Antiviral Activity Exerted by Natural Products against Human Viruses
Abstract
:1. Introduction
2. Therapeutic Natural Compounds against DNA Viruses
2.1. Hepatitis B Virus (HBV)
2.1.1. Natural Products Inhibiting Viral Entry, Replication and Maturation of HBV Particles
2.1.2. Natural Products Targeting Host Cellular Factors
2.2. Herpes Simplex Virus (HSV-1)
2.2.1. Natural Products Targeting Viral Gene Expression
2.2.2. Natural Products Blocking the Viral Entry
2.2.3. Natural Products Targeting Host Cellular Factors
2.3. Human Papilloma Virus (HPV)
2.3.1. Natural Products with Direct anti-HPV Activity
2.3.2. Natural Products Promoting Apoptosis and Inhibiting Cellular Transcriptional Factors
2.4. Adenoviruses
2.4.1. Natural Products Inhibiting the Capsid Protein Hexon Expression
2.4.2. Natural Products Inhibiting Post-Adsorbiment Processes
3. Natural Compounds against RNA Viruses
3.1. Human Immunodeficiency Virus (HIV)
3.1.1. Natural Anti-HIV Compounds Directed against the Virus Entry
3.1.2. Natural Inhibitors of HIV Virion Maturation
3.1.3. Natural Reverse Trascriptase and Integrase Inhibitors
3.1.4. Natural Products as Source of Latency-Reversing Agents (LRAs)
3.2. Influenza Viruses
Natural Products as Hemagglutinin Inhibitors
3.3. Hepatitis C Virus
3.3.1. Natural Products Targeting Viral Entry
3.3.2. Natural Products Targeting Viral Replication, Assembly and Release of the Virions
3.4. Picornaviruses
3.4.1. Broad-Spectrum Natural Antiviral Products
3.4.2. Natural Products Affecting Viral Components and Replication
3.4.3. Natural Products Targeting Host Cellular Factor
3.4.4. Anti-HAV Natural Products
3.5. Norovirus
4. Natural Compounds against Emerging and Re-Emerging Viruses
4.1. Coronaviruses
4.1.1. Natural Products Targeting Viral Proteins
4.1.2. Natural Products Targeting the 3CLpro
4.1.3. Broad-Spectrum Antiviral Activity of Curcumin against SARS-CoV-2
4.1.4. Natural Products Targeting the Host Protein Synthesis Machinery
4.2. Flaviviruses
4.3. Togaviruses
4.4. Filoviruses
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassim, S.; Naji, M. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef]
- Müller, B.; Kräusslich, H.-G. Antiviral Strategies. In Organotypic Models in Drug Development; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2009; Volume 189, pp. 1–24. [Google Scholar]
- Bright, K.R.; Gilling, D.H. Natural Virucidal Compounds in Foods. In Viruses in Foods; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 449–469. [Google Scholar]
- Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519–1557. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Sharma, B.; Kanwar, S.S. Antiviral Phytochemicals: An Overview. Biochem. Physiol. Open Access 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Adedoyin, A. ADME–Tox in drug discovery: Integration of experimental and computational technologies. Drug Discov. Today 2003, 8, 852–861. [Google Scholar] [CrossRef]
- Selzer, L.; Zlotnick, A. Assembly and Release of Hepatitis B Virus. Cold Spring Harb. Perspect. Med. 2015, 5, a021394. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Block, T. Study of the early steps of the Hepatitis B Virus life cycle. Int. J. Med. Sci. 2004, 1, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Serigado, J.M.; Izzy, M.; Kalia, H. Novel therapies and potential therapeutic targets in the management of chronic hepatitis B. Eur. J. Gastroenterol. Hepatol. 2017, 29, 987–993. [Google Scholar] [CrossRef]
- Farrell, G.C.; Teoh, N.C. Management of chronic hepatitis B virus infection: A new era of disease control. Intern. Med. J. 2006, 36, 100–113. [Google Scholar] [CrossRef]
- Anbalagan, S.; Sankareswaran, M.; Rajendran, P.; Karthikeyan, M.; Priyadharshini, K.; Hamza, H. In vitro screening of anti-hbv properties of selected indian medicinal plants from kolli hills, namakkal district of tamilnadu, india. World J. Pharm. Pharm. Sci. 2015, 4, 909–915. [Google Scholar]
- Lee, C.-D.; Ott, M.; Thyagarajan, S.P.; Shafritz, D.A.; Burk, R.D.; Gupta, S. Phyllanthus amarus down-regulates hepatitis B virus mRNA transcription and replication. Eur. J. Clin. Investig. 1996, 26, 1069–1076. [Google Scholar] [CrossRef]
- Jacob, J.R.; Mansfield, K.; You, J.E.; Tennant, B.C.; Kim, Y.H. Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J. Microbiol. 2007, 45, 431–440. [Google Scholar]
- Wei, J.; Lin, L.; Su, X.; Qin, S.; Xu, Q.; Tang, Z.; Deng, Y.; Zhou, Y.; He, S. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells. Biomed. Rep. 2014, 2, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Li, H.; Gou, Y.; Zhang, H.; Vlessidis, A.G.; Zhou, H.; Evmiridis, N.P.; Liu, Z. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J. 2009, 276, 2599–2614. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol. 2009, 124, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-J.; Tsai, Y.-C.; Chiang, S.-Y.; Wang, G.-J.; Kuo, Y.-C.; Chang, Y.-C.; Wu, Y.-Y.; Wu, Y.-C. Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Res. 2014, 192, 16–24. [Google Scholar] [CrossRef]
- Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 2007, 57, 737–763. [Google Scholar] [CrossRef] [PubMed]
- El-Toumy, S.A.; Salib, J.Y.; El-Kashak, W.A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci. Hum. Wellness 2018, 7, 91–101. [Google Scholar] [CrossRef]
- Butler, M.S. The Role of Natural Product Chemistry in Drug Discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Zandi, K.; Ramedani, E.; Mohammadi, K.; Tajbakhsh, S.; Deilami, I.; Rastian, Z.; Fouladvand, M.; Yousefi, F.; Farshadpour, F. Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line. Nat. Prod. Commun. 2010, 5, 1935–1938. [Google Scholar] [CrossRef] [Green Version]
- Kutluay, S.B.; Doroghazi, J.; Roemer, M.E.; Triezenberg, S.J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008, 373, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh, F.; Moshaverinia, M.; Motamedifar, M.; Alyaseri, M. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: An In Vitro Study. J. Dent. 2016, 17, 49–54. [Google Scholar]
- Croft, K.D. The Chemistry and Biological Effects of Flavonoids and Phenolic Acidsa. Ann. N. Y. Acad. Sci. 1998, 854, 435–442. [Google Scholar] [CrossRef]
- Hung, P.-Y.; Ho, B.-C.; Lee, S.-Y.; Chang, S.-Y.; Kao, C.-L.; Lee, S.-S.; Lee, C.-N. Houttuynia cordata Targets the Beginning Stage of Herpes Simplex Virus Infection. PLoS ONE 2015, 10, e0115475. [Google Scholar] [CrossRef] [Green Version]
- Bisignano, C.; Mandalari, G.; Smeriglio, A.; Trombetta, D.; Pizzo, M.M.; Pennisi, R.; Sciortino, M.T. Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses 2017, 9, 178. [Google Scholar] [CrossRef]
- Musarra-Pizzo, M.; Ginestra, G.; Smeriglio, A.; Pennisi, R.; Sciortino, M.T.; Mandalari, G. The Antimicrobial and Antiviral Activity of Polyphenols from Almond (Prunus dulcis L.) Skin. Nutrients 2019, 11, 2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Zhou, H.; Gan, Y.; Zhang, J.; Chen, J.; Gan, X.; Li, H.; Zheng, W.; Meng, Z.; Ma, X.; et al. Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue. Oncotarget 2015, 6, 15111–15121. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.-J.; Wang, Z.-H.; Meng, W.; Li, C.-C.; Hu, Y.-X.; Zhou, L.; Wang, X.-J. The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo. Viruses 2018, 10, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brentjens, M.H.; Yeung-Yue, K.A.; Lee, P.C.; Tyring, S.K. Human papillomavirus: A review. Dermatol. Clin. 2002, 20, 315–331. [Google Scholar] [CrossRef]
- Hamid, N.A.; Brown, C.; Gaston, K. The regulation of cell proliferation by the papillomavirus early proteins. Cell. Mol. Life Sci. 2009, 66, 1700–1717. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, F.; Foppoli, C.; Coccia, R.; Perluigi, M. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. Biochim. Biophys. Acta 2012, 1822, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog. 2006, 45, 320–332. [Google Scholar] [CrossRef]
- Talwar, G.; Dar, S.A.; Rai, M.K.; Reddy, K.; Mitra, D.; Kulkarni, S.V.; Doncel, G.F.; Buck, C.B.; Schiller, J.T.; Muralidhar, S.; et al. A novel polyherbal microbicide with inhibitory effect on bacterial, fungal and viral genital pathogens. Int. J. Antimicrob. Agents 2008, 32, 180–185. [Google Scholar] [CrossRef]
- Ghanbari, A.; Le Gresley, A.; Naughton, D.; Kuhnert, N.; Sirbu, D.; Ashrafi, G.H. Biological activities of Ficus carica latex for potential therapeutics in Human Papillomavirus (HPV) related cervical cancers. Sci. Rep. 2019, 9, 1013. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Wargovich, M.J.; Dixon, D.A. Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells. Cancer Lett. 2006, 238, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.S.; Huh, S.W.; Bae, S.-M.; Lee, I.P.; Lee, J.M.; Namkoong, S.E.; Kim, C.K.; Sin, J.-I. A Major Constituent of Green Tea, EGCG, Inhibits the Growth of a Human Cervical Cancer Cell Line, CaSki Cells, through Apoptosis, G1 Arrest, and Regulation of Gene Expression. DNA Cell Biol. 2003, 22, 217–224. [Google Scholar] [CrossRef]
- Li, G.-L.; Jiang, W.; Xia, Q.; Chen, S.-H.; Ge, X.-R.; Gui, S.-Q.; Xu, C.-J. HPV E6 down-regulation and apoptosis induction of human cervical cancer cells by a novel lipid-soluble extract (PE) from Pinellia pedatisecta Schott in vitro. J. Ethnopharmacol. 2010, 132, 56–64. [Google Scholar] [CrossRef]
- Kwon, S.-B.; Kim, M.-J.; Yang, J.M.; Lee, H.-P.; Hong, J.T.; Jeong, H.-S.; Kim, E.S.; Yoon, D.-Y. Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells. PLoS ONE 2016, 11, e0150235. [Google Scholar] [CrossRef] [PubMed]
- Prusty, B.K.; Das, B.C. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int. J. Cancer 2004, 113, 951–960. [Google Scholar] [CrossRef]
- Mahata, S.; Maru, S.; Shukla, S.; Pandey, A.; Mugesh, G.; Das, B.C.; Bharti, A.C. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement. Altern. Med. 2012, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Mahata, S.; Pandey, A.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C.; Bharti, A.C. Anticancer Activity ofPhyllanthus emblicaLinn. (Indian Gooseberry): Inhibition of Transcription Factor AP-1 and HPV Gene Expression in Cervical Cancer Cells. Nutr. Cancer 2013, 65, 88–97. [Google Scholar] [CrossRef]
- Potikanond, S.; Sookkhee, S.; Na Takuathung, M.; Mungkornasawakul, P.; Wikan, N.; Smith, D.R.; Nimlamool, W. Kaempferia parviflora Extract Exhibits Anti-cancer Activity against HeLa Cervical Cancer Cells. Front. Pharmacol. 2017, 8, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghebremedhin, B. Human adenovirus: Viral pathogen with increasing importance. Eur. J. Microbiol. Immunol. 2014, 4, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajon, A.E.; Lynch, J.P. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Kamata, T.; Takada, Y.; Ruggeri, Z.M.; Nemerow, G.R. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J. Virol. 1996, 70, 4502–4508. [Google Scholar] [CrossRef] [Green Version]
- Endter, C.; Dobner, T. Cell Transformation by Human Adenoviruses. In Current Topics in Microbiology and Immunology; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 273, pp. 163–214. [Google Scholar]
- Gao, H.; Liu, L.; Qu, Z.-Y.; Wei, F.-X.; Wang, S.-Q.; Chen, G.; Qin, L.; Jiang, F.-Y.; Wang, Y.-C.; Shang, L.; et al. Anti-adenovirus Activities of Shikonin, a Component of Chinese Herbal Medicine in Vitro. Biol. Pharm. Bull. 2011, 34, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Chiang, L.; Chiang, W.; Chang, M.; Ng, L.; Lin, C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir. Res. 2002, 55, 53–62. [Google Scholar] [CrossRef]
- Karimi, A.; Moradi, M.-T.; Alidadi, S.; Hashemi, L. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract. J. Complement. Integr. Med. 2016, 13, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Moradi, M.-T.; Rabiei, M.; Alidadi, S. In vitro anti-adenoviral activities of ethanol extract, fractions, and main phenolic compounds of pomegranate (Punica granatum L.) peel. Antivir. Chem. Chemother. 2020, 28, 204020662091657. [Google Scholar] [CrossRef] [PubMed]
- Rajtar, B.; Skalicka-Woźniak, K.; Polz-Dacewicz, M.; Głowniak, K. The influence of extracts from Peucedanum salinum on the replication of adenovirus type. Arch. Med. Sci. 2012, 1, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chiang, L.C.; Chiang, W.; Liu, M.C.; Lin, C.C. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob. Chemother. 2003, 52, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Chou, T.-W.; Cheng, L.-H.; Ho, C.-W. In vitro anti-adenoviral activity of five Allium plants. J. Taiwan Inst. Chem. Eng. 2011, 42, 228–232. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Ng, L.-T.; Cheng, P.-W.; Chiang, W.; Lin, C.-C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol. 2005, 32, 811–816. [Google Scholar] [CrossRef]
- Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Kumari, G.; Singh, R.K. Highly Active Antiretroviral Therapy for treatment of HIV/AIDS patients: Current status and future prospects and the Indian scenario. HIV AIDS Rev. 2012, 11, 5–14. [Google Scholar] [CrossRef]
- Cary, D.C.; Peterlin, B.M. Natural Products and HIV/AIDS. AIDS Res. Hum. Retrovir. 2018, 34, 31–38. [Google Scholar] [CrossRef]
- Andersen, R.J.; Ntie-Kang, F.; Tietjen, I. Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antivir. Res. 2018, 158, 63–77. [Google Scholar] [CrossRef]
- Lusvarghi, S.; Bewley, C.A. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential. Viruses 2016, 8, 296. [Google Scholar] [CrossRef]
- Gandhi, M.J.; Boyd, M.R.; Yi, L.; Yang, G.G.; Vyas, G.N. Properties of Cyanovirin-N (CV-N): Inactivation of HIV-1 by Sessile Cyanovirin-N (SCV-N). Dev. Biol. 2000, 102, 141–148. [Google Scholar]
- Plaza, A.; Gustchina, E.; Baker, H.L.; Kelly, M.; Bewley, C.A. Mirabamides A–D, Depsipeptides from the SpongeSiliquariaspongia mirabilisThat Inhibit HIV-1 Fusion. J. Nat. Prod. 2007, 70, 1753–1760. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Hashimoto, F.; Cosentino, L.M.; Chen, C.-H.; Garrett, A.P.E.; Lee, K.-H. Betulinic Acid and Dihydrobetulinic Acid Derivatives as Potent Anti-HIV Agents1. J. Med. Chem. 1996, 39, 1016–1017. [Google Scholar] [CrossRef]
- Martin, D.E.; Salzwedel, K.; Allaway, G.P. Bevirimat: A Novel Maturation Inhibitor for the Treatment of HIV-1 Infection. Antivir. Chem. Chemother. 2008, 19, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Carli, I.; Del Vecchio, C.; Xu, L.; Corona, A.; Grandi, N.; Piano, D.; Maccioni, E.; Distinto, S.; Parolin, C.; et al. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 2016, 23, 1383–1391. [Google Scholar] [CrossRef]
- Martini, R.; Esposito, F.; Corona, A.; Ferrarese, R.; Ceresola, E.R.; Visconti, L.; Tintori, C.; Barbieri, A.; Calcaterra, A.; Iovine, V.; et al. Natural Product Kuwanon-L Inhibits HIV-1 Replication through Multiple Target Binding. ChemBioChem 2017, 18, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-J.; Rumschlag-Booms, E.; Guan, Y.-F.; Wang, D.-Y.; Liu, K.-L.; Li, W.-F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.S.; et al. Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal PlantJusticia gendarussa. J. Nat. Prod. 2017, 80, 1798–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Ii, J.H.C.; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr.; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [Google Scholar] [CrossRef]
- Deeks, S.G. Shock and kill. Nature 2012, 487, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, L.; Li, Z.; Yan, X.; Yang, Y.; Tang, Y.; Cao, Y.; Ding, A. Bio-Guided Isolation of the Cytotoxic Terpenoids from the Roots of Euphorbia kansui against Human Normal Cell Lines L-O2 and GES-1. Int. J. Mol. Sci. 2012, 13, 11247–11259. [Google Scholar] [CrossRef] [PubMed]
- Cary, D.C.; Fujinaga, K.; Peterlin, B.M. Euphorbia Kansui Reactivates Latent HIV. PLoS ONE 2016, 11, e0168027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, T.; Barnor, J.; Huu, T.N.; Morinaga, O.; Hamano, A.; Ndzinu, J.; Frimpong, A.; Minta-Asare, K.; Amoa-Bosompem, M.; Brandful, J.; et al. Procyanidin trimer C1 derived from Theobroma cacao reactivates latent human immunodeficiency virus type 1 provirus. Biochem. Biophys. Res. Commun. 2015, 459, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, R.A.; García-Sastre, A. Influenza A viruses: New research developments. Nat. Rev. Genet. 2011, 9, 590–603. [Google Scholar] [CrossRef]
- Diceinson, G.T. Epidemic and Endemic Influenza. Can. Med. Assoc. J. 1962, 86, 588–589. [Google Scholar]
- Bahadoran, A.; Lee, S.H.; Wang, S.M.; Manikam, R.; Rajarajeswaran, J.; Raju, C.S.; Sekaran, S.D. Immune Responses to Influenza Virus and Its Correlation to Age and Inherited Factors. Front. Microbiol. 2016, 7, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006, 5, 1015–1025. [Google Scholar] [CrossRef]
- Gangehei, L.; Ali, M.; Zhang, W.; Chen, Z.; Wakame, K.; Haidari, M. Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. Phytomedicine 2010, 17, 1047–1056. [Google Scholar] [CrossRef]
- Kuzuhara, T.; Iwai, Y.; Takahashi, H.; Hatakeyama, D.; Echigo, N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. 2009, 1, RRN1052. [Google Scholar] [CrossRef]
- Slaine, P.D.; Kleer, M.; Smith, N.K.; Khaperskyy, D.A.; McCormick, C. Stress Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A Virus Replication. Viruses 2017, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.-Y.; Shien, J.-H.; Tiley, L.; Chiou, S.-S.; Wang, S.-Y.; Chang, T.-J.; Lee, Y.-J.; Chan, K.-W.; Hsu, W.-L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem. 2010, 119, 1346–1351. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Hrincius, E.R.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antivir. Res. 2007, 76, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir. Res. 2007, 76, 1–10. [Google Scholar] [CrossRef]
- Haidari, M.; Ali, M.; Casscells, S.W.; Madjid, M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 2009, 16, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir. Res. 1993, 21, 289–299. [Google Scholar] [CrossRef]
- Butcher, S.J.; Grimes, J.M.; Makeyev, E.V.; Bamford, D.H.; Stuart, D.I. A mechanism for initiating RNA-dependent RNA polymerization. Nat. Cell Biol. 2001, 410, 235–240. [Google Scholar] [CrossRef]
- Wyles, D.L.; Luetkemeyer, A.F. Understanding Hepatitis C Virus Drug Resistance: Clinical Implications for Current and Future Regimens. Top. Antivir. Med. 2017, 25, 103–109. [Google Scholar] [PubMed]
- Zeisel, M.B.; Felmlee, D.J.; Baumert, T.F. Hepatitis C Virus Entry. In Current Topics in Microbiology and Immunology; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013; Volume 369, pp. 87–112. [Google Scholar]
- Galani, B.R.T.; Sahuc, M.-E.; Njayou, F.N.; Deloison, G.; Mkounga, P.; Feudjou, W.F.; Brodin, P.; Rouillé, Y.; Nkengfack, A.E.; Moundipa, P.F.; et al. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Front. Microbiol. 2015, 6, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.-T.; Chung, C.-Y.; Hsu, W.-C.; Chang, S.-P.; Hung, T.-C.; Shields, J.; Russell, R.S.; Lin, C.-C.; Liang-Tzung, L.; Yen, M.-H.; et al. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J. Hepatol. 2015, 62, 541–548. [Google Scholar] [CrossRef]
- Calland, N.; Sahuc, M.-E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C.; et al. Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. J. Virol. 2015, 89, 10053–10063. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, A.; Salam, K.A.; Furuta, A.; Matsuda, Y.; Fujita, O.; Tani, H.; Fujita, Y.; Fujimoto, Y.; Ikeda, M.; Kato, N.; et al. Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia. Mar. Drugs 2012, 10, 744–761. [Google Scholar] [CrossRef] [Green Version]
- Hawas, U.W.; Al-Farawati, R.; El-Kassem, L.T.A.; Turki, A.J. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR). Mar. Drugs 2016, 14, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Saxena, A.K.; Chandan, B.K.; Agarwal, S.G.; Bhatia, M.S.; Anand, K.K. Hepatoprotective effect of ethanolic extract ofEclipta alba on experimental liver damage in rats and mice. Phytother. Res. 1993, 7, 154–158. [Google Scholar] [CrossRef]
- Rehman, S.; Ijaz, B.; Fatima, N.; Muhammad, S.A.; Riazuddin, S. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study. Biomed. Pharmacother. 2016, 83, 881–891. [Google Scholar] [CrossRef]
- Wu, S.-F.; Lin, C.-K.; Chuang, Y.-S.; Chang, F.-R.; Tseng, C.-K.; Wu, Y.-C.; Lee, J.-C. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J. Viral Hepat. 2011, 19, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Tietcheu, B.R.G.; Sass, G.; Njayou, N.F.; Mkounga, P.; Tiegs, G.; Moundipa, P.F. Anti-Hepatitis C Virus Activity of Crude Extract and Fractions of Entada africana in Genotype 1b Replicon Systems. Am. J. Chin. Med. 2014, 42, 853–868. [Google Scholar] [CrossRef]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef]
- Chen, W.-C.; Tseng, C.-K.; Chen, B.-H.; Lin, C.-K.; Lee, J.-C. Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation. Front. Pharmacol. 2016, 7, 490. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Qiu, H.; Gong, J.; Liu, Q.; Xiao, H.; Chen, X.-W.; Sun, B.-L.; Yang, R.-G. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch. Virol. 2012, 157, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Khachatoorian, R.; Arumugaswami, V.; Raychaudhuri, S.; Yeh, G.K.; Maloney, E.M.; Wang, J.; Dasgupta, A.; French, S.W. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 2012, 433, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahmias, Y.; Goldwasser, J.; Casali, M.; Van Poll, D.; Wakita, T.; Chung, R.T.; Yarmush, M.L. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 2008, 47, 1437–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wormser, G.P.; Rubin, D.H. Fundamental Virology, 4th Edition By David M. Knipe, Peter M. Howley, Diane E. Griffin, Robert A. Lamb, Malcolm A. Martin, Bernard Roizman, and Stephen E. Straus Philadelphia: Lippincott Williams & Wilkins, 2001. 1408 pp. $99.95 (cloth). Fields Virology, 4th Edition, Volumes I and II By David M. Knipe, Peter M. Howley, Diane E. Griffin, Robert A. Lamb, Malcolm A. Martin, Bernard Roizman, and Stephen E. Straus Philadelphia: Lippincott Williams & Wilkins, 2001. 3280 pp. $339.00 (cloth). Clin. Infect. Dis. 2002, 34, 1029–1030. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Bae, E.; Song, J.; Baek, S.; Kwon, D. Inhibitory effects of orobol 7-O-d-glucoside from banaba (Lagerstroemia speciosa L.) on human rhinoviruses replication. Lett. Appl. Microbiol. 2010, 51, 1–5. [Google Scholar] [CrossRef]
- Choi, H.; Song, J.; Park, K.; Baek, S. In vitroanti-enterovirus 71 activity of gallic acid fromWoodfordia fruticosaflowers. Lett. Appl. Microbiol. 2010, 50, 438–440. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lim, C.; Song, J.; Baek, S.; Kwon, D. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine 2009, 16, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Song, J.-H.; Lim, C.-H.; Baek, S.-H.; Kwon, D.-H. Anti-Human Rhinovirus Activity of Raoulic Acid fromRaoulia australis. J. Med. Food 2010, 13, 326–328. [Google Scholar] [CrossRef]
- Lalani, S.S.; Anasir, M.I.; Poh, C.L. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complement. Med. Ther. 2020, 20, 97. [Google Scholar] [CrossRef] [Green Version]
- Ogbole, O.O.; Akinleye, T.E.; Segun, P.A.; Faleye, T.C.; Adeniji, A.J. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol. J. 2018, 15, 1–8. [Google Scholar] [CrossRef]
- Nishimura, Y.; Shimizu, H. Cellular Receptors for Human Enterovirus Species A. Front. Microbiol. 2012, 3, 105. [Google Scholar] [CrossRef] [Green Version]
- Badia-Boungou, F.; Sane, F.; Alidjinou, E.K.; Hennebelle, T.; Roumy, V.; Ngakegni-Limbili, A.C.; Nguimbi, E.; Moukassa, D.; Abena, A.A.; Hober, D.; et al. Aqueous extracts of Syzygium brazzavillense can inhibit the infection with coxsackievirus B4 in vitro. J. Med. Virol. 2019, 91, 1210–1216. [Google Scholar] [CrossRef]
- Xiong, H.-R.; Shen, Y.-Y.; Lu, L.; Hou, W.; Luo, F.; Xiao, H.; Yang, Z.-Q. The Inhibitory Effect of Rheum palmatum Against Coxsackievirus B3 in Vitro and in Vivo. Am. J. Chin. Med. 2012, 40, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Park, K.S.; Kwon, D.H.; Choi, H.J. Anti–Human Rhinovirus 2 Activity and Mode of Action of Quercetin-7-Glucoside fromLagerstroemia speciosa. J. Med. Food 2013, 16, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-F.; Jheng, J.-R.; Lin, G.-H.; Chen, Y.-L.; Ho, J.-Y.; Liu, C.-J.; Hsu, K.-Y.; Chen, Y.-S.; Chan, Y.F.; Yu, H.-M.; et al. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg. Microbes Infect. 2020, 9, 1194–1205. [Google Scholar] [CrossRef]
- Park, S.W.; Kwon, M.J.; Yoo, J.Y.; Choi, H.-J.; Ahn, Y.-J. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Complement. Altern. Med. 2014, 14, 171. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.-W.; Chiang, L.-C.; Yen, M.-H.; Lin, C.-C. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem. Toxicol. 2007, 45, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.-W.; Ng, L.-T.; Lin, C.-C. Xiao Chai Hu Tang inhibits CVB1 virus infection of CCFS-1 cells through the induction of Type I interferon expression. Int. Immunopharmacol. 2006, 6, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Albulescu, L.; Bigay, J.; Biswas, B.; Weber-Boyvat, M.; Dorobantu, C.M.; Delang, L.; Van Der Schaar, H.M.; Jung, Y.-S.; Neyts, J.; Olkkonen, V.M.; et al. Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antivir. Res. 2017, 140, 37–44. [Google Scholar] [CrossRef]
- Burgett, A.W.G.; Poulsen, T.B.; Wangkanont, K.; Anderson, D.R.; Kikuchi, C.; Shimada, K.; Okubo, S.; Fortner, K.C.; Mimaki, Y.; Kuroda, M.; et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 2011, 7, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.L.; Severance, Z.C.; Bensen, R.C.; Le-McClain, A.T.; Malinky, C.A.; Mettenbrink, E.M.; Nuñez, J.I.; Reddig, W.J.; Blewett, E.L.; Burgett, A.W. Differing activities of oxysterol-binding protein (OSBP) targeting anti-viral compounds. Antivir. Res. 2019, 170, 104548. [Google Scholar] [CrossRef]
- Albulescu, L.; Strating, J.R.; Thibaut, H.J.; Van Der Linden, L.; Shair, M.D.; Neyts, J.; Van Kuppeveld, F.J. Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antivir. Res. 2015, 117, 110–114. [Google Scholar] [CrossRef]
- Das, A.; Hirai-Yuki, A.; González-López, O.; Rhein, B.; Moller-Tank, S.; Brouillette, R.; Hensley, L.; Misumi, I.; Lovell, W.; Cullen, J.M.; et al. TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions. mBio 2017, 8, e00969-17. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z. Quasi-enveloped hepatitis virus assembly and release. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 108, pp. 315–336. [Google Scholar]
- Lemon, S.M.; Ott, J.J.; Van Damme, P.; Shouval, D. Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J. Hepatol. 2018, 68, 167–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randazzo, W.; Falcó, I.; Aznar, R.; Sánchez, G. Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiol. 2017, 66, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, M.; Morgan, M.T.; Dia, V.; D’Souza, D.H. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food Microbiol. 2020, 90, 103461. [Google Scholar] [CrossRef]
- Su, X.; D’Souza, D.H. Grape Seed Extract for Control of Human Enteric Viruses. Appl. Environ. Microbiol. 2011, 77, 3982–3987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulka, M.; Calvo, M.S.; Ngo, D.T.; Wales, S.Q.; Goswami, B.B. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression. Virology 2009, 388, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Glass, R.I.; Parashar, U.D.; Estes, M.K. Norovirus Gastroenteritis. N. Engl. J. Med. 2009, 361, 1776–1785. [Google Scholar] [CrossRef] [Green Version]
- Kniel, K.E. The makings of a good human norovirus surrogate. Curr. Opin. Virol. 2014, 4, 85–90. [Google Scholar] [CrossRef]
- Lee, J.-H.; Bae, S.Y.; Oh, M.; Kim, K.H.; Chung, M.S. Antiviral Effects of Mulberry (Morus alba) Juice and Its Fractions on Foodborne Viral Surrogates. Foodborne Pathog. Dis. 2014, 11, 224–229. [Google Scholar] [CrossRef]
- Oh, M.; Bae, S.Y.; Lee, J.-H.; Cho, K.J.; Kim, K.H.; Chung, M.S. Antiviral Effects of Black Raspberry (Rubus coreanus) Juice on Foodborne Viral Surrogates. Foodborne Pathog. Dis. 2012, 9, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.-G.; Kim, K.-L.; Shin, S.B.; Son, K.-T.; Lee, H.-J.; Kim, T.H.; Kim, Y.-M.; Cho, E.-J.; Kim, D.-K.; Lee, E.-W.; et al. Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Sci. Biotechnol. 2013, 22, 593–598. [Google Scholar] [CrossRef]
- Gilling, D.; Kitajima, M.; Torrey, J.; Bright, K. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol. 2014, 116, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, M.; Nakai, Y.; Tsuji, T.; Shimamoto, T.; Shimamoto, T. Antiviral Effects of Persimmon Extract on Human Norovirus and Its Surrogate, Bacteriophage MS2. J. Food Sci. 2014, 79, M941–M946. [Google Scholar] [CrossRef]
- Yin, Y.; Wunderink, R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2017, 23, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Mil. Med. Res. 2020, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fani, M.; Teimoori, A.; Ghafari, S. Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Futur. Virol. 2020, 15, 317–323. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, diagnostics and drug development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021, 12, 279. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020, 284, 197989. [Google Scholar] [CrossRef] [PubMed]
- Xian, Y.; Zhang, J.; Bian, Z.; Zhou, H.; Zhang, Z.; Lin, Z.; Xu, H. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B 2020, 10, 1163–1174. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Wu, S.-L.; Chen, J.-C.; Li, C.-C.; Hsiang, C.-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir. Res. 2007, 74, 92–101. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Jan, J.-T.; Ma, S.-H.; Kuo, C.-J.; Juan, H.-F.; Cheng, Y.-S.E.; Hsu, H.-H.; Huang, H.-C.; Wu, D.; Brik, A.; et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA 2004, 101, 10012–10017. [Google Scholar] [CrossRef] [Green Version]
- Kotwal, G.J.; Kaczmarek, J.N.; Leivers, S.; Ghebremariam, Y.T.; Kulkarni, A.P.; Bauer, G.; De Beer, C.; Preiser, W.; Mohamed, A.R. Anti-HIV, Anti-Poxvirus, and Anti-SARS Activity of a Nontoxic, Acidic Plant Extract from the Trifollium Species Secomet-V/anti-Vac Suggests That It Contains a Novel Broad-Spectrum Antiviral. Ann. N. Y. Acad. Sci. 2005, 1056, 293–302. [Google Scholar] [CrossRef]
- Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; et al. Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. J. Virol. 2004, 78, 11334–11339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.-W.; Ng, L.-T.; Chiang, L.-C.; Lin, C.-C. Antiviral effects of saikosaponins on human coronavirus 229e in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Park, C.M.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.-H.; et al. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol. 2020, 164, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.B.; Park, S.-J.; Kim, Y.M.; Lee, J.-Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.-C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett. 2010, 20, 1873–1876. [Google Scholar] [CrossRef]
- Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Liang, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; et al. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-N.; Lin, C.P.C.; Huang, K.-K.; Chen, W.-C.; Hsieh, H.-P.; Liang, P.-H.; Hsu, J.T.-A. Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3′-digallate (TF3). Evid. Based Complement. Altern. Med. 2005, 2, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-W.; Tsai, F.-J.; Tsai, C.-H.; Lai, C.-C.; Wan, L.; Ho, T.-Y.; Hsieh, C.-C.; Chao, P.-D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir. Res. 2005, 68, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zahedipour, F.; Hosseini, S.A.; Sathyapalan, T.; Majeed, M.; Jamialahmadi, T.; Al-Rasadi, K.; Banach, M.; Sahebkar, A. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother. Res. 2020, 34, 2911–2920. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Galicia-Vázquez, G.; Cencic, R.; Mills, J.R.; Katigbak, A.; Porco, J.A.; Pelletier, J. CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A. Cell Rep. 2016, 15, 2340–2347. [Google Scholar] [CrossRef] [Green Version]
- Hinnebusch, A.G.; Ivanov, I.P.; Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 2016, 352, 1413–1416. [Google Scholar] [CrossRef]
- Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir. Res. 2018, 150, 123–129. [Google Scholar] [CrossRef]
- Müller, C.; Obermann, W.; Schulte, F.W.; Lange-Grünweller, K.; Oestereich, L.; Elgner, F.; Glitscher, M.; Hildt, E.; Singh, K.; Wendel, H.-G.; et al. Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (−) and the eIF4A-inhibitor Silvestrol. Antivir. Res. 2020, 175, 104706. [Google Scholar] [CrossRef]
- Müller, C.; Obermann, W.; Karl, N.; Wendel, H.-G.; Taroncher-Oldenburg, G.; Pleschka, S.; Hartmann, R.K.; Grünweller, A.; Ziebuhr, J. The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antivir. Res. 2021, 186, 105012. [Google Scholar] [CrossRef]
- Cencic, R.; Desforges, M.; Hall, D.R.; Kozakov, D.; Du, Y.; Min, J.; Dingledine, R.; Fu, H.; Vajda, S.; Talbot, P.J.; et al. Blocking eIF4E-eIF4G Interaction as a Strategy to Impair Coronavirus Replication. J. Virol. 2011, 85, 6381–6389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, N.; Valentao, P.; Andrade, P.; Pereira, R. Plitidepsin to treat multiple myeloma. Drugs Today 2020, 56, 337–347. [Google Scholar] [CrossRef]
- Wei, T.; Li, D.; Marcial, D.; Khan, M.; Lin, M.-H.; Snape, N.; Ghildyal, R.; Harrich, D.; Spann, K. The Eukaryotic Elongation Factor 1A Is Critical for Genome Replication of the Paramyxovirus Respiratory Syncytial Virus. PLoS ONE 2014, 9, e114447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shi, H.; Chen, J.; Shi, D.; Li, C.; Feng, L. EF1A interacting with nucleocapsid protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Vet. Microbiol. 2014, 172, 443–448. [Google Scholar] [CrossRef] [PubMed]
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021, 371, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Reuschl, A.-K.; Thorne, L.G.; Zuliani-Alvarez, L.; Bouhaddou, M.; Obernier, K.; Hiatt, J.; Soucheray, M.; Turner, J.; Fabius, J.M.; Nguyen, G.T.; et al. Host-Directed Therapies against Early-Lineage SARS-CoV-2 Retain Efficacy against B.1.1.7 Variant. bioRxiv 2021. [Google Scholar] [CrossRef]
- PharmaMar. Multicenter, Randomized, Parallel and Proof of Concept Study to Evaluate the Safety Profile of Three Doses of Plitidepsin in Patients With COVID-19 Requiring Hospitalization; Clinical Trial Registration NCT04382066. 2020. Available online: https://clinicaltrials.gov/ (accessed on 20 March 2020).
- Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus Genome Organization, Expression, and Replication. Annu. Rev. Microbiol. 1990, 44, 649–688. [Google Scholar] [CrossRef]
- Antiviral Activities of Extracts and Phenolic Components of Two Spondias Species against Dengue Virus. Available online: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992011000400007 (accessed on 8 March 2021).
- Vázquez-Calvo, Á.; De Oya, N.J.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J.-C. Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front. Microbiol. 2017, 8, 1314. [Google Scholar] [CrossRef]
- Ono, L.; Wollinger, W.; Rocco, I.M.; Coimbra, T.L.; Gorin, P.A.; Sierakowski, M.-R. In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antivir. Res. 2003, 60, 201–208. [Google Scholar] [CrossRef]
- Reis, S.R.I.; Valente, L.M.; Sampaio, A.L.; Siani, A.C.; Gandini, M.; Azeredo, E.L.; D’Avila, L.A.; Mazzei, J.L.; das Graças, M.; Henriques, M.; et al. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. Int. Immunopharmacol. 2008, 8, 468–476. [Google Scholar] [CrossRef]
- Johari, J.; Kianmehr, A.; Mustafa, M.R.; Abubakar, S.; Zandi, K. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. Int. J. Mol. Sci. 2012, 13, 16785–16795. [Google Scholar] [CrossRef]
- Zandi, K.; Teoh, B.-T.; Sam, S.-S.; Wong, P.-F.; Mustafa, M.R.; Abubakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med. 2012, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Parida, M.; Upadhyay, C.; Pandya, G.; Jana, A. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J. Ethnopharmacol. 2002, 79, 273–278. [Google Scholar] [CrossRef]
- Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antivir. Res. 2017, 142, 148–157. [Google Scholar] [CrossRef]
- Padilla, S.L.; Rodríguez, A.; Gonzales, M.M.; Gallego, G.J.C.; Castaño, O.J.C. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch. Virol. 2014, 159, 573–579. [Google Scholar] [CrossRef]
- Elgner, F.; Sabino, C.; Basic, M.; Ploen, D.; Grünweller, A.; Hildt, E. Inhibition of Zika Virus Replication by Silvestrol. Viruses 2018, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.H.; Strauss, E.G. The Alphaviruses: Gene Expression, Replication, and Evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef]
- Khan, A.H.; Morita, K.; Parquet, M.D.C.; Hasebe, F.; Mathenge, E.G.M.; Igarashi, A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 2002, 83, 3075–3084. [Google Scholar] [CrossRef]
- Porta, J.; Prasad, V.M.; Wang, C.-I.; Akahata, W.; Ng, L.F.P.; Rossmann, M.G. Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission. J. Virol. 2015, 90, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Sliva, K.; von Rhein, C.; Kümmerer, B.M.; Schnierle, B.S. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antivir. Res. 2015, 113, 1–3. [Google Scholar] [CrossRef]
- Lani, R.; Hassandarvish, P.; Shu, M.-H.; Phoon, W.H.; Chu, J.J.H.; Higgs, S.; Vanlandingham, D.; Abu Bakar, S.; Zandi, K. Antiviral activity of selected flavonoids against Chikungunya virus. Antivir. Res. 2016, 133, 50–61. [Google Scholar] [CrossRef]
- Varghese, F.S.; Thaa, B.; Amrun, S.N.; Simarmata, D.; Rausalu, K.; Nyman, T.A.; Merits, A.; McInerney, G.M.; Ng, L.F.P.; Ahola, T. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling. J. Virol. 2016, 90, 9743–9757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenen, T.; Groseth, A.; Falzarano, D.; Feldmann, H. Ebola virus: Unravelling pathogenesis to combat a deadly disease. Trends Mol. Med. 2006, 12, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Hoenen, T.; Canard, B.; Decroly, E. Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antivir. Res. 2016, 135, 1–14. [Google Scholar] [CrossRef]
- Murray, M.J. Ebola Virus Disease. Anesth. Analg. 2015, 121, 798–809. [Google Scholar] [CrossRef]
- Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller, W.A.; Tiburu, E.K.; Bonney, J.H. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med. 2019, 113, 103414. [Google Scholar] [CrossRef]
- Lane, T.; Anantpadma, M.; Freundlich, J.S.; Davey, R.A.; Madrid, P.B.; Ekins, S. The Natural Product Eugenol Is an Inhibitor of the Ebola Virus In Vitro. Pharm. Res. 2019, 36, 1–6. [Google Scholar] [CrossRef]
- Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antivir. Res. 2017, 137, 76–81. [Google Scholar] [CrossRef]
- Merkel, A.L.; Meggers, E.; Ocker, M. PIM1 kinase as a target for cancer therapy. Expert Opin. Investig. Drugs 2012, 21, 425–436. [Google Scholar] [CrossRef]
- Antonelli, G.; Turriziani, O. Antiviral therapy: Old and current issues. Int. J. Antimicrob. Agents 2012, 40, 95–102. [Google Scholar] [CrossRef]
- Pour, P.M.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front. Pharmacol. 2019, 10, 1207. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
Natural Source | Compound | Hepatitis B Virus | Target | CC50 | IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Terminalia bellerica | Methanolic extracts | Hepatitis B virus | Inhibits viral entry, replication and maturation of HBV particles | [15,16] | |||
Enicostemma axillare | Methanolic extracts | Hepatitis B virus | |||||
Phyllanthus Amarus | Crude extract | Hepatitis B virus | |||||
Hybanthus enneaspermus | Methanolic extracts | Hepatitis B virus | |||||
Bombyx mori L. | Iminosugars 1-deoxynojirimycin (1-DNJ) | Hepatitis B virus | >50 mM | 2.96 mM | 208 | [17] | |
Boehmeria nivea | Chloroform fraction Ethyl acetate fraction | Hepatitis B virus | 19.67–20.92 mg/L 36.45–39.90 mg/L | [18] | |||
Pulsatilla chinensis | Betulinic acid | Hepatitis B virus | Targeting host cellular factor | [19] | |||
Curcuma longa L. | CLL extract | Hepatitis B virus | [20] | ||||
Liriope platyphylla | LPRP-Et | Hepatitis B virus | [21] |
Natural Source | Compound | Herpesvirus | Target | CC50 | IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Curcuma longa L | Curcumin Gallium-curcumin Cu-curcumin | Herpes simplex virus-1 | Inhibits immediate-early gene expression | 484.2 μg/mL 255.8 μg/mL 326.6 μg/mL | 33.0 μg/mL 13.9 μg/mL 23.1 μg/mL | 14.6 18.4 14.1 | [25,26] |
Houttuynia cordata | Quercetin | Herpes simplex virus-1 Herpes simplex virus-2 | Blocks viral binding and suppresses NF-kB activation | [30] | |||
Pistacia vera L | Polyphenols-rich exstract | Herpes simplex virus-1 | Inhibits expression of HSV-1 viral proteins and viral DNA synthesis | 1.2 mg/mL | 0.4 mg/mL | 3 | [27] |
Prunus dulcis | Polyphenols-rich exstract | Herpes simplex virus-1 | Blocks viral binding | 0.6 mg/mL | [31,32] | ||
Aloe Vera | Polyphenols-rich exstract | Herpes simplex virus-1 | Reduction of cytopathic effect (CPE) | [28] | |||
Cephalotaxaceae | Homoharringtonine | Herpes simplex virus-1 | Targets the cellular factor eIF4E | 139 nM | [34] |
Natural Source | Compound | Papillomaviruses | Target | Reference |
---|---|---|---|---|
Curcuma longa L. | Curcumin | HPV-16 HPV-18 | Downregulating expression of oncogenes E6 and E7 | [39] |
Ficus carica | Latex | HPV-16 | [41] | |
C. longa, A. indica, E. officinalis, A. vera | Basant | HPV-16 | Prevents the entry of HPV 16 in Hela cells | [40] |
Green tea | Epigallocatechin-3-gallate (EGCG) | HPV-16 | Promoting apoptosis and inhibiting cellular transcriptional factors | [43] |
Pinellia pedatisecta | Rhizome extract | HPV-16 HPV-18 | [44] | |
Cudrania tricuspidata | Stem extract | HPV-16 | [45] | |
Curcuma longa L. | Curcumin | HPV-18 HPV-16 | [46] | |
Bryophyllum pinnata | Leaves extract | HPV-18 | [47] | |
Phyllanthus emblica | Crude extract | HPV-16 HPV-18 | [48] | |
Kaempferia parviflora | Ethanolic extract | HPV-16 | [49] |
Natural Source | Compound | Adenoviruses | Target | CC50 (µg/mL) | EC50-IC50 (µg/mL) | SI | Reference |
---|---|---|---|---|---|---|---|
Radix Lithospermi | Shikonin | AdV3 | Downregulation of capsid protein hexon expression | [54] | |||
Plantago major L. | Caffeic acid | AdV-3 | Inhibition of post-adsorbiment processes | 14.2 | 727 | [55] | |
Plantago major L. | p-coumaric acid | AdV-11 | 43.8 | 11.2 | |||
Plantago major L. | Chlorogenic acid | AdV-3 AdV-8 AdV-11 | 76 108 13.3 | 52.6 36.9 301 | |||
Plantago major L. | Ferulic acid | AdV-8 AdV-11 | 52.5 23.3 | 1.8 4 | |||
Camellia sinensis Kuntze | Phenolic compounds | AdV-5 | 165.95 ± 12.7 | 6.62 ± 1.4 | 25.06 | [56] | |
Punica granatum | n-butanol fraction | AdV-5 | 264.7 | 2.16 | 122.5 | [57] | |
Punica granatum | Gallic acid | AdV-5 | 49.34 | 4.67 | 10.5 | ||
Peucedanum salinum | Methanol extract | AdV-5 | [58] | ||||
Peucedanum salinum | Methanol/H2O extract | AdV-5 | |||||
Caesalpinia pulcherrima Swartz | Quercetin | AdV-3 AdV-8 AdV-41 | 496.9 | 24.3 ± 4.9 39.9 ± 5.4 44.8 ± 9.4 | 20.4 12.5 11.1 | [59] | |
A. ascalonicum L. | Crude aqueous extract | AdV-41 AdV-3 | 2696.8 2696.8 | 733.9 1137.60 | 3.7 2.4 | [60] | |
A. sativum L. | Crude aqueous extract | AdV-41 AdV-3 | 2649.6 2649.6 | 3500 3500 | |||
A. fistulosum L. | Crude aqueous extract | AdV-41 AdV-3 | >960 >960 | >960 >960 | |||
Ocimum basilicum | Apigenin | AdV-3 AdV-8 ADV-11 | 59.9 | 11.1 ± 0.9 8 ± 0.8 20.9 ± 0.1 | 5.4 7.5 2.9 | [61] | |
Ocimum basilicum | Linalool | AdV-3 AdV-8 ADV-11 | 177.1 | 24.4 ± 0.4 26.4 ± 0.6 16.9 ± 0.3 | 7.3 6.7 10.5 | ||
Ocimum basilicum | Ursolic acid | AdV-8 ADV-11 | 100.5 | 4.2 ± 0.3 24.5 ± 0.3 | 23.8 4.1 |
Natural Source | Compound | Immunodeficiency Virus | Target | CC50 | EC50-IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Griffithsia sp. | Griffithsin | HIV | Entry inhibitors | 0.043–0.63 nM | [66] | ||
Nostoc ellipsosporum | Ascyanovirin-N | HIV | [67] | ||||
Siliquariaspongia mirabilis Stelletta clavosa | Mirabamide-A | HIV | 40–140 nM | [68] | |||
Syzygium claviflorum | Betulinic acid Dihydro betulinic | HIV | Maturation inhibitors | 1.4 µM 0.9 µM | 9.3 14 | [69] | |
Synthetic derivative of betulinic acid | Bevirimat | HIV | 25 μM | 7.8 nM | >2500 | [70] | |
Rheum palmatum | Sennoside A | HIV | Reverse trascriptase and Integrase inhibitors | [71] | |||
Morus nigra | Kuwanon-L | [72] | |||||
Justica gendarussa | Patentiflorin A | HIV | 24−37 nM | [73] | |||
Calophyllum lanigerum | Calanolides | HIV | 0.1–0.4 µM | [74] | |||
Euphorbia kansui | Ingenol Bryostatin Prostratin | HIV | Latency-reversing agents (LRAs) | [77] | |||
Theobroma cacao | Procyanidin C1-flavonoids | HIV | [78] |
Natural Source | Compound | Influenza Viruses | Target | CC50 | EC50-IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Litchi chinensis | Oligonol | H3N2 | Blocking (ROS)-dependent ERK phosphorilation | [83] | |||
Green tea | Catechins | H1N1 | Inhibiting RNA polymerase | [84] | |||
Aglaia | Silvestrol | H1N1 | Inhibitors of the cellular factor eEIF4A | [85] | |||
Mycale hentscheli | Pateamine A | H1N1 H3N2 | |||||
Curcuma longa L. | Curcumin | H1N1 H6N1 | Haemagglutinin inhibitors | 43 µM | 0.47 µM | 92.5 | [86] |
Cistus incanus | Polyphenol rich extract | A549 | 50 μg/mL | [87] | |||
Punica granatum | Punicalagin | H3N2 | [89] | ||||
Green tea | Epigallocatechin gallate | H1N1 | [90] | ||||
Blak tea | Theaflavin digallate | H1N1 |
Natural Source | Compound | HCV | Target | CC50 (µg/mL) | EC50-IC50 (µg/mL) | SI or TI | Reference |
---|---|---|---|---|---|---|---|
Trichilia dregeana | Root extract | HCV | Inhibition of viral entry | 16.6 | 37 | [94] | |
Detarium microcarpum | Stem bark extract | 1.42 | 211 | ||||
Phragmanthera capitata | Leave extract | 13.17 | |||||
Bupleurum kaoi | Saikosaponin B2 | 740.4 ± 28.35 µM | 16.13 ± 2.41 µM | 45.9 | [95] | ||
Bupleurum kaoi | Methanolic extract | 16.82 ± 1.89 | 215.4 ± 10.7 | 12.8 | |||
Anthocyanidin | Delphinidin | 3.7 ± 0.8 μM | [96] | ||||
Alloeocomatella polycladia | Ethyl acetate- soluble fraction | Suppression of the helicase activity of HCV NS3 | 11.7 ± 0.7 | [97] | |||
Fusarium equiseti | Crude extracts | Inhibition of HCV NS3/4A protease | 19–77 µM | [98] | |||
Eclipta alba | Aqueous extract | Inhibition of HCV NS5B replicase activity | 11 | [99] | |||
Taraxacum officinale | Flavonoids | [100] | |||||
Swietenia macrophylla | 3-hydroxy caruilignan C | Reduction of HCV protein and HCV- RNA levels | 10.5 ± 1.2μM | [101] | |||
Entada africana | Methylene chloride-methanol (MCM) stem bark crude extract | Broad antiviral activity | 453 ± 0.00117 | [102] | |||
Grape seed | Phenolic compounds | Suppression of HCV- induced Cox-2 | 7.5 ± 0.3 | [104] | |||
Flavanone | Naringenin | Release/Assembly | 109 μM | [107] |
Natural Source | Compound | Picornaviruses | Target | CC50 (µg/mL) | EC50-IC50 (µg/mL) | SI | Reference |
---|---|---|---|---|---|---|---|
Lagerstroemia speciosa L. | Orobol 7-O-d-glucoside (O7G) | Human rhinovirus A Human rhinovirus B | Broad spectrum antiviral activity | 100 | 0.58-8.80 | 12 | [109] |
Ocimum basilicum | Crude aqueous extracts | Coxsackievirus B1 Enterovirus 71 | 1469.3 | 105.7 ± 2.6 200.2 ± 3.2 | 13.9 7.3 | [61] | |
Ocimum basilicum | Ethanolic extracts | Coxsackievirus B1 Enterovirus 71 | 684.8 | 146.3 ± 2.9 198.9 ± 1.8 | 4.7 3.4 | ||
Woodfordia fruticosa | Gallic acid | Enterovirus 71 | 100 | 0.76 | 132 | [110] | |
Raoulia australis | Raoulic acid | Human rhinovirus 2 Human rhinovirus 3 Coxsackievirus B3 Coxsackievirus B4 Enterovirus 71 | 201.78 65.86 | 0.1 0.19 0.33 0.40 0.1 | [111,112] | ||
Ocimum basilicum | Ursolic acid | Coxsackievirus B1 Enterovirus 71 | Targets viral structures and inhibits viral infection and replication process | 100.5 | 0.4 ± 0.1 0.5 ± 0.2 | 251 201 | [61] |
Sylibum marianum | Silymarin | Enterovirus 71 | 160.20 ± 1.56 | 7.99 ± 3.0 | 20.05 | [113] | |
Macaranga barteri | DCM fraction | Echoviruses E7 Echoviruses E19 | 0.18 | 7.54 × 10−6 1.75 × 10−6 | 19.9 8581.24 | [114] | |
Syzygium brazzavillense | Aqueous extract | Coxsackievirus B4 | 2800 | 0.8 | [116] | ||
Rheum palmatum | Ethanol extract | Coxsackievirus B3 | 4 | 10 | [117] | ||
Lagerstroemia speciosa L. | Quercetin-7-glucoside (Q7G) | Human rhinovirus 2 | >100 | 4.85–0.59 | >20.62 | [118] | |
Salvia miltiorrhiza | Rosmarinic acid | Enterovirus A71 | 327.68 ± 14.43 | 31.57–114 | 2.87–10.36 | [119] | |
Green tea | Epigallocatechin-3-gallate (EGCG) | Hepatitis virus A | [130] | ||||
Vitis vinifera | Grape seed extract (GSE) | Hepatitis virus A | [131,132] | ||||
Lagerstroemia speciosa L. | Tannin ellagic acid | Human rhinovirus 2 Human rhinovirus 3 Human rhinovirus 4 | Targets host cellular factors | >100 | 38 ± 3.2 31 ± 5.2 29 ± 2.5 | >2.6 >3.2 >3.4 | [120] |
Bupleurum kaoi | Roots extract | Coxsackievirus B1 | 883.56 | 50.93 | [121] | ||
Mix of seven medicinal herbs | Xiao chai hu tang | Coxsackievirus B1 | 945.75 | 50.93 | 18.92 | [122] | |
Ornithogalum saundersiae | Orsaponin (OSW-1) | Enterovirus 71, Coxsackievirus A21 Human rhinovirus 2 | >100 nM | 2.4–9.4 nM | [123,124] | ||
Panax ginseng | Ginsenosides | Hepatitis virus A | [133] |
Natural Source | Compound | Noroviruses | Target | CC50 | EC50-IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Morus alba L | Juice | MNV-1 FCV-F9 | Inhibiting internalization and replication | >0.1% >2.5% | 0.005% 0.25% | 20 10 | [137] |
Camellia sinensis | Epigallocatechin gallate | FCV-F9 | 12 mg/mL | [139] | |||
Rubus coreanus | Juice | MNV-1 | [138] | ||||
Origanum vulgare | Carvacrol | MNV-1 | [140] | ||||
Diospyros kaki | Persimmon tannin | HuNoV | Reduce genome replication | [141] |
Natural Source | Compound | Coronaviruses | Target | CC50 | EC50-IC50 | SI | Reference |
---|---|---|---|---|---|---|---|
Rheum officinalis | Emodin | SARSCoV | Targeting viral proteins | 200 μM | [152] | ||
Panax ginseng | Ginsenoside-Rb1 | SARSCoV | [153] | ||||
African trifolium | Secomet-V | SARSCoV | [154] | ||||
Galla chinensis | Tetra-O-galloyl-β-D-glucose | SARSCoV | 1.08 mM | 4.5 μM | 240 | [155] | |
Bupleurum chinense | Saikosaponin B2 | HCoV-229E | 383.3 ± 0.2 µmol/L | 1.7 ± 0.1 µmol/L | 221.9 | [156] | |
Stephaniae tetrandrae | Bisbenzylisoquinoline alkaloids-tetrandrin | HCoVOC43 | 14.51 μM | 295.6 nM | >40 | [157] | |
Ginkgo biloba | Quercetin | SARS-CoV-2 | 3CLpro inhibitory activity | [158] | |||
Triterygium regelii | Triterpenes | SARS-CoV-2 | 2.6–10.3 μM | [159] | |||
Black tea | 3-isotheaflavin-3-gallate (TF2B) and theaflavin-3,3’-digallate (TF3) | SARS-CoV-2 | ≤10 μM | [161] | |||
Isatis indigota | Sinigrin Hesperetin | SARS-CoV | >10,000 μM 2718 μM | 217 μM 8.3 μM | [162] | ||
Curcuma longa L. | Curcumin | SARS-CoV-2 | Broad-spectrum activity | [160,163] | |||
Aglaia genus | Silvestrol | MERS-CoV HCoV-229E | Inhibitors of viral mRNA translation | 1.3 nM 3 nM | [166] | ||
CR-31-B (-) | HCoV-229E SARS-CoV-2 | [167,168] | |||||
Isis hippuris | Hippuristanol | HCoV-229E | [169] | ||||
Aplidium albicans | Plitidepsin | SARS-CoV-2 | 1.99 −> 200 nM | 0.70–1.62 nM | [173] |
Natural Source | Compound | Flavivirus | Target | CC50 (µg/mL) | EC50-IC50 (µg/mL) | SI | Reference |
---|---|---|---|---|---|---|---|
Spondia mombin Spondia tuberosa | Rutin Quercetin | DENV-2 | Broad spectrum antiviral activity | <1000 | 362.68 500 | 2.75 2 | [177] |
Epigallocatechin Epigallocatechin gallate Delphinidin chloride | WNV DENV ZIKV | [178] | |||||
Mimosa scabrella Leucaena leucocephala | Galactomannans | YFV DENV-1 | [179] | ||||
Uncaria tomentosa | Xindole alkaloids | DENV-2 | Immunomodulatory effects | [180] | |||
Baicalein | DENV and JEV | Inhibits the virus attachment | 115.2 ± 0.2 | 3.4–5.8 | 1.3–33.4 | [181] | |
Quercetin | DENV-2 | 28.9–35.7 | 7.07–8.74 | [182] | |||
Azadirachta indica | Aqueous extract | DENV-2 | [183] | ||||
Curcuma longa | Curcumin | ZIKV DENV-2 | [184,185] | ||||
Aglaia | Silvestrol | ZIKV | Target the cellular factor eIF4A | [186] | |||
Natural source | Compound | Togaviruses | Target | CC50 (µg/mL) | IC50 (µg/mL) | SI | Reference |
Green tea | Epigallocatechin gallate | CHIKV | Inhibits the virus attachment | 6.54 | [190] | ||
Baicalein Fisetin Quercetagetin | CHIKV | 1.891 8.444 13.85 | [191] | ||||
Berberidaceae | Berberine | CHIKV | Inhibits viral protein synthesis and viral replication | [192] | |||
Natural source | Compound | Filoviruses | Target | CC50 (µg/mL) | IC50 (µg/mL) | SI | Reference |
Eugenol | EBOV | Broad spectrum antiviral activity | 1.3 μM | [197] | |||
p-anisaldehyde | EBOV | 2.8 μM | |||||
Aglaia | Silvestrol | EBOV | Shutdown of viral protein synthesis | [198] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021, 13, 828. https://doi.org/10.3390/v13050828
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses. 2021; 13(5):828. https://doi.org/10.3390/v13050828
Chicago/Turabian StyleMusarra-Pizzo, Maria, Rosamaria Pennisi, Ichrak Ben-Amor, Giuseppina Mandalari, and Maria Teresa Sciortino. 2021. "Antiviral Activity Exerted by Natural Products against Human Viruses" Viruses 13, no. 5: 828. https://doi.org/10.3390/v13050828
APA StyleMusarra-Pizzo, M., Pennisi, R., Ben-Amor, I., Mandalari, G., & Sciortino, M. T. (2021). Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses, 13(5), 828. https://doi.org/10.3390/v13050828