes
2.6. Cell-to-Cell Contact
2.7. PEDV Infection and Transmission
2.8. Chemotaxis Assay
2.9. Transfer Infection
2.10. Western Blot Analysis
2.11. Flow Cytometric Analysis
2.12. RT-qPCR Analysis
2.13. Statistical Analysis
3. Results
3.1. PEDV Bridles Blood-Derived CD3+ T Cells In Vitro and In Vivo
3.2. The MOI Has an Impact on the Percentage of PEDV-Positive CD3+ T Cells
3.3. PEDV Predominantly Bridles CD4+ T Cells
3.4. Cell-to-Cell Contact between Blood-Derived CD3+ T Cells Is Not Affected by PEDV Infection
3.5. PEDV Cell-to-Cell Transmission in MLN-Derived CD3+ T Cells
3.6. Involvement of Integrin α4β7 in Blood-Derived CD3+ T Cells Carrying PEDV
3.7. Blood-Derived CD3+ T Cells Carrying PEDV Cause Intestinal Infection via Cell-to-Cell Contact
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEDV | Porcine epidemic diarrhea virus |
PED | Porcine epidemic diarrhea |
DCs | Dendritic cells |
MOI | Multiplicity of infection |
IHC | Immunohistochemistry |
IF | Immunofluorescence |
TEDs | Transepithelial dendrites |
CCR9 | C-C chemokine receptor 9 |
CCL25 | C-C chemokine ligand |
MAdCAM-1 | Mucosal addressin cell adhesion molecule 1 |
HIV-1 | Human immunodeficiency virus type-1 |
PVDF | Polyvinylidene difluoride |
TBS | Tris-buffered saline |
hpi | Hours post infection |
SEM | Scanning electron microscope |
MLN | Mesenteric lymph nodes |
VZV | Varicella zoster virus |
MV | Measles virus |
References
- Cima, G. PED virus reinfecting U.S. herds. Virus estimated to have killed 7 million-plus pigs. J. Am. Vet. Med. Assoc. 2014, 245, 166. [Google Scholar] [PubMed]
- Song, D.; Moon, H.; Kang, B. Porcine epidemic diarrhea: A review of current epidemiology and available vaccines. Clin. Exp. Vaccine Res. 2015, 4, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Park, B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 2012, 44, 167. [Google Scholar] [CrossRef]
- Sun, R.Q.; Cai, R.J.; Chen, Y.Q.; Liang, P.S.; Chen, D.K.; Song, C.X. Outbreak of Porcine Epidemic Diarrhea in Suckling Piglets, China. Emerg. Infect. Dis. 2012, 18, 161–163. [Google Scholar] [CrossRef]
- Huang, Y.W.; Dickerman, A.W.; Pineyro, P.; Li, L.; Fang, L.; Kiehne, R.; Opriessnig, T.; Meng, X.J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 2013, 4, e00737-13. [Google Scholar] [CrossRef] [Green Version]
- Hanke, D.; Pohlmann, A.; Sauter-Louis, C.; Hoper, D.; Stadler, J.; Ritzmann, M.; Steinrigl, A.; Schwarz, B.A.; Akimkin, V.; Fux, R.; et al. Porcine Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and Molecular Epidemiology. Viruses 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, Q.; Huang, L.; Yuan, C.; Wang, J.; Yang, Q. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat. Commun. 2018, 9, 3811. [Google Scholar] [CrossRef]
- Yuan, C.; Jin, Y.; Li, Y.; Zhang, E.; Yang, Q. PEDV infection in neonatal piglets through the nasal cavity is mediated by subepithelial CD3+ T cells. Vet. Res. 2021, 52, 26. [Google Scholar] [CrossRef]
- Goede, D.; Morrison, R.B. Production impact & time to stability in sow herds infected with porcine epidemic diarrhea virus (PEDV). Prev. Vet. Med. 2016, 123, 202–207. [Google Scholar]
- Poelaert, K.C.K.; Van Cleemput, J.; Laval, K.; Favoreel, H.W.; Couck, L.; Van den Broeck, W.; Azab, W.; Nauwynck, H.J. Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Sattentau, Q. Avoiding the void: Cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 2008, 6, 815–826. [Google Scholar] [CrossRef]
- Sigal, A.; Kim, J.T.; Balazs, A.B.; Dekel, E.; Mayo, A.; Milo, R.; Baltimore, D. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 2011, 477, 95. [Google Scholar] [CrossRef] [PubMed]
- Donahue, D.A.; Schwartz, O. Actin’ on HIV: How Dendritic Cells Spread Infection. Cell Host Microbe 2016, 19, 267. [Google Scholar] [CrossRef] [Green Version]
- Schönrich, G.; Raftery, M.J. Dendritic cells as Achilles’ heel and Trojan horse during varicella zoster virus infection. Front. Microbiol. 2015, 6, 417. [Google Scholar]
- Crespo, M.; Martinez, D.G.; Cerissi, A.; Rivera-Reyes, B.; Bernstein, H.B.; Lederman, M.M.; Sieg, S.F.; Luciano, A.A. Neonatal T-cell maturation and homing receptor responses to Toll-like receptor ligands differ from those of adult naive T cells: Relationship to prematurity. Pediatr. Res. 2012, 71, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zens, K.D.; Connors, T.; Farber, D.L. Tissue compartmentalization of T cell responses during early life. Semin. Immunopathol. 2017, 39, 593–604. [Google Scholar] [CrossRef]
- Arthos, J.; Cicala, C.; Martinelli, E.; Macleod, K.; Van, R.D.; Wei, D.; Xiao, Z.; Veenstra, T.D.; Conrad, T.P.; Lempicki, R.A. HIV-1 envelope protein binds to and signals through integrin alpha(4)beta(7), the gut mucosal homing receptor for peripheral T cells. Nat. Immunol. 2008, 9, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Cicala, C.; Arthos, J.; Fauci, A.S. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J. Transl. Med. 2011, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guzzo, C.; Ichikawa, D.; Park, C.; Phillips, D.; Liu, Q.; Zhang, P.; Kwon, A.; Miao, H.; Lu, J.; Rehm, C. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci. Immunol. 2017, 2, eaam7341. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.A.; Biro, M.; Weninger, W. T cell migration in intact lymph nodes in vivo. Curr. Opin. Cell Biol. 2014, 30, 17–24. [Google Scholar]
- Dupre, L.; Houmadi, R.; Tang, C.; Rey-Barroso, J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front. Immunol. 2015, 6, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abendroth, A.; Morrow, G.; Cunningham, A.L.; Slobedman, B. Varicella-zoster virus infection of human dendritic cells and transmission to T cells: Implications for virus dissemination in the host. J. Virol. 2001, 75, 6183. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Hübner, W.; Spinelli, M.A.; Chen, B.K. Predominant Mode of Human Immunodeficiency Virus Transfer between T Cells Is Mediated by Sustained Env-Dependent Neutralization-Resistant Virological Synapses. J. Virol. 2007, 81, 12582–12595. [Google Scholar] [CrossRef] [Green Version]
- Hübner, W.; Mcnerney, G.P.; Chen, P.; Dale, B.M.; Gordon, R.E.; Chuang, F.Y.S.; Li, X.D.; Asmuth, D.M.; Huser, T.; Chen, B.K. Quantitative 3D Video Microscopy of HIV Transfer across T Cell Virological Synapses. Science 2009, 323, 1743. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Rodriguez, A.L.; Reuter, M.A.; Mcdonald, D. Dendritic Cells Enhance HIV Infection of Memory CD4(+) T Cells in Human Lymphoid Tissues. Aids Res. Hum. Retrovir. 2016, 32, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, N.F. How viruses use the immune system to promote infection of polarized cells. Future Virol. 2014, 9, 655–663. [Google Scholar] [CrossRef]
- Rinaldo, C.R. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. Scientifica 2013, 2013, 164203. [Google Scholar] [CrossRef] [Green Version]
- Rothkotter, H.J.; Pabst, R.; Bailey, M. Lymphocyte migration in the intestinal mucosa: Entry, transit and emigration of lymphoid cells and the influence of antigen. Vet. Immunol. Immunop. 1999, 72, 157–165. [Google Scholar] [CrossRef]
- Schmutz, C.; Cartwright, A.; Williams, H.; Haworth, O.; Williams, J.H.H.; Filer, A.; Salmon, M.; Buckley, C.D.; Middleton, J. Monocytes/macrophages express chemokine receptor CCR9 in rheumatoid arthritis and CCL25 stimulates their differentiation. Arthritis Res. Ther. 2010, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Edelblum, K.L.; Shen, L.; Weber, C.R.; Marchiando, A.M.; Clay, B.S.; Wang, Y.; Prinz, I.; Malissen, B.; Sperling, A.I.; Turner, J.R. Dynamic migration of γδ intraepithelial lymphocytes requires ocdudin. Proc. Natl. Acad. Sci. USA 2012, 109, 7097–7102. [Google Scholar] [CrossRef] [Green Version]
- Sourisseau, M.; Sol-Foulon, N.; Porrot, F.; Blanchet, F.; Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 2007, 81, 1000. [Google Scholar] [CrossRef] [Green Version]
- Hazleton, J.E.; Berman, J.W.; Eugenin, E.A. Novel mechanisms of central nervous system damage in HIV infection. HIV/AIDS 2010, 2, 39. [Google Scholar]
- Frenzke, M.; Sawatsky, B.; Wong, X.X.; Delpeut, S.; Mateo, M.; Cattaneo, R.; Von, M.V. Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: Role of infected immune cells infiltrating the lamina propria. J. Virol. 2013, 87, 2526–2534. [Google Scholar] [CrossRef] [Green Version]
- Leonard, V.H.J.; Sinn, P.L.; Hodge, G.; Miest, T.; Devaux, P.; Oezguen, N.; Braun, W.; McCray, P.B., Jr.; Mcchesney, M.B.; Cattaneo, R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008, 118, 2448. [Google Scholar]
- Shannon-Lowe, C.D.; Neuhierl, B.; Baldwin, G.; Rickinson, A.B.; Delecluse, H.J. Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc. Natl. Acad. Sci. USA 2006, 103, 7065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Li, Y.; Zhang, E.; Jin, Y.; Yang, Q. The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets. Viruses 2021, 13, 469. https://doi.org/10.3390/v13030469
Yuan C, Li Y, Zhang E, Jin Y, Yang Q. The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets. Viruses. 2021; 13(3):469. https://doi.org/10.3390/v13030469
Chicago/Turabian StyleYuan, Chen, Yuchen Li, En Zhang, Yuxin Jin, and Qian Yang. 2021. "The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets" Viruses 13, no. 3: 469. https://doi.org/10.3390/v13030469
APA StyleYuan, C., Li, Y., Zhang, E., Jin, Y., & Yang, Q. (2021). The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets. Viruses, 13(3), 469. https://doi.org/10.3390/v13030469