The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development
Abstract
:1. Introduction
1.1. The Impact of Host Factors such as Age
1.2. The Influenza Virus Family
1.3. The Importance of Age, the Dynamic Host Factor
1.4. How to Study Age-Related Influenza
2. Ferrets Are Uniquely Susceptible to Different Influenza Viruses
2.1. Clinical Disease and Disease Dissection in Ferrets Following Influenza Virus Infection
2.2. Using Ferrets to Establish Correlates of Pathogenesis and Protections: Immune Responses to Influenza Virus Infection in Ferrets
3. Influenza in the Infant and Newly Weaned Ferret
3.1. Influenza Disease in Infant Ferrets
3.2. The Newly Weaned Are Not Infants or Neonates—Differential Disease in the Toddler Age Group of Ferrets
4. The Gold Standard of Influenza Models: The Adult Ferret and Its Use to Dissect Strain-Specific Disease
4.1. Seasonal Influenza in Adult Ferrets
4.2. Pandemic H1N1 Viruses in Adult Ferrets
4.3. Avian Influenza: Adult Ferrets Mirror Human Disease Severity and Are a Tool for Pandemic Preparedness
4.4. Ferrets Suggest Influenza B Viruses Should Not Be Ignored
4.5. Immune Response Dissection Following Influenza Virus Infection in Adult Ferrets: Identification of Immune Correlates and Pathogenic Mechanisms
5. Studying Influenza in the Extreme Aged with the Aged Ferret
5.1. Disease Severity Increases with Ferret Age
5.2. Influenza Disease Severity Is a Function of Age and Previous Infection
5.3. Another Stage of Life: Pregnancy
6. Ferret Age Models in Vaccine Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef]
- CDC. People at High Risk of Flu. Available online: https://www.cdc.gov/flu/highrisk/index.htm (accessed on 1 March 2021).
- CDC. Study Shows Hospitalization Rates and Risk of Death from Flu Increase with Age among People 65 Years and Older. Available online: https://www.cdc.gov/flu/spotlights/2018-2019/hopitalization-rates-older.html (accessed on 26 February 2021).
- Ducatez, M.F.; Pelletier, C.; Meyer, G. Influenza D Virus in Cattle, France, 2011–2014. Emerg. Infect. Dis. 2015, 21, 368–371. [Google Scholar] [CrossRef]
- CDC. Types of Influenza Viruses. Available online: https://www.cdc.gov/flu/about/viruses/types.htm (accessed on 1 March 2021).
- Francis, M.E.; King, M.L.; Kelvin, A.A. Back to the Future for Influenza Preimmunity-Looking Back at Influenza Virus History to Infer the Outcome of Future Infections. Viruses 2019, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamblin, S.J.; Skehel, J.J. Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. J. Biol. Chem. 2010, 285, 28403–28409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.S.H.; Banner, D.; Paquette, S.G.; Leon, A.J.; Kelvin, A.A.; Kelvin, D.J. Pathogenic Influenza B Virus in the Ferret Model Establishes Lower Respiratory Tract Infection. J. Gen. Virol. 2014, 95, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Bodewes, R.; Morick, D.; de Mutsert, G.; Osinga, N.; Bestebroer, T.; van der Vliet, S.; Smits, S.L.; Kuiken, T.; Rimmelzwaan, G.F.; Fouchier, R.A.M.; et al. Recurring Influenza B Virus Infections in Seals. Emerg. Infect. Dis. 2013, 19, 511–512. [Google Scholar] [CrossRef]
- Kanegae, Y.; Sugita, S.; Endo, A.; Ishida, M.; Senya, S.; Osako, K.; Nerome, K.; Oya, A. Evolutionary Pattern of the Hemagglutinin Gene of Influenza B Viruses Isolated in Japan: Cocirculating Lineages in the Same Epidemic Season. J. Virol. 1990, 64, 2860–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvier, N.M.; Palese, P. The Biology of Influenza Viruses. Vaccine 2008, 26 (Suppl. 4), D49–D53. [Google Scholar] [CrossRef] [Green Version]
- Francis, M.E.; McNeil, M.; Dawe, N.J.; Foley, M.K.; King, M.L.; Ross, T.M.; Kelvin, A.A. Historical H1N1 Influenza Virus Imprinting Increases Vaccine Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at Vaccination in Ferrets. Vaccines 2019, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Pulit-Penaloza, J.A.; Maines, T.R. Ferreting Out Influenza Virus Pathogenicity and Transmissibility: Past and Future Risk Assessments in the Ferret Model. Cold Spring Harb. Perspect. Med. 2020, 10, a038323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rioux, M.; McNeil, M.; Francis, M.E.; Dawe, N.; Foley, M.; Langley, J.M.; Kelvin, A.A. The Power of First Impressions: Can Influenza Imprinting during Infancy Inform Vaccine Design? Vaccines 2020, 8, 546. [Google Scholar] [CrossRef] [PubMed]
- Montecino-Rodriguez, E.; Berent-Maoz, B.; Dorshkind, K. Causes, Consequences, and Reversal of Immune System Aging. J. Clin. Investig. 2013, 123, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Oslund, K.L.; Baumgarth, N. Influenza-Induced Innate Immunity: Regulators of Viral Replication, Respiratory Tract Pathology & Adaptive Immunity. Future Virol. 2011, 6, 951–962. [Google Scholar]
- Sun, J.C.; Beilke, J.N.; Lanier, L.L. Immune Memory Redefined: Characterizing the Longevity of Natural Killer Cells. Immunol. Rev. 2010, 236, 83–94. [Google Scholar] [CrossRef]
- Aw, D.; Silva, A.B.; Palmer, D.B. Immunosenescence: Emerging Challenges for an Ageing Population. Immunology 2007, 120, 435–446. [Google Scholar] [CrossRef]
- Domingues, R.; Lippi, A.; Setz, C.; Outeiro, T.F.; Krisko, A. SARS-CoV-2, Immunosenescence and Inflammaging: Partners in the COVID-19 Crime. Aging 2020, 12, 18778–18789. [Google Scholar] [CrossRef]
- Grimsholm, O.; Piano Mortari, E.; Davydov, A.N.; Shugay, M.; Obraztsova, A.S.; Bocci, C.; Marasco, E.; Marcellini, V.; Aranburu, A.; Farroni, C.; et al. The Interplay between CD27dull and CD27bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory. Cell Rep. 2020, 30, 2963–2977.e6. [Google Scholar] [CrossRef] [Green Version]
- Carsetti, R.; Quintarelli, C.; Quinti, I.; Mortari, E.P.; Zumla, A.; Ippolito, G.; Locatelli, F. The Immune System of Children: The Key to Understanding SARS-CoV-2 Susceptibility? Lancet Child. Adolesc. Health 2020, 4, 414–416. [Google Scholar] [CrossRef]
- Huang, S.S.H.; Banner, D.; Degousee, N.; Leon, A.J.; Xu, L.; Paquette, S.G.; Kanagasabai, T.; Fang, Y.; Rubino, S.; Rubin, B.; et al. Differential Pathological and Immune Responses in Newly Weaned Ferrets Are Associated with a Mild Clinical Outcome of Pandemic 2009 H1N1 Infection. J. Virol. 2012, 86, 13187–13201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquette, S.G.; Banner, D.; Huang, S.S.H.; Almansa, R.; Leon, A.; Xu, L.; Bartoszko, J.; Kelvin, D.J.; Kelvin, A.A. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses. PLoS Pathog. 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Bissel, S.J.; Carter, C.E.; Wang, G.; Johnson, S.K.; Lashua, L.P.; Kelvin, A.A.; Wiley, C.A.; Ghedin, E.; Ross, T.M. Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. Am. J. Pathol. 2019, 189, 2389–2399. [Google Scholar] [CrossRef]
- Coates, D.M.; Husseini, R.H.; Collie, M.H.; Sweet, C.; Smith, H. The Role of Cellular Susceptibility in the Declining Severity of Respiratory Influenza of Ferrets with Age. Br. J. Exp. Pathol. 1984, 65, 29–39. [Google Scholar]
- Husseini, R.H.; Collie, M.H.; Rushton, D.I.; Sweet, C.; Smith, H. The Role of Naturally-Acquired Bacterial Infection in Influenza-Related Death in Neonatal Ferrets. Br. J. Exp. Pathol. 1983, 64, 559–569. [Google Scholar] [PubMed]
- Collie, M.H.; Rushton, D.I.; Sweet, C.; Smith, H. Studies of Influenza Virus Infection in Newborn Ferrets. J. Med. Microbiol. 1980, 13, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Sweet, C.; Toms, G.L.; Smith, H. The Pregnant Ferret as a Model for Studying the Congenital Effects of Influenza Virus Infection in Utero: Infection of Foetal Tissues in Organ Culture and in Vivo. Br. J. Exp. Pathol. 1977, 58, 113–123. [Google Scholar] [PubMed]
- Jakeman, K.J.; Smith, H.; Sweet, C. Mechanism of Immunity to Influenza: Maternal and Passive Neonatal Protection Following Immunization of Adult Ferrets with a Live Vaccinia-Influenza Virus Haemagglutinin Recombinant but Not with Recombinants Containing Other Influenza Virus Proteins. J. Gen. Virol. 1989, 70 Pt 6, 1523–1531. [Google Scholar] [CrossRef]
- Rushton, D.I.; Collie, M.H.; Sweet, C.; Husseini, R.H.; Smith, H. The Effects of Maternal Influenzal Viraemia in Late Gestation on the Conceptus of the Pregnant Ferret. J. Pathol. 1983, 140, 181–191. [Google Scholar] [CrossRef]
- Huang, S.S.H.; Banner, D.; Fang, Y.; Ng, D.C.K.; Kanagasabai, T.; Kelvin, D.J.; Kelvin, A.A. Comparative Analyses of Pandemic H1N1 and Seasonal H1N1, H3N2, and Influenza B Infections Depict Distinct Clinical Pictures in Ferrets. PLoS ONE 2011, 6, e27512. [Google Scholar] [CrossRef] [Green Version]
- Maher, J.A.; DeStefano, J. The Ferret: An Animal Model to Study Influenza Virus. Lab. Anim. 2004, 33, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Katz, J.M.; Tumpey, T.M. The Ferret as a Model Organism to Study Influenza A Virus Infection. Dis. Models Mech. 2011, 4, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, D.; Kelvin, D.J.; Li, L.; Zheng, Z.; Yoon, S.-W.; Wong, S.-S.; Farooqui, A.; Wang, J.; Banner, D.; et al. Infectivity, Transmission, and Pathology of Human-Isolated H7N9 Influenza Virus in Ferrets and Pigs. Science 2013, 341, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Munster, V.J.; de Wit, E.; van den Brand, J.M.A.; Herfst, S.; Schrauwen, E.J.A.; Bestebroer, T.M.; van de Vijver, D.; Boucher, C.A.; Koopmans, M.; Rimmelzwaan, G.F.; et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science 2009, 325, 481–483. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-I.; Kim, S.-G.; Kim, S.-M.; Kim, E.-H.; Park, S.-J.; Yu, K.-M.; Chang, J.-H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, R.A.; Liu, W.-C.; Sant, A.J.; Tompkins, S.M.; Pekosz, A.; Meliopoulos, V.; Cherry, S.; Thomas, P.G.; Schultz-Cherry, S. Moving Forward: Recent Developments for the Ferret Biomedical Research Model. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, C.M.; Cameron, M.J.; Bermejo-Martin, J.F.; Ran, L.; Xu, L.; Turner, P.V.; Ran, R.; Danesh, A.; Fang, Y.; Chan, P.-K.M.; et al. Gene Expression Analysis of Host Innate Immune Responses during Lethal H5N1 Infection in Ferrets. J. Virol. 2008, 82, 11308–11317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvier, N.M. Animal Models for Influenza Virus Transmission Studies: A Historical Perspective. Curr. Opin. Virol. 2015, 13, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P.; Timbury, M.C. A Virus Obtained from Influenza Patients. Rev. Med. Virol. 1995, 5, 187–191. [Google Scholar] [CrossRef]
- Belser, J.A.; Barclay, W.; Barr, I.; Fouchier, R.A.M.; Matsuyama, R.; Nishiura, H.; Peiris, M.; Russell, C.J.; Subbarao, K.; Zhu, H.; et al. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg. Infect. Dis. 2018, 24, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Eckert, A.M.; Huynh, T.; Gary, J.M.; Ritter, J.M.; Tumpey, T.M.; Maines, T.R. A Guide for the Use of the Ferret Model for Influenza Virus Infection. Am. J. Pathol. 2020, 190, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Reuman, P.D.; Keely, S.; Schiff, G.M. Assessment of Signs of Influenza Illness in the Ferret Model. J. Virol. Methods 1989, 24, 27–34. [Google Scholar] [CrossRef]
- Huang, S.S.H.; Lin, Z.; Banner, D.; León, A.J.; Paquette, S.G.; Rubin, B.; Rubino, S.; Guan, Y.; Kelvin, D.J.; Kelvin, A.A. Immunity toward H1N1 Influenza Hemagglutinin of Historical and Contemporary Strains Suggests Protection and Vaccine Failure. Sci. Rep. 2013, 3, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heindel, D.W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C.A.; Bissel, S.J.; Carter, C.E.; Kelvin, A.A.; Elaish, M.; et al. Glycomic Analysis of Host Response Reveals High Mannose as a Key Mediator of Influenza Severity. Proc. Natl. Acad. Sci. USA 2020, 117, 26926–26935. [Google Scholar] [CrossRef]
- Banner, D.; Kelvin, A.A. The Current State of H5N1 Vaccines and the Use of the Ferret Model for Influenza Therapeutic and Prophylactic Development. J. Infect. Dev. Ctries. 2012, 6, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.; Tai, C.M.; Hurt, A.C.; Tan, H.-X.; Kent, S.J.; Wheatley, A.K. Sequencing B Cell Receptors from Ferrets (Mustela Putorius Furo). PLoS ONE 2020, 15, e0233794. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wong, J.; Tan, H.-X.; Kelly, H.G.; Whitney, P.G.; Barr, I.; Layton, D.S.; Kent, S.J.; Wheatley, A.K.; Juno, J.A. Screening and Development of Monoclonal Antibodies for Identification of Ferret T Follicular Helper Cells. Sci. Rep. 2021, 11, 1864. [Google Scholar] [CrossRef]
- León, A.J.; Banner, D.; Xu, L.; Ran, L.; Peng, Z.; Yi, K.; Chen, C.; Xu, F.; Huang, J.; Zhao, Z.; et al. Sequencing, Annotation, and Characterization of the Influenza Ferret Infectome. J. Virol. 2013, 87, 1957–1966. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Alföldi, J.; Gori, K.; Eisfeld, A.J.; Tyler, S.R.; Tisoncik-Go, J.; Brawand, D.; Law, G.L.; Skunca, N.; Hatta, M.; et al. The Draft Genome Sequence of the Ferret (Mustela Putorius Furo) Facilitates Study of Human Respiratory Disease. Nat. Biotechnol. 2014, 32, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.E.; Richardson, B.; McNeil, M.; Rioux, M.; Foley, M.K.; Ge, A.; Pechous, R.D.; Kindrachuk, J.; Cameron, C.M.; Richardson, C.; et al. Male Sex and Age Biases Viral Burden, Viral Shedding, and Type 1 and 2 Interferon Responses during SARS-CoV-2 Infection in Ferrets. bioRxiv 2021. [Google Scholar] [CrossRef]
- Paquette, S.G.; Huang, S.S.H.; Banner, D.; Xu, L.; Leόn, A.; Kelvin, A.A.; Kelvin, D.J. Impaired Heterologous Immunity in Aged Ferrets during Sequential Influenza A H1N1 Infection. Virology 2014, 464–465, 177–183. [Google Scholar] [CrossRef] [Green Version]
- DiPiazza, A.; Richards, K.; Batarse, F.; Lockard, L.; Zeng, H.; García-Sastre, A.; Albrecht, R.A.; Sant, A.J. Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets Following Influenza Virus Infection. J. Virol. 2016, 90, 7991–8004. [Google Scholar] [CrossRef] [Green Version]
- Rutigliano, J.A.; Doherty, P.C.; Franks, J.; Morris, M.Y.; Reynolds, C.; Thomas, P.G. Screening Monoclonal Antibodies for Cross-Reactivity in the Ferret Model of Influenza Infection. J. Immunol. Methods 2008, 336, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Pillet, S.; Kobasa, D.; Meunier, I.; Gray, M.; Laddy, D.; Weiner, D.B.; von Messling, V.; Kobinger, G.P. Cellular Immune Response in the Presence of Protective Antibody Levels Correlates with Protection against 1918 Influenza in Ferrets. Vaccine 2011, 29, 6793–6801. [Google Scholar] [CrossRef]
- Cheng, X.; Zengel, J.R.; Suguitan, A.L., Jr.; Xu, Q.; Wang, W.; Lin, J.; Jin, H. Evaluation of the Humoral and Cellular Immune Responses Elicited by the Live Attenuated and Inactivated Influenza Vaccines and Their Roles in Heterologous Protection in Ferrets. J. Infect. Dis. 2013, 208, 594–602. [Google Scholar] [CrossRef]
- Vidaña, B.; Majó, N.; Pérez, M.; Montoya, M.; Martorell, J.; Martínez, J. Immune System Cells in Healthy Ferrets: An Immunohistochemical Study. Vet. Pathol. 2014, 51, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Rowe, T.; Leon, A.J.; Banner, D.; Danesh, A.; Xu, L.; Ran, L.; Bosinger, S.E.; Guan, Y.; Chen, H.; et al. Molecular Characterization of In Vivo Adjuvant Activity in Ferrets Vaccinated against Influenza Virus. J. Virol. 2010, 84, 8369–8388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquette, S.G.; Banner, D.; Zhao, Z.; Fang, Y.; Huang, S.S.H.; Leόn, A.J.; Ng, D.C.K.; Almansa, R.; Martin-Loeches, I.; Ramirez, P.; et al. Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection. PLoS ONE 2012, 7, e38214. [Google Scholar] [CrossRef] [Green Version]
- Svitek, N.; von Messling, V. Early Cytokine MRNA Expression Profiles Predict Morbillivirus Disease Outcome in Ferrets. Virology 2007, 362, 404–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wit, E.; Siegers, J.Y.; Cronin, J.M.; Weatherman, S.; van den Brand, J.M.; Leijten, L.M.; van Run, P.; Begeman, L.; van den Ham, H.-J.; Andeweg, A.C.; et al. 1918 H1N1 Influenza Virus Replicates and Induces Proinflammatory Cytokine Responses in Extrarespiratory Tissues of Ferrets. J. Infect. Dis. 2018, 217, 1237–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svitek, N.; Rudd, P.A.; Obojes, K.; Pillet, S.; von Messling, V. Severe Seasonal Influenza in Ferrets Correlates with Reduced Interferon and Increased IL-6 Induction. Virology 2008, 376, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toms, G.L.; Bird, R.A.; Kingsman, S.M.; Sweet, C.; Smith, H. The Behaviour in Ferrets of Two Closely Related Clones of Influenza Virus of Differing Virulence for Man. Br. J. Exp. Pathol. 1976, 57, 37–48. [Google Scholar] [PubMed]
- Kelvin, A.A.; Zambon, M. Influenza Imprinting in Childhood and the Influence on Vaccine Response Later in Life. Eurosurveillance 2019, 24, 1900720. [Google Scholar] [CrossRef] [Green Version]
- Arevalo, P.; McLean, H.Q.; Belongia, E.A.; Cobey, S. Earliest Infections Predict the Age Distribution of Seasonal Influenza A Cases. eLife 2020, 9, e50060. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, C.P.; Le Sage, V.; Bolton, M.J.; Eilola, T.; Jones, J.E.; Kormuth, K.A.; Nturibi, E.; Balmaseda, A.; Gordon, A.; Lakdawala, S.S.; et al. Original Antigenic Sin Priming of Influenza Virus Hemagglutinin Stalk Antibodies. Proc. Natl. Acad. Sci. USA 2020, 117, 17221–17227. [Google Scholar] [CrossRef]
- Gagnon, A.; Acosta, E.; Miller, M.S. Age-Specific Incidence of Influenza A Responds to Change in Virus Subtype Dominance. Clin. Infect. Dis. 2020, 71, e195–e198. [Google Scholar] [CrossRef] [PubMed]
- Gostic, K.M.; Ambrose, M.; Worobey, M.; Lloyd-Smith, J.O. Potent Protection against H5N1 and H7N9 Influenza via Childhood Hemagglutinin Imprinting. Science 2016, 354, 722–726. [Google Scholar] [CrossRef] [Green Version]
- Hancock, K.; Veguilla, V.; Lu, X.; Zhong, W.; Butler, E.N.; Sun, H.; Liu, F.; Dong, L.; DeVos, J.R.; Gargiullo, P.M.; et al. Cross-Reactive Antibody Responses to the 2009 Pandemic H1N1 Influenza Virus. N. Engl. J. Med. 2009, 361, 1945–1952. [Google Scholar] [CrossRef] [Green Version]
- Skarlupka, A.L.; Ross, T.M. Immune Imprinting in the Influenza Ferret Model. Vaccines 2020, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Sweet, C.; Jakeman, K.J.; Smith, H. Role of Milk-Derived IgG in Passive Maternal Protection of Neonatal Ferrets against Influenza. J. Gen. Virol. 1987, 68, 2681–2686. [Google Scholar] [CrossRef]
- Husseini, R.H.; Sweet, C.; Overton, H.; Smith, H. Role of Maternal Immunity in the Protection of Newborn Ferrets against Infection with a Virulent Influenza Virus. Immunology 1984, 52, 389–394. [Google Scholar]
- Sweet, C.; Bird, R.A.; Jakeman, K.; Coates, D.M.; Smith, H. Production of Passive Immunity in Neonatal Ferrets Following Maternal Vaccination with Killed Influenza A Virus Vaccines. Immunology 1987, 60, 83–89. [Google Scholar] [PubMed]
- Yoon, S.-W.; Wong, S.-S.; Zhu, H.; Chen, R.; Li, L.; Zhang, Y.; Guan, Y.; Webby, R.J. Dysregulated T-Helper Type 1 (Th1):Th2 Cytokine Profile and Poor Immune Response in Pregnant Ferrets Infected With 2009 Pandemic Influenza A(H1N1) Virus. J. Infect. Dis. 2018, 217, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Collie, M.H.; Rushton, D.I.; Sweet, C.; Husseini, R.H.; Smith, H. Ferret Foetal Infection with Influenza Virus at Early Gestation. Br. J. Exp. Pathol. 1982, 63, 299–304. [Google Scholar] [PubMed]
- Chen, S.; Kasper, B.; Zhang, B.; Lashua, L.P.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. J. Proteome Res. 2020, 19, 4486–4495. [Google Scholar] [CrossRef] [PubMed]
- Kosikova, M.; Li, L.; Radvak, P.; Ye, Z.; Wan, X.-F.; Xie, H. Imprinting of Repeated Influenza A/H3 Exposures on Antibody Quantity and Antibody Quality: Implications for Seasonal Vaccine Strain Selection and Vaccine Performance. Clin. Infect. Dis. 2018, 67, 1523–1532. [Google Scholar] [CrossRef]
- Verma, N.; Dimitrova, M.; Carter, D.M.; Crevar, C.J.; Ross, T.M.; Golding, H.; Khurana, S. Influenza Virus H1N1pdm09 Infections in the Young and Old: Evidence of Greater Antibody Diversity and Affinity for the Hemagglutinin Globular Head Domain (HA1 Domain) in the Elderly than in Young Adults and Children. J. Virol. 2012, 86, 5515–5522. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, A.; Miller, M.S.; Hallman, S.A.; Bourbeau, R.; Herring, D.A.; Earn, D.J.; Madrenas, J. Age-Specific Mortality During the 1918 Influenza Pandemic: Unravelling the Mystery of High Young Adult Mortality. PLoS ONE 2013, 8, e69586. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Moreno, J.; Hartson, L.; Navarro, C.; Gaxiola, M.; Selman, M.; Randall, T.D. Inducible Bronchus-Associated Lymphoid Tissue (IBALT) in Patients with Pulmonary Complications of Rheumatoid Arthritis. J. Clin. Investig. 2006, 116, 3183–3194. [Google Scholar] [CrossRef] [Green Version]
- Fleige, H.; Haas, J.D.; Stahl, F.R.; Willenzon, S.; Prinz, I.; Förster, R. Induction of BALT in the Absence of IL-17. Nat. Immunol. 2012, 13, 1. [Google Scholar] [CrossRef]
- Stark, G.V.; Long, J.P.; Ortiz, D.I.; Gainey, M.; Carper, B.A.; Feng, J.; Miller, S.M.; Bigger, J.E.; Vela, E.M. Clinical Profiles Associated with Influenza Disease in the Ferret Model. PLoS ONE 2013, 8, e58337. [Google Scholar] [CrossRef] [Green Version]
- Memoli, M.J.; Tumpey, T.M.; Jagger, B.W.; Dugan, V.G.; Sheng, Z.-M.; Qi, L.; Kash, J.C.; Taubenberger, J.K. An Early ‘Classical’ Swine H1N1 Influenza Virus Shows Similar Pathogenicity to the 1918 Pandemic Virus in Ferrets and Mice. Virology 2009, 393, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality Associated with Influenza and Respiratory Syncytial Virus in the United States. JAMA 2003, 289, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Palese, P. Influenza: Old and New Threats. Nat. Med. 2004, 10, S82–S87. [Google Scholar] [CrossRef]
- Carolan, L.A.; Rockman, S.; Borg, K.; Guarnaccia, T.; Reading, P.; Mosse, J.; Kelso, A.; Barr, I.; Laurie, K.L. Characterization of the Localized Immune Response in the Respiratory Tract of Ferrets Following Infection with Influenza A and B Viruses. J. Virol. 2016, 90, 2838–2848. [Google Scholar] [CrossRef] [Green Version]
- Weekly, U.S. Influenza Surveillance Report | CDC. Available online: https://www.cdc.gov/flu/weekly/index.htm (accessed on 25 February 2021).
- Wu, N.C.; Zost, S.J.; Thompson, A.J.; Oyen, D.; Nycholat, C.M.; McBride, R.; Paulson, J.C.; Hensley, S.E.; Wilson, I.A. A Structural Explanation for the Low Effectiveness of the Seasonal Influenza H3N2 Vaccine. PLoS Pathog. 2017, 13, e1006682. [Google Scholar] [CrossRef] [Green Version]
- Farrukee, R.; Tai, C.M.-K.; Oh, D.Y.; Anderson, D.E.; Gunalan, V.; Hibberd, M.; Lau, G.Y.-F.; Barr, I.G.; von Messling, V.; Maurer-Stroh, S.; et al. Utilising Animal Models to Evaluate Oseltamivir Efficacy against Influenza A and B Viruses with Reduced in Vitro Susceptibility. PLoS Pathog. 2020, 16, e1008592. [Google Scholar] [CrossRef]
- Music, N.; Tzeng, W.-P.; Liaini Gross, F.; Levine, M.Z.; Xu, X.; Shieh, W.-J.; Tumpey, T.M.; Katz, J.M.; York, I.A. Repeated Vaccination against Matched H3N2 Influenza Virus Gives Less Protection than Single Vaccination in Ferrets. NPJ Vaccines 2019, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rowe, T.; León, A.J.; Crevar, C.J.; Carter, D.M.; Xu, L.; Ran, L.; Fang, Y.; Cameron, C.M.; Cameron, M.J.; Banner, D.; et al. Modeling Host Responses in Ferrets during A/California/07/2009 Influenza Infection. Virology 2010, 401, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Zitzow, L.A.; Rowe, T.; Morken, T.; Shieh, W.-J.; Zaki, S.; Katz, J.M. Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets. J. Virol. 2002, 76, 4420–4429. [Google Scholar] [CrossRef] [Green Version]
- Govorkova, E.A.; Rehg, J.E.; Krauss, S.; Yen, H.-L.; Guan, Y.; Peiris, M.; Nguyen, T.D.; Hanh, T.H.; Puthavathana, P.; Long, H.T.; et al. Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004. J. Virol. 2005, 79, 2191–2198. [Google Scholar] [CrossRef] [Green Version]
- Salomon, R.; Franks, J.; Govorkova, E.A.; Ilyushina, N.A.; Yen, H.-L.; Hulse-Post, D.J.; Humberd, J.; Trichet, M.; Rehg, J.E.; Webby, R.J.; et al. The Polymerase Complex Genes Contribute to the High Virulence of the Human H5N1 Influenza Virus Isolate A/Vietnam/1203/04. J. Exp. Med. 2006, 203, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Maines, T.R.; Lu, X.H.; Erb, S.M.; Edwards, L.; Guarner, J.; Greer, P.W.; Nguyen, D.C.; Szretter, K.J.; Chen, L.-M.; Thawatsupha, P.; et al. Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in Mammals. J. Virol. 2005, 79, 11788–11800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Santos, C.; Aspelund, A.; Gillim-Ross, L.; Jin, H.; Kemble, G.; Subbarao, K. Evaluation of Live Attenuated Influenza A Virus H6 Vaccines in Mice and Ferrets. J. Virol. 2009, 83, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Lu, X.; Maines, T.R.; Smith, C.; Li, Y.; Donis, R.O.; Katz, J.M.; Tumpey, T.M. Pathogenesis of Avian Influenza (H7) Virus Infection in Mice and Ferrets: Enhanced Virulence of Eurasian H7N7 Viruses Isolated from Humans. J. Virol. 2007, 81, 11139–11147. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Kiso, M.; Fukuyama, S.; Nakajima, N.; Imai, M.; Yamada, S.; Murakami, S.; Yamayoshi, S.; Iwatsuki-Horimoto, K.; Sakoda, Y.; et al. Characterization of H7N9 Influenza A Viruses Isolated from Humans. Nature 2013, 501, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.; Schrauwen, E.J.A.; de Graaf, M.; Bestebroer, T.M.; Spronken, M.I.J.; van Boheemen, S.; de Meulder, D.; Lexmond, P.; Linster, M.; Herfst, S.; et al. Limited Airborne Transmission of H7N9 Influenza A Virus between Ferrets. Nature 2013, 501, 560–563. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and Evolutionary Genomics of the 2009 Swine-Origin H1N1 Influenza A Epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef] [Green Version]
- Reid, A.H.; Taubenberger, J.K.; Fanning, T.G. Evidence of an Absence: The Genetic Origins of the 1918 Pandemic Influenza Virus. Nat. Rev. Microbiol. 2004, 2, 909–914. [Google Scholar] [CrossRef]
- Maines, T.R.; Jayaraman, A.; Belser, J.A.; Wadford, D.A.; Pappas, C.; Zeng, H.; Gustin, K.M.; Pearce, M.B.; Viswanathan, K.; Shriver, Z.H.; et al. Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice. Science 2009, 325, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Itoh, Y.; Shinya, K.; Kiso, M.; Watanabe, T.; Sakoda, Y.; Hatta, M.; Muramoto, Y.; Tamura, D.; Sakai-Tagawa, Y.; Noda, T.; et al. In Vitro and in Vivo Characterization of New Swine-Origin H1N1 Influenza Viruses. Nature 2009, 460, 1021–1025. [Google Scholar] [CrossRef]
- Tumpey, T.M.; Maines, T.R.; Van Hoeven, N.; Glaser, L.; Solórzano, A.; Pappas, C.; Cox, N.J.; Swayne, D.E.; Palese, P.; Katz, J.M.; et al. A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission. Science 2007, 315, 655–659. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.S.; Moise, L.; Liu, R.; Gutierrez, A.H.; Tassone, R.; Bailey-Kellogg, C.; Martin, W. Immune Camouflage: Relevance to Vaccines and Human Immunology. Hum. Vaccines Immunother. 2014, 10, 3570–3575. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Goldsmith, C.S.; Maines, T.R.; Belser, J.A.; Gustin, K.M.; Pekosz, A.; Zaki, S.R.; Katz, J.M.; Tumpey, T.M. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures. J. Virol. 2013, 87, 2597–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Sandt, C.E.; Bodewes, R.; Rimmelzwaan, G.F.; de Vries, R.D. Influenza B Viruses: Not to Be Discounted. Future Microbiol. 2015, 10, 1447–1465. [Google Scholar] [CrossRef] [PubMed]
- Laurie, K.L.; Horman, W.; Carolan, L.A.; Chan, K.F.; Layton, D.; Bean, A.; Vijaykrishna, D.; Reading, P.C.; McCaw, J.M.; Barr, I.G. Evidence for Viral Interference and Cross-Reactive Protective Immunity Between Influenza B Virus Lineages. J. Infect. Dis. 2018, 217, 548–559. [Google Scholar] [CrossRef]
- Jakeman, K.J.; Tisdale, M.; Russell, S.; Leone, A.; Sweet, C. Efficacy of 2’-Deoxy-2’-Fluororibosides against Influenza A and B Viruses in Ferrets. Antimicrob. Agents Chemother. 1994, 38, 1864–1867. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.M.; Song, B.M.; Lee, J.S.; Kim, H.S.; Seo, S.H. Pandemic H1N1 Influenza Virus Causes a Stronger Inflammatory Response than Seasonal H1N1 Influenza Virus in Ferrets. Arch. Virol. 2011, 156, 759–767. [Google Scholar] [CrossRef]
- Hoppes, S.M. The Senior Ferret (Mustela Putorius Furo). Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 107–122. [Google Scholar] [CrossRef]
- Collie, M.H.; Sweet, C.; Cavanagh, D.; Smith, H. Association of Foetal Wastage with Influenza Infection during Ferret Pregnancy. Br. J. Exp. Pathol. 1978, 59, 190–195. [Google Scholar]
- Hatta, Y.; Boltz, D.; Sarawar, S.; Kawaoka, Y.; Neumann, G.; Bilsel, P. M2SR, a Novel Live Influenza Vaccine, Protects Mice and Ferrets against Highly Pathogenic Avian Influenza. Vaccine 2017, 35, 4177–4183. [Google Scholar] [CrossRef]
- Nurpeisova, A.; Kassenov, M.; Rametov, N.; Tabynov, K.; Renukaradhya, G.J.; Volgin, Y.; Sagymbay, A.; Makbuz, A.; Sansyzbay, A.; Khairullin, B. Analysis of the Efficacy of an Adjuvant-Based Inactivated Pandemic H5N1 Influenza Virus Vaccine. Arch. Virol. 2019, 164, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Hatta, M.; Zhong, G.; Chiba, S.; Lopes, T.J.S.; Neumann, G.; Kawaoka, Y. Effectiveness of Whole, Inactivated, Low Pathogenicity Influenza A(H7N9) Vaccine against Antigenically Distinct, Highly Pathogenic H7N9 Virus. Emerg. Infect. Dis. 2018, 24, 1910–1913. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Gu, H.; Chen, R.; Zhao, Z.; Zhang, L.; Xing, L.; Lai, C.; Zhang, P.; Li, Z.; Zhang, K.; et al. Response of Mice and Ferrets to a Monovalent Influenza A (H7N9) Split Vaccine. PLoS ONE 2014, 9, e99322. [Google Scholar] [CrossRef] [PubMed]
- Pillet, S.; Racine, T.; Nfon, C.; Di Lenardo, T.Z.; Babiuk, S.; Ward, B.J.; Kobinger, G.P.; Landry, N. Plant-Derived H7 VLP Vaccine Elicits Protective Immune Response against H7N9 Influenza Virus in Mice and Ferrets. Vaccine 2015, 33, 6282–6289. [Google Scholar] [CrossRef] [PubMed]
- Kreijtz, J.H.C.M.; Wiersma, L.C.M.; De Gruyter, H.L.M.; Vogelzang-van Trierum, S.E.; van Amerongen, G.; Stittelaar, K.J.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Sutter, G.; Rimmelzwaan, G.F. A Single Immunization with Modified Vaccinia Virus Ankara-Based Influenza Virus H7 Vaccine Affords Protection in the Influenza A(H7N9) Pneumonia Ferret Model. J. Infect. Dis. 2015, 211, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jonge, J.; Isakova-Sivak, I.; van Dijken, H.; Spijkers, S.; Mouthaan, J.; de Jong, R.; Smolonogina, T.; Roholl, P.; Rudenko, L. H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Mol. Ther. 2016, 24, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, Ö.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by MRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Kreijtz, J.H.C.M.; Süzer, Y.; Bodewes, R.; Schwantes, A.; van Amerongen, G.; Verburgh, R.J.; de Mutsert, G.; van den Brand, J.; van Trierum, S.E.; Kuiken, T.; et al. Evaluation of a Modified Vaccinia Virus Ankara (MVA)-Based Candidate Pandemic Influenza A/H1N1 Vaccine in the Ferret Model. J. Gen. Virol. 2010, 91, 2745–2752. [Google Scholar] [CrossRef]
- Han, H.J.; Song, M.-S.; Park, S.-J.; Byun, H.Y.; Robles, N.J.C.; Ha, S.-H.; Choi, Y.K. Efficacy of A/H1N1/2009 Split Inactivated Influenza A Vaccine (GC1115) in Mice and Ferrets. J. Microbiol. 2019, 57, 163–169. [Google Scholar] [CrossRef]
- Stauft, C.B.; Yang, C.; Coleman, J.R.; Boltz, D.; Chin, C.; Kushnir, A.; Mueller, S. Live-Attenuated H1N1 Influenza Vaccine Candidate Displays Potent Efficacy in Mice and Ferrets. PLoS ONE 2019, 14, e0223784. [Google Scholar] [CrossRef] [Green Version]
- Clegg, C.H.; Roque, R.; Perrone, L.A.; Rininger, J.A.; Bowen, R.; Reed, S.G. GLA-AF, an Emulsion-Free Vaccine Adjuvant for Pandemic Influenza. PLoS ONE 2014, 9, e88979. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, L.; Kiseleva, I.; Krutikova, E.; Stepanova, E.; Rekstin, A.; Donina, S.; Pisareva, M.; Grigorieva, E.; Kryshen, K.; Muzhikyan, A.; et al. Rationale for Vaccination with Trivalent or Quadrivalent Live Attenuated Influenza Vaccines: Protective Vaccine Efficacy in the Ferret Model. PLoS ONE 2018, 13, e0208028. [Google Scholar] [CrossRef] [Green Version]
- Korenkov, D.A.; Laurie, K.L.; Reading, P.C.; Carolan, L.A.; Chan, K.F.; Isakova-Sivak, I.I.; Smolonogina, T.A.; Subbarao, K.; Barr, I.G.; Villanueva, J.; et al. Safety, Immunogenicity and Protection of A(H3N2) Live Attenuated Influenza Vaccines Containing Wild-Type Nucleoprotein in a Ferret Model. Infect. Genet. Evol. 2018, 64, 95–104. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.-Y.; Chen, H.-W.; Xu, J.; Chapon, M.; Zhang, T.; Zhou, F.; Wang, Y.E.; Quanquin, N.; Wang, G.; et al. Generation of a Live Attenuated Influenza Vaccine That Elicits Broad Protection in Mice and Ferrets. Cell Host Microbe 2017, 21, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Liu, Y.; Flyer, D.; Massare, M.J.; Zhou, B.; Patel, N.; Ellingsworth, L.; Lewis, M.; Cummings, J.F.; Glenn, G. Novel Hemagglutinin Nanoparticle Influenza Vaccine with Matrix-MTM Adjuvant Induces Hemagglutination Inhibition, Neutralizing, and Protective Responses in Ferrets against Homologous and Drifted A(H3N2) Subtypes. Vaccine 2017, 35, 5366–5372. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Morrow, M.P.; Chu, J.S.; Racine, T.; Reed, C.C.; Khan, A.S.; Broderick, K.E.; Kim, J.J.; Kobinger, G.P.; Sardesai, N.Y.; et al. Broad Cross-Protective Anti-Hemagglutination Responses Elicited by Influenza Microconsensus DNA Vaccine. Vaccine 2018, 36, 3079–3089. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl Huber, S.K.; Camps, M.G.M.; Jacobi, R.H.J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets. PLoS ONE 2015, 10, e0127969. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Ray, S.; Ross, T.M. Split Inactivated COBRA Vaccine Elicits Protective Antibodies against H1N1 and H3N2 Influenza Viruses. PLoS ONE 2018, 13, e0204284. [Google Scholar] [CrossRef] [Green Version]
- Reber, A.J.; Music, N.; Kim, J.H.; Gansebom, S.; Chen, J.; York, I. Extensive T Cell Cross-Reactivity between Diverse Seasonal Influenza Strains in the Ferret Model. Sci. Rep. 2018, 8, 6112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, P.; Yu, Y.; Fu, Y.; Jiang, H.; Lu, M.; Sun, Z.; Jiang, S.; Lu, L.; Wu, M.X. Pulmonary Surfactant–Biomimetic Nanoparticles Potentiate Heterosubtypic Influenza Immunity. Science 2020, 367. [Google Scholar] [CrossRef] [PubMed]
Commercial Kits | |||
---|---|---|---|
Application | Product Type and Name | Vendor | Refs |
Flow cytometry | LIVE/DEAD Fixable Aqua dead cell stain | Thermo/Fisher | [54] |
ELISpot | IFN-gamma ELISpot basic (HRP) kit | MabTech | [54] |
Primary Antibodies | |||
Application | Product Type and Name | Vendor | Refs |
Flow cytometry | CD44 | BD Pharmingen | [55] |
IL-4 | Bio-Rad | [55] | |
IFN-gamma | Bio-Rad | [55] | |
IFN-gamma | BD Pharmingen | [55] | |
TNF | BD Pharmingen | [55] | |
Thy1.1 | BD Pharmingen | [55] | |
CD11b | BD Pharmingen or BioLegend | [54,55] | |
CD8a | eBioscience/Tonbo | [54,55] | |
CD4 | Sino Biological | [54,55] | |
MHC-II | BioLegend | [54] | |
IgA, IgM, IgG | LSBio | [54] | |
CD59 | BD Pharmingen | [54] | |
CD79a | eBioscience | [54] | |
CD20 | Sino Biological | [54] | |
CD3 | Santa Cruz Biotech | [56] | |
Flow cytometry/ELISpot | IFN-gamma (capture Ab) | Bio-Rad | [56] |
IFN-gamma biotinylated (detection Ab) | R&D Systems | [56,57] | |
Immuno-histochemistry | CD3 | Dako | [58] |
Lysozyme | Dako | [58] | |
CD20 | Thermo/Fisher | [58] | |
CD79a | Dako | [58] | |
MHC-II | Dako | [58] | |
Real-Time PCR Primers | |||
Application | Product Type and Name | GenBank or NCBI Accession No. | Refs |
Housekeeping genes | Beta-actin | AF038150 and NM_007393.3 | [24,50,59,60] |
Interleukins | IL1-2p40 | [61] | |
IL-2 | [61] | ||
IL-4 | [61] | ||
IL-6 | NM_031168.1 | [60,61,62] | |
IL-6ra | NM_010559.2 | [60] | |
IL-8 | [62,63] | ||
IL-10 | [1,61] | ||
Interferons and ISGs | IFN-alpha | [61] | |
IFN-gamma | [61] | ||
OASL | [23] | ||
Chemokines | CCL2 | [24] | |
CCL5 | MPF80001524 | [50] | |
CXCL9 | [23] | ||
CXCL10 | EF492058 | [23,24,50,59] | |
CXCL13 | [23] | ||
CCL19 | [23,24] | ||
CCL21 | [23] | ||
Immune cell receptors | CD3e | [23] | |
CD8a | EF492056 | [50] | |
CD11c | [23] | ||
CD19 | [23] | ||
CD79a | MPF80001635 | [50] | |
CD80 | MPF80001637 | [50] | |
CD86 | MPF80001642 | [50] | |
Immunoglobulin and MHC genes | IGHG | GD183042 | [50] |
IGHM | GD183075 | [50] | |
MHC-I | [23] | ||
MHC-II | [23] | ||
Other genes | CSN2 | [24] | |
FOS | [24] | ||
GAPDH | [61] | ||
LPL | [24] | ||
MSR1 | [24] | ||
ORM2 | NM_011016.2 | [60] | |
SAA3 | NM_011315.3 | [60] | |
SAA4 | NM_011316.3 | [60] | |
SOCS1 | NM_009896.2 | [60] | |
SOCS3 | NM_007707.3 | [60] | |
STAT3 | NM_213659.2 | [60] | |
STAT5a, STAT5b | [24] | ||
TNF-alpha | [61,62,63] | ||
TGF-beta1 | [23] |
Influenza A (Seasonal) | ||||||||
---|---|---|---|---|---|---|---|---|
Clinical Parameters | ||||||||
Subtype | Strain | Fever a | Weight Loss b | Nasal Secretions c | Sneezing c | Neurotropism (Yes/No) * | Other | Refs |
H1N1 | A/AA/Marton/1943 | ++ | + | +++ | + | NI | [45] | |
A/FortMonmouth/1/1947 | + | + | + | + | NI | [45] | ||
A/USSR/90/1977 | + | ++ | +++ | + | NI | [45,63] | ||
A/Taiwan/1/1986 | + | + | +++ | + | NI | [45] | ||
A/NewCaledonia/20/1999 | ++ | ++ | +++ | + | NI | [45] | ||
A/SolomonIslands/03/2006 | + | + | ++ | + | NI | [32] | ||
A/Brisbane/59/2007 | + | + | + | + | NI | [32,92] | ||
A/NewYork/18/2009 | ++ | ++ | ++ | ++ | NI | [45] | ||
H3N2 | A/PortChalmers/1/73 | + | + | + | + | NI | Depression | [63] |
A/Sydney/05/1997 | + | NI | NI | NI | Yes | [93] | ||
A/Panama/2007/1999 | + | NI | +++ | + | Yes | [39,93] | ||
A/Brisbane/10/2007 | ++ | ++ | +++ | ++ | NI | [32] | ||
A/Perth/16/2009 | +++ | ++ | ++ | ++ | NI | [32] | ||
A/Wisconsin/15/2009 | + | + | + | + | NI | [32] | ||
A/Victoria/210/2009 | ++ | ++ | + | + | NI | [32] | ||
Influenza A (Pandemic) | ||||||||
Clinical Parameters | ||||||||
Subtype | Strain | Fever a | Weight Loss b | Nasal Secretions c | Sneezing c | Neurotropism (Yes/No) * | Other | Refs |
H1N1 | 1918 H1N1 virus | NI | ++ | ++ | +++ | Yes | [62] | |
A/California/07/2009 | ++ | ++ | ++ | + | NI | [32,50,92] | ||
A/Mexico/4108/2009 | ++ | ++ | ++ | ++ | NI | [32,50] | ||
A/Utah/20/2009 | ++ | + | ++ | + | NI | [32] | ||
A/SouthCarolina/2/2010 | +++ | ++ | +++ | + | NI | [32] | ||
Influenza A (Avian) | ||||||||
Clinical Parameters | ||||||||
Subtype | Strain | Fever a | Weight Loss b | Nasal Secretions c | Sneezing c | Neurotropism (Yes/No) * | Other | Refs |
H5N1 | A/HongKong/483/1997 | +++ | +++ | ++ | + | Yes | Diarrhea in some animals | [93] |
A/HongKong/486/1997 | +++ | ++ | + | ++ | Yes | Mucopurulent nasal discharge, diarrhea in some animals | [93] | |
A/Vietnam/1203/04 | +++ | +++ | ++ | ++ | Yes | Diarrhea, mortality in some animals | [39,83,94,95,96] | |
H6NX | A/teal/HK/W312/1997 A/quail/HK/1721-30/1999 A/mallard/Alberta/89/1985 A/duck/HK/182/1977 | + | + | + | + | NI | [97] | |
H7N2 | A/Tky/VA/4529/1902 | + | ++ | ++ | ++ | Yes | [98] | |
A/NY/107/2003 | + | ++ | ++ | ++ | Yes | [98] | ||
H7N7 | A/Netherlands/230/2003 | ++ | ++ | + | + | Yes | [98] | |
A/Netherlands/219/2003 | ++ | +++ | +++ | +++ | Yes | Diarrhea in some animals | [98] | |
H7N9 | A/Shanghai/2/2013 | + | + | +++ | +++ | Yes | [35,99] | |
A/Anhui/1/2013 | ++ | ++ | NI | NI | Yes | Lethargy, inappetence, breathing difficulties | [99,100] | |
Influenza B | ||||||||
Clinical Parameters | ||||||||
Lineage | Strain | Fever a | Weight Loss b | Nasal Secretions c | Sneezing c | Neurotropism (Yes/No) * | Other | Refs |
Yamagata | B/Florida/04/2006 | ++ | + | +++ | + | NI | [8,32] | |
B/Hubei-wujiagang/158/2009 | ++ | + | + | + | NI | [32] | ||
B/Wisconsin/01/2010 | + | + | ++ | + | NI | [8] | ||
Victoria | B/Brisbane/60/2008 | ++ | ++ | +++ | + | NI | Lower respiratory tract infection | [8,32] |
B/Bolivia/1526/2010 | ++ | + | ++ | + | NI | [8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rioux, M.; Francis, M.E.; Swan, C.L.; Ge, A.; Kroeker, A.; Kelvin, A.A. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021, 13, 678. https://doi.org/10.3390/v13040678
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses. 2021; 13(4):678. https://doi.org/10.3390/v13040678
Chicago/Turabian StyleRioux, Melissa, Magen E. Francis, Cynthia L. Swan, Anni Ge, Andrea Kroeker, and Alyson A. Kelvin. 2021. "The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development" Viruses 13, no. 4: 678. https://doi.org/10.3390/v13040678
APA StyleRioux, M., Francis, M. E., Swan, C. L., Ge, A., Kroeker, A., & Kelvin, A. A. (2021). The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses, 13(4), 678. https://doi.org/10.3390/v13040678