Avian Influenza H7N9 Virus Adaptation to Human Hosts
Abstract
:1. Introduction
2. Results
2.1. Datasets of H7N9 Influenza Virus Sequences and Scope of the Analysis
2.2. Protein Sequence Diversity of the 2014 Avian and Human H7N9 Virus Dataset
2.3. Quantitative Analysis of Avian and Human H7N9 Virus Protein Sequence Diversity of the 2014 Dataset
2.4. Avian H7N9 Major Variant Substitutions as Human H7N9 Virus Index Sequences
2.5. Avian Host Source of Human H7N9 Influenza Viruses
2.6. Substitutions Specific to the Human H7N9 Viruses (H2H)
2.7. Continued Evolution of the Human H7N9 Viruses (2017 Dataset)
2.8. A2H Substitutions between H7N9 and H9N2
3. Discussion
4. Material and Methods
4.1. Data Collection and Processing
4.2. Shannon’s Nonamer Entropy
4.3. Quantitative Analyses of Diversity Motifs
4.4. Substitutions Specific to the Human H7N9 Viruses (H2H)
4.5. Comparison of the 109 A2H Substitutions between 2014 and 2017 H7N9 Datasets, and 2020 H9N2 Dataset
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26, D49–D53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.A. What is a quasispecies? Trends Ecol. Evol. 1992, 7, 118–121. [Google Scholar] [CrossRef]
- Steinhauer, D.A. Influenza: Pathways to human adaptation. Nature 2013, 499, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Fitch, W.M.; Leiter, J.M.; Li, X.Q.; Palese, P. Positive Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. USA 1991, 88, 4270–4274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyeki, T.M.; Peiris, M. Novel Avian Influenza A Virus Infections of Humans. Infect. Dis. Clin. North Am. 2019, 33, 907–932. [Google Scholar] [CrossRef]
- Wendel, I.; Matrosovich, M.; Klenk, H.D. SnapShot: Evolution of human influenza A viruses. Cell Host Microbe 2015, 17, 416.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morens, D.M.; Fauci, A.S. The 1918 influenza pandemic: Insights for the 21st century. J. Infect. Dis. 2007, 195, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.W. A history of influenza. J. Appl. Microbiol. 2001, 91, 572–579. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, R.; Zhang, W.; Qi, J.; Song, H.; Liu, S.; Wang, H.; Wang, M.; Xiao, H.; Fu, L.; et al. Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Rep. 2019, 29, 2217–2228.e5. [Google Scholar] [CrossRef] [Green Version]
- Poovorawan, Y.; Pyungporn, S.; Prachayangprecha, S.; Makkoch, J. Global alert to avian influenza virus infection: From H5N1 to H7N9. Pathog. Glob. Health 2013, 107, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 2013, 368, 1888–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, T.T.-Y.; Wang, J.; Shen, Y.; Zhou, B.; Duan, L.; Cheung, C.-L.; Ma, C.; Lycett, S.J.; Leung, C.Y.-H.; Chen, X.; et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013, 502, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, D.; Gao, R.; Zhao, B.; Song, J.; Qi, X.; Zhang, Y.; Shi, Y.; Yang, L.; Zhu, W.; et al. Biological features of novel avian influenza A (H7N9) virus. Nature 2013, 499, 500–503. [Google Scholar] [CrossRef]
- Watanabe, T.; Kiso, M.; Fukuyama, S.; Nakajima, N.; Imai, M.; Yamada, S.; Murakami, S.; Yamayoshi, S.; Iwatsuki-Horimoto, K.; Sakoda, Y.; et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature 2013, 501, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, G.; Macken, C.A.; Kawaoka, Y. Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J. Virol. 2014, 88, 4877–4896. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.T.-Y.; Zhou, B.; Wang, J.; Chai, Y.; Shen, Y.; Chen, X.; Ma, C.; Hong, W.; Chen, Y.; Zhang, Y.; et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 2015, 522, 102–105. [Google Scholar] [CrossRef]
- Yang, Z.F.; Mok, C.K.P.; Liu, X.Q.; Li, X.B.; He, J.F.; Da Guan, W.; Xu, Y.H.; Pan, W.Q.; Chen, L.Y.; Lin, Y.P.; et al. Clinical, virological and immunological features from patients infected with re-emergent avian-origin human H7N9 influenza disease of varying severity in Guangdong province. Sci. Transl. Med. 2015, 7, e0117846. [Google Scholar] [CrossRef] [Green Version]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Pandemic Influenza Viruses-Hoping for the Road Not Taken. N. Engl. J. Med. 2013, 368, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Uyeki, T.M.; Cox, N.J. Global Concerns Regarding Novel Influenza A (H7N9) Virus Infections. N. Engl. J. Med. 2013, 368, 1–3. [Google Scholar] [CrossRef]
- Cui, L.; Liu, D.; Shi, W.; Pan, J.; Qi, X.; Li, X.; Guo, X.; Zhou, M.; Li, W.; Li, J.; et al. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat. Commun. 2014, 5, 3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Watanabe, S.; Maher, E.A.; Neumann, G.; Kawaoka, Y. Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol. 2014, 22, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, G.; Kawaoka, Y. Transmission of influenza A viruses. Virology 2015, 479–480, 234–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Asian Lineage Avian Influenza A (H7N9) Virus. Centers Dis. Control Prev. 2018. [Google Scholar]
- Bisset, A.T.; Hoyne, G.F. Evolution and Adaptation of the Avian H7N9 Virus into the Human Host. Microorganisms 2020, 8, 778. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, L.; Li, R.; Chen, Y.; Zhang, Z.; Xiong, C.; Zhao, G.; Jiang, Q. Is a highly pathogenic avian influenza virus H5N1 fragment recombined in PB1 the key for the epidemic of the novel AIV H7N9 in China, 2013? Int. J. Infect. Dis. 2016, 43, 85–89. [Google Scholar] [CrossRef] [Green Version]
- De Jong, R.M.C.; Stockhofe-Zurwieden, N.; Verheij, E.S.; de Boer-Luijtze, E.A.; Ruiter, S.J.M.; de Leeuw, O.S.; Cornelissen, L.A.H.M. Rapid emergence of a virulent PB2 E627K variant during adaptation of highly pathogenic avian influenza H7N7 virus to mice. Virol. J. 2013, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mok, C.K.P.; Lee, H.H.Y.; Lestra, M.; Nicholls, J.M.; Chan, M.C.W.; Sia, S.F.; Zhu, H.; Poon, L.L.M.; Guan, Y.; Peiris, J.S.M. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J. Virol. 2014, 88, 3568–3576. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Guo, J.; Li, L.; Chang, C.; Li, Y.; Bian, C.; Xu, K.; Chen, H.; Sun, B. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J. Gen. Virol. 2014, 95, 779–786. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Dekkers, J.; Wickramasinghe, I.N.A.; Verheije, M.H.; Rottier, P.J.M.; van Kuppeveld, F.J.M.; de Vries, E.; de Haan, C.A.M. Adaptation of novel H7N9 influenza A virus to human receptors. Sci. Rep. 2013, 3, 3058. [Google Scholar] [CrossRef] [Green Version]
- Tharakaraman, K.; Jayaraman, A.; Raman, R.; Viswanathan, K.; Stebbins, N.W.; Johnson, D.; Shriver, Z.; Sasisekharan, V.; Sasisekharan, R. Glycan receptor binding of the influenza A Virus H7N9 hemagglutinin. Cell 2013, 153, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
- Miotto, O.; Heiny, A.T.; Tan, T.W.; August, J.T.; Brusic, V. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics 2008, 9 (Suppl. S1), 1–18. [Google Scholar] [CrossRef] [Green Version]
- Miotto, O.; Heiny, A.T.; Albrecht, R.; García-Sastre, A.; Tan, T.W.; August, J.T.; Brusic, V. Complete-proteome mapping of human influenza A adaptive mutations: Implications for human transmissibility of zoonotic strains. PLoS ONE 2010, 5, e9025. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Heiny, A.T.; Miotto, O.; Srinivasan, K.N.; Khan, A.M.; Zhang, G.L.; Brusic, V.; Tan, T.W.; August, J.T. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS ONE 2007, 2, e1190. [Google Scholar] [CrossRef]
- Khan, A.M.; Miotto, O.; Nascimento, E.J.M.; Srinivasan, K.N.; Heiny, A.T.; Zhang, G.L.; Marques, E.T.; Tan, T.W.; Brusic, V.; Salmon, J.; et al. Conservation and variability of dengue virus proteins: Implications for vaccine design. PLoS Negl. Trop. Dis. 2008, 2, e272. [Google Scholar] [CrossRef]
- De Graaf, M.; Fouchier, R.A.M. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 2014, 33, 823–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, N.; Li, X.; Ren, R.; Wang, D.; Zhou, S.; Greene, C.M.; Song, Y.; Zhou, L.; Yang, L.; Davis, C.T.; et al. Assessing Change in Avian Influenza A(H7N9) Virus Infections During the Fourth Epidemic—China, September 2015–August 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 1390–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Yang, L.; Zhu, W.; Zhang, Y.; Zou, S.; Bo, H.; Gao, R.; Dong, J.; Huang, W.; Guo, J.; et al. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China. J. Virol. 2016, 90, 5561–5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzt, S.; Petit, I.; Burmeister, W.P.; Ruigrok, R.W.H.; Baudin, F. Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res. 2004, 99, 115–119. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef] [PubMed]
- Aragón, T.; de la Luna, S.; Novoa, I.; Carrasco, L.; Ortín, J.; Nieto, A. Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus. Mol. Cell. Biol. 2000, 20, 6259–6268. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Zheng, H.; Muster, T.; Palese, P.; Beg, A.A.; García-Sastre, A. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J. Virol. 2000, 74, 11566–11573. [Google Scholar] [CrossRef] [Green Version]
- Yewdell, J.; García-Sastre, A. Influenza virus still surprises. Curr. Opin. Microbiol. 2002, 5, 414–418. [Google Scholar] [CrossRef]
- Du, W.; Guo, H.; Nijman, V.S.; Doedt, J.; van der Vries, E.; van der Lee, J.; Li, Z.; Boons, G.J.; van Kuppeveld, F.J.M.; de Vries, E.; et al. The 2nd sialic acid-binding site of influenza a virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog. 2019, 15, e1007860. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; McBride, R.; Dortmans, J.C.F.M.; Peng, W.; Bakkers, M.J.G.; de Groot, R.J.; van Kuppeveld, F.J.M.; Paulson, J.C.; de Vries, E.; de Haan, C.A.M. Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Kile, J.C.; Ren, R.; Liu, L.; Greene, C.M.; Roguski, K.; Iuliano, A.D.; Jang, Y.; Jones, J.; Thor, S.; Song, Y.; et al. Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic—China, October 1, 2016–August 7, 2017. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 928–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 2017, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Higgins, D.G. Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 2014, 1079, 105–116. [Google Scholar] [PubMed]
- Koo, Q.Y.; Khan, A.M.; Jung, K.-O.O.; Ramdas, S.; Miotto, O.; Tan, T.W.; Brusic, V.; Salmon, J.; August, J.T. Conservation and variability of West Nile virus proteins. PLoS ONE 2009, 4, e5352. [Google Scholar] [CrossRef]
- Hu, Y.; Tan, P.T.; Tan, T.W.; August, J.T.; Khan, A.M. Dissecting the Dynamics of HIV-1 Protein Sequence Diversity. PLoS ONE 2013, 8, e59994. [Google Scholar] [CrossRef]
- Sjaugi, M.F.; Tan, S.; Abd Raman, H.S.; Lim, W.C.; Nik Mohamed, N.E.; August, J.; Khan, A. g-FLUA2H: A web-based application to study the dynamics of animal-to-human mutation transmission for influenza viruses. BMC Med. Genom. 2015, 8, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.M.; Miotto, O.; Heiny, A.T.; Salmon, J.; Srinivasan, K.N.; Nascimento, E.J.M.; Marques, E.T.A.; Brusic, V.; Tan, T.W.; August, J.T. A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell. Immunol. 2006, 244, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thissen, D.; Steinberg, L.; Kuang, D. Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons. J. Educ. Behav. Stat. 2002, 27, 77–83. [Google Scholar] [CrossRef]
- Sigrist, C.J.A.; Cerutti, L.; De Castro, E.; Langendijk-Genevaux, P.S.; Bulliard, V.; Bairoch, A.; Hulo, N. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2009, 38, D161–D166. [Google Scholar] [CrossRef] [Green Version]
- De Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N.; de Castro, E.; Sigrist, C.J.A.; et al. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, 362–365. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [Green Version]
RNA Segment † | Proteins * | No. of Sequences || | ||||
---|---|---|---|---|---|---|
Protein ‡ | Abbreviation | Amino Acids | Nonamer Positions § | Avian | Human | |
1 | Polymerase basic 2 | PB2 | 759 | 751 | 84 | 43 |
2 | Polymerase basic 1 | PB1 | 758 | 749 | 85 | 36 |
PB1-F2 | 90 | 82 | 77 | 30 | ||
3 | Polymerase acidic | PA | 716 | 708 | 84 | 36 |
PA-X | 252 | 244 | 80 | 36 | ||
4 | Hemagglutinin | HA | 560 | 552 | 101 | 53 |
5 | Nucleocapsid | NP | 498 | 490 | 86 | 37 |
6 | Neuraminidase | NA | 470 | 462 | 92 | 56 |
7 | Matrix 1 | M1 | 252 | 244 | 86 | 38 |
Matrix 2 | M2 | 97 | 89 | 84 | 38 | |
8 | Non-structural 1 | NS1 | 230 | 222 | 87 | 38 |
Non-structural 2 | NS2 | 121 | 113 | 85 | 38 | |
Total | 4706 | 1031 | 479 |
RNA Segment | Proteins | No. of Sequences || | ||
---|---|---|---|---|
Protein | Abbreviation | Avian | Human | |
1 | Polymerase basic 2 | PB2 | 518 | 805 |
2 | Polymerase basic 1 | PB1 | 519 | 798 |
PB1-F2 | 503 | 790 | ||
3 | Polymerase acidic | PA | 518 | 798 |
PA-X | 485 | 90 | ||
4 | Hemagglutinin | HA | 634 | 823 |
5 | Nucleocapsid | NP | 520 | 798 |
6 | Neuraminidase | NA | 623 | 823 |
7 | Matrix 1 | M1 | 523 | 809 |
Matrix 2 | M2 | 522 | 810 | |
8 | Non-structural 1 | NS1 | 536 | 808 |
Non-structural 2 | NS2 | 535 | 809 | |
Total | 6436 | 8961 |
Position † | Nonamer Sequence (Avian & Human) ‡ | Avian Virus Sequences ^ | Human Virus Sequences ^ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Sequences * | Motif § (Incidence, %) | Avian Host Source of Isolation (%) # | Number of Sequences * | Motif § (Incidence, %) | Geographical Area (%) | |||||||
Chicken | Duck (Domestic) | Wild Duck | Turkey | China | Hong Kong | Taiwan | ||||||
1–9 | MNTQILVFA | 92 | I (75%) | 36 | 18 | 11 | - | 40 | I (100%) | 98 | 3 | - |
......ALI | Ma (16%) | - | - | - | 9 | X | - | - | - | |||
..I...... | Mi (2%) | - | - | - | - | X | - | - | - | |||
......A.I | Mi (2%) | - | - | - | - | X | - | - | - | |||
........I | Mi (2%) | - | - | - | 2 | X | - | - | - | |||
......TLI | U (1%) | - | - | - | - | X | - | - | - | |||
....V.... | U (1%) | - | 1 | - | - | X | - | - | - | |||
227–235 | GARPQVNGQ | 99 | I (63%) | 5 | 16 | 12 | 10 | 45 | X | - | - | - |
........L | Ma (35%) | 28 | 2 | - | - | I (93%) | 87 | 2 | 4 | |||
.T....... | Mi (2%) | - | - | - | - | X | - | - | - | |||
..G.....L | X | - | - | - | - | U (2%) | 2 | - | - | |||
........I | X | - | - | - | - | U (2%) | 2 | - | - | |||
....P...L | X | - | - | - | - | U (2%) | 2 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Sjaugi, M.F.; Fong, S.C.; Chong, L.C.; Abd Raman, H.S.; Nik Mohamed, N.E.; August, J.T.; Khan, A.M. Avian Influenza H7N9 Virus Adaptation to Human Hosts. Viruses 2021, 13, 871. https://doi.org/10.3390/v13050871
Tan S, Sjaugi MF, Fong SC, Chong LC, Abd Raman HS, Nik Mohamed NE, August JT, Khan AM. Avian Influenza H7N9 Virus Adaptation to Human Hosts. Viruses. 2021; 13(5):871. https://doi.org/10.3390/v13050871
Chicago/Turabian StyleTan, Swan, Muhammad Farhan Sjaugi, Siew Chinn Fong, Li Chuin Chong, Hadia Syahirah Abd Raman, Nik Elena Nik Mohamed, Joseph Thomas August, and Asif M. Khan. 2021. "Avian Influenza H7N9 Virus Adaptation to Human Hosts" Viruses 13, no. 5: 871. https://doi.org/10.3390/v13050871
APA StyleTan, S., Sjaugi, M. F., Fong, S. C., Chong, L. C., Abd Raman, H. S., Nik Mohamed, N. E., August, J. T., & Khan, A. M. (2021). Avian Influenza H7N9 Virus Adaptation to Human Hosts. Viruses, 13(5), 871. https://doi.org/10.3390/v13050871