Comparative Pathogenesis, Genomics and Phylogeography of Mousepox
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. In Vivo Experiments
2.3. Electron Microscopy
2.4. Genome Sequencing and Assembly
2.5. Genome Annotation, Analysis and Comparison
2.6. Bayesian Phylogeography Analysis
3. Results
3.1. Different Virulence Patterns and Foot Swelling Elicited by ECTV Isolates and Strains in BALB/cJ Mice
3.2. Only ECTV-H and ECTV-HE Produce ATI Bodies with Embedded Virions
3.3. Genomic and Phylogeographic Analyses Unveil Two Major Clades within the ECTV Isolates and Strains
3.4. ECTV-HE Evolved from ECTV-H through a Genomic Re-Organization
3.5. Identification of Putative Virulence and Anti-Inflammatory Proteins
3.6. The Genome of ECTV-H Strain Encodes a Full-Length P4c Protein Required for Viral Inclusion into the ATIs
3.7. In Vivo Dissemination and Transmission of ECTV-M Is More Efficient Than ECTV-H
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constantin, C.M.; Martinelli, A.M.; Bonney, E.A.; Strickland, O.L. Smallpox: An update for nurses. Biol. Res. Nurs. 2003, 4, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Downie, A.W. Jenner’s cowpox inoculation. Br. Med. J. 1951, 2, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paran, N.; Sutter, G. Smallpox vaccines: New formulations and revised strategies for vaccination. Hum. Vaccines 2009, 5, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Fenner, F.; Wittek, R.; Dumbell, K.R. The Orhopoxviruses; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Henderson, D.A. Smallpox Virus Destruction and the Implications of a New Vaccine. Biosecur. Bioterror. Biodef. Strat. Pract. Sci. 2011, 9, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Beer, E.M.; Rao, V.B. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl. Trop. Dis. 2019, 13, e0007791. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.D.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses 2020, 13, 43. [Google Scholar] [CrossRef]
- Marchal, J. Infectious ectromelia. A hitherto undescribed virus disease of mice. J. Pathol. Bacteriol. 1930, 33, 713–728. [Google Scholar] [CrossRef]
- Buller, R.M. Mousepox: A Small Animal Model for Biodefense Research. Appl. Biosaf. 2004, 9, 10–19. [Google Scholar] [CrossRef]
- Sigal, L.J. The Pathogenesis and Immunobiology of Mousepox. Adv. Immunol. 2016, 129, 251–276. [Google Scholar] [CrossRef]
- Lipman, N.S.; Nguyen, H.; Perkins, S. Mousepox: A threat to mouse colonies. Lab. Anim. 1999, 33, 304. [Google Scholar] [CrossRef] [Green Version]
- Fenner, F. Mousepox (infectious ectromelia): Past, present, and future. Lab. Anim. Sci. 1981, 31, 553–559. [Google Scholar]
- Esteban, D.J.; Buller, R.M.L. Ectromelia virus: The causative agent of mousepox. J. Gen. Virol. 2005, 86, 2645–2659. [Google Scholar] [CrossRef] [PubMed]
- Wallace, G.D. The threat of mouse pox. J. Immunol. 1981, 126, 1648. [Google Scholar] [CrossRef]
- Fenner, F. Studies in mousepox, infectious ectromelia of mice; a comparison of the virulence and infectivity of three strains of ectromelia virus. Aust. J. Exp. Biol. Med. Sci. 1949, 27, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Sith, V.P.; Alcami, A. Expression of Secreted Cytokine and Chemokine Inhibitors by Ectromelia Virus. J. Virol. 2000, 74, 8460–8471. [Google Scholar] [CrossRef] [Green Version]
- Andrewes, C.H.; Elford, W.J. Infections ectromelia; experiments on interference and immunization. Br. J. Exp. Pathol. 1947, 28, 278–285. [Google Scholar] [PubMed]
- Fenner, F. Studies in mousepox, infectious ectromelia of mice; quantitative investigations on the spread of virus through the host in actively and passively immunized animals. Aust. J. Exp. Biol. Med. Sci. 1949, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fenner, F. The Pathogenesis of the Acute Exanthems an Interpretation Based on Experimental Investigations with Mousepox (Infectious Ectromelia of Mice). Lancet 1948, 252, 915–920. [Google Scholar] [CrossRef]
- Fenner, F. Studies in infectious ectromelia in mice; natural transmission; the portal of entry of the virus. Aust. J. Exp. Biol. Med. Sci. 1947, 25, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Fenner, F. Studies in infectious ectromelia in mice (mouse pox) natural transmission; elimination of the virus. Aust. J. Exp. Biol. Med. Sci. 1947, 25, 327–335. [Google Scholar] [CrossRef]
- Fenner, F.; Fenner, E.M. Studies in mousepox, infectious ectromelia of mice; closed epidemics in herds of normal and vaccinated mice. Aust. J. Exp. Biol. Med. Sci. 1949, 27, 19–30. [Google Scholar] [CrossRef]
- Fenner, F. Studies in mousepox (Infectious ectromelia of mice). J. Immunol. 1949, 63, 341–373. [Google Scholar]
- Mahnel, H. Disinfection for viruses. Zent. Veterinärmedizin Reihe B J. Vet. Med. Ser. B 1983, 30, 81–96. [Google Scholar] [CrossRef]
- Osterrieder, N.; Meyer, H.; Pfeffer, M. Characterization of the gene encoding the A-type inclusion body protein of mousepox virus. Virus Genes 1994, 8, 125–135. [Google Scholar] [CrossRef] [PubMed]
- de Faundez, I.S.; Niemialtowski, M. Electron microscopy, plaque assay and preliminary serological characterization of three ectromelia virus strains isolated in Poland in the period 1986–1988. Arch. Virol. 1990, 114, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Mavian, C.; López-Bueno, A.; Alcamí, A. Genome Sequence of WAU86/88-1, a New Variant of Vaccinia Virus Lister Strain from Poland. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichihashi, Y.; Matsumoto, S. Studies on the nature of marchal bodies (A-type inclusion) during ectromelia virus infection. Virology 1966, 29, 264–275. [Google Scholar] [CrossRef]
- Fenner, F. Mouse-pox; infectious ectromelia of mice; a review. J. Immunol. 1949, 63, 341–373. [Google Scholar]
- Trentin, J.J.; Briody, B.A. An outbreak of mouse-pox (infectious estromelia) in the United States. II. Definitive diagnosis. Science 1953, 117, 227–228. [Google Scholar] [CrossRef]
- Allen, A.M.; Clarke, G.L.; Ganaway, J.R.; Lock, A.; Werner, R.M. Pathology and diagnosis of mousepox. Lab. Anim. Sci. 1981, 31, 599–608. [Google Scholar]
- Small, J.D.; New, A.E. Prevention and control of mousepox. Lab. Anim. Sci. 1981, 31, 616–629. [Google Scholar] [PubMed]
- Labelle, P.; Hahn, N.E.; Fraser, J.K.; Kendall, L.V.; Ziman, M.; James, E.; Shastri, N.; Griffey, S.M. Mousepox Detected in a Research Facility: Case Report and Failure of Mouse Antibody Production Testing to Identify Ectromelia Virus in Contaminated Mouse Serum. Comp. Med. 2009, 59, 180–186. [Google Scholar] [PubMed]
- Mavian, C.; López-Bueno, A.; Bryant, N.A.; Seeger, K.; Quail, M.A.; Harris, D.; Barrell, B.; Alcami, A. The genome sequence of ectromelia virus Naval and Cornell isolates from outbreaks in North America. Virology 2014, 462–463, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Dick, E.J.; Kittell, C.L.; Meyer, H.; Farrar, P.L.; Ropp, S.L.; Esposito, J.J.; Buller, R.M.; Neubauer, H.; Kang, Y.H.; McKee, A.E. Mousepox outbreak in a laboratory mouse colony. Lab. Anim. Sci. 1996, 46, 602–611. [Google Scholar]
- Lipman, N.S.; Perkins, S.; Nguyen, H.; Pfeffer, M.; Meyer, H. Mousepox resulting from use of ectromelia virus-contaminated, imported mouse serum. Comp. Med. 2000, 50, 426–435. [Google Scholar] [PubMed]
- Mendez-Rios, J.D.; Martens, C.A.; Bruno, D.P.; Porcella, S.F.; Zheng, Z.-M.; Moss, B. Genome Sequence of Erythromelalgia-Related Poxvirus Identifies it as an Ectromelia Virus Strain. PLoS ONE 2012, 7, e34604. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, H.; Pfeffer, M.; Meyer, H. Specific detection of mousepox virus by polymerase chain reaction. Lab. Anim. 1997, 31, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Groppel, K. The occurrence of ectromelia (mousepox) in wild mice. Arch. Exp. Vet. 1962, 16, 243–278. [Google Scholar]
- Carroll, D.S.; Emerson, G.L.; Li, Y.; Sammons, S.; Olson, V.; Frace, M.; Nakazawa, Y.; Czerny, C.P.; Tryland, M.; Kolodziejek, J.; et al. Chasing Jenner’s vaccine: Revisiting cowpox virus classification. PLoS ONE 2011, 6, e23086. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Danila, M.I.; Feng, Z.; Buller, R.L.; Wang, C.; Han, X.; Lefkowitz, E.J.; Upton, C. The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 2003, 317, 165–186. [Google Scholar] [CrossRef] [Green Version]
- Alejo, A.; Saraiva, M.; Ruiz-Argüello, M.B.; Viejo-Borbolla, A.; de Marco, M.F.; Salguero, F.J.; Alcami, A. A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants. PLoS ONE 2009, 4, e5175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, D.; Xu, R.-H.; Remakus, S.; Krouse, T.E.; Truckenmiller, M.E.; Thapa, R.J.; Balachandran, S.; Alcamí, A.; Norbury, C.C.; Sigal, L.J. Crosstalk between the Type 1 Interferon and Nuclear Factor Kappa B Pathways Confers Resistance to a Lethal Virus Infection. Cell Host Microbe 2013, 13, 701–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Buuren, N.; Burles, K.; Schriewer, J.; Mehta, N.; Parker, S.; Buller, R.M.; Barry, M. EVM005: An ectromelia-encoded protein with dual roles in NF-kappaB inhibition and virulence. PLoS Pathog. 2014, 10, e1004326. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.-H.; Cohen, M.; Tang, Y.; Lazear, E.; Whitbeck, J.C.; Eisenberg, R.J.; Cohen, G.H.; Sigal, L.J. The orthopoxvirus type I IFN binding protein is essential for virulence and an effective target for vaccination. J. Exp. Med. 2008, 205, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Alejo, A.; Ruiz-Argüello, M.B.; Pontejo, S.M.; de Marco, M.D.M.; Saraiva, M.; Hernaez, B.; Alcamí, A. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Myskiw, C.; Arsenio, J.; Hammett, C.; van Bruggen, R.; Deschambault, Y.; Beausoleil, N.; Babiuk, S.; Cao, J. Comparative Analysis of Poxvirus Orthologues of the Vaccinia Virus E3 Protein: Modulation of Protein Kinase R Activity, Cytokine Responses, and Virus Pathogenicity. J. Virol. 2011, 85, 12280–12291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcamí, A.; Smith, G.L. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell 1992, 71, 153–167. [Google Scholar] [CrossRef]
- Symons, J.A.; Alcami, A.; Smith, G.L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 1995, 81, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, K.; Parkhill, J.; Crook, J.; Horsnell, T.; Rice, P.; Rajandream, M.-A.; Barrell, B. Artemis: Sequence visualization and annotation. Bioinformatics 2000, 16, 944–945. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Lam, T.T.; Carvalho, L.M.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Esposito, J.J.; Sammons, S.A.; Frace, A.M.; Osborne, J.; Olsen-Rasmussen, M.; Zhang, M.; Govil, D.; Damon, I.K.; Kline, R.; Laker, M.; et al. Genome Sequence Diversity and Clues to the Evolution of Variola (Smallpox) Virus. Science 2006, 313, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.R.; Tatem, A.J.; Johnson, J.A.; Alekseyenko, A.; Pybus, O.G.; Suchard, M.A.; Salemi, M. Testing Spatiotemporal Hypothesis of Bacterial Evolution Using Methicillin-Resistant Staphylococcus aureus ST239 Genome-wide Data within a Bayesian Framework. Mol. Biol. Evol. 2010, 28, 1593–1603. [Google Scholar] [CrossRef] [Green Version]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, P.N.; Jacoby, R.O.; Gras, L. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. IV. Studies with the Moscow strain. Arch. Virol. 1988, 100, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.; Bhatt, P. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II. Pathogenesis. Lab. Anim. Sci. 1987, 37, 16–22. [Google Scholar] [PubMed]
- Wallace, G.D.; Buller, R.M. Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6j, BALB/cByj and AKR/J inbred mice. Lab. Anim. Sci. 1985, 35, 41–46. [Google Scholar] [PubMed]
- Parker, S.; Siddiqui, A.M.; Oberle, C.; Hembrador, E.; Lanier, R.; Painter, G.; Robertson, A.; Buller, R.M. Mousepox in the C57BL/6 strain provides an improved model for evaluating anti-poxvirus therapies. Virology 2009, 385, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okeke, M.I.; Adekoya, O.A.; Moens, U.; Tryland, M.; Traavik, T.; Nilssen, Ø. Comparative sequence analysis of A-type inclusion (ATI) and P4c proteins of orthopoxviruses that produce typical and atypical ATI phenotypes. Virus Genes 2009, 39, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Smith, P.; Fallon, P.; Alcami, A. Inhibition of Type 1 Cytokine–mediated Inflammation by a Soluble CD30 Homologue Encoded by Ectromelia (Mousepox) Virus. J. Exp. Med. 2002, 196, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejo, A.; Ruiz-Arguello, M.B.; Ho, Y.; Smith, V.P.; Saraiva, M.; Alcami, A. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl. Acad. Sci. USA 2006, 103, 5995–6000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buller, R.M.; Chakrabarti, S.; Moss, B.; Fredricksont, T. Cell proliferative response to vaccinia virus is mediated by VGF. Virology 1988, 164, 182–192. [Google Scholar] [CrossRef]
- Wilton, B.A.; Campbell, S.; van Buuren, N.; Garneau, R.; Furukawa, M.; Xiong, Y.; Barry, M. Ectromelia virus BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3-based ubiquitin ligases. Virology 2008, 374, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Alcamía, A.; Symons, J.A.; Collins, P.D.; Williams, T.J.; Smith, G.L. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J. Immunol. 1950, 160, 624–633. [Google Scholar]
- Reading, P.; Symons, J.A.; Smith, G.L. A Soluble Chemokine-Binding Protein from Vaccinia Virus Reduces Virus Virulence and the Inflammatory Response to Infection. J. Immunol. 2003, 170, 1435–1442. [Google Scholar] [CrossRef]
- Kochneva, G.V.; Kolosova, I.; Lupan, T.A.; Sivolobova, G.F.; Yudin, P.V.; Grazhdantseva, A.A.; Ryabchikova, E.I.; Kandrina, N.Y.; Shchelkunov, S.N. Orthopoxvirus genes for Kelch-like proteins: III. Construction of Mousepox (ectromelia) virus variants with targeted gene deletions. Mol. Biol. 2009, 43, 567–572. [Google Scholar] [CrossRef]
- Burles, K.; van Buuren, N.; Barry, M. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFkappaB. Virology 2014, 468–470, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Amegadzie, B.Y.; Sisler, J.R.; Moss, B. Frame-shift mutations within the vaccinia virus A-type inclusion protein gene. Virology 1992, 186, 777–782. [Google Scholar] [CrossRef]
- Randall, C.C.; Gafford, L.G.; Darlington, R.W.; Hyde, J. Composition of fowlpox virus and inclusion matrix. J. Bacteriol. 1964, 87, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Banville, M.; Dumas, F.; Trifiro, S.; Arif, B.; Richardson, C. The predicted amino acid sequence of the spheroidin protein from Amsacta moorei entomopoxvirus: Lack of homology between major occlusion body proteins of different poxviruses. J. Gen. Virol. 1992, 73, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.R.; Weisberg, A.S.; Moss, B. Congregation of Orthopoxvirus Virions in Cytoplasmic A-Type Inclusions Is Mediated by Interactions of a Bridging Protein (A26p) with a Matrix Protein (ATIp) and a Virion Membrane-Associated Protein (A27p). J. Virol. 2010, 84, 7592–7602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKelvey, T.A.; Andrews, S.C.; Miller, S.E.; Ray, C.A.; Pickup, D.J. Identification of the Orthopoxvirus p4c Gene, Which Encodes a Structural Protein That Directs Intracellular Mature Virus Particles into A-Type Inclusions. J. Virol. 2002, 76, 11216–11225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulaeto, D.; Grosenbach, D.; Hruby, D.E. The vaccinia virus 4c and A-type inclusion proteins are specific markers for the intracellular mature virus particle. J. Virol. 1996, 70, 3372–3377. [Google Scholar] [CrossRef] [Green Version]
- Hansen, H.; Okeke, M.I.; Nilssen, Ø.; Traavik, T. Comparison and phylogenetic analysis of cowpox viruses isolated from cats and humans in Fennoscandia. Arch. Virol. 2009, 154, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Buller, R.M.; Palumbo, G.J. Poxvirus pathogenesis. Microbiol. Rev. 1991, 55, 80–122. [Google Scholar] [CrossRef] [PubMed]
- Kastenmayer, R.J.; Maruri-Avidal, L.; Americo, J.L.; Earl, P.L.; Weisberg, A.S.; Moss, B. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: Implications for orthopoxvirus evolution. Virology 2014, 452–453, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Okeke, M.I.; Hansen, H.; Traavik, T. A naturally occurring cowpox virus with an ectromelia virus A-type inclusion protein gene displays atypical A-type inclusions. Infect. Genet. Evol. 2012, 12, 160–168. [Google Scholar] [CrossRef]
- Bonhomme, F. Evolutionary Relationships in the Genus Mus. Curr. Top. Microbiol. Immunol. 1986, 127, 19–34. [Google Scholar] [CrossRef]
- Buller, R.M.L.; Potter, M.; Wallace, G.D. Variable Resistance to Ectromelia (Mousepox) Virus Among Genera of Mus. Curr. Top. Microbiol. Immunol. 1986, 127, 319–322. [Google Scholar] [CrossRef]
- Zheng, Z.-M.; Specter, S.; Zhang, J.-H.; Friedman, H.; Zhu, W.-P. Further characterization of the biological and pathogenic properties of erythromelalgia-related poxviruses. J. Gen. Virol. 1992, 73, 2011–2019. [Google Scholar] [CrossRef]
- Suzuki, H.; Nunome, M.; Kinoshita, G.; Aplin, K.P.; Vogel, P.; Kryukov, A.P.; Jin, M.-L.; Han, S.-H.; Maryanto, I.; Tsuchiya, K.; et al. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 2013, 111, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Kochan, G.; Escors, D.; González, J.M.; Casasnovas, J.M.; Esteban, M.; Escors-Murugarren, D. Membrane cell fusion activity of the vaccinia virus A17–A27 protein complex. Cell. Microbiol. 2007, 10, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohradanova, A.; Vullo, D.; Kopacek, J.; Temperini, C.; Betakova, T.; Pastorekova, S.; Pastorek, J.; Supuran, C.T. Reconstitution of carbonic anhydrase activity of the cell-surface-binding protein of vaccinia virus. Biochem. J. 2007, 407, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Maa, J.S.; Rodriguez, J.F.; Esteban, M. Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 1990, 265, 1569–1577. [Google Scholar] [CrossRef]
- Laidlaw, S.M.; Skinner, M.A. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J. Gen. Virol. 2004, 85, 305–322. [Google Scholar] [CrossRef]
- Meisinger-Henschel, C.; Schmidt, M.; Lukassen, S.; Linke, B.; Krause, L.; Konietzny, S.; Goesmann, A.; Howley, P.; Chaplin, P.; Suter, M.; et al. Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. J. Gen. Virol. 2007, 88, 3249–3259. [Google Scholar] [CrossRef] [PubMed]
- Blanié, S.; Mortier, J.; Delverdier, M.; Bertagnoli, S.; Camus-Bouclainville, C. M148R and M149R are two virulence factors for myxoma virus pathogenesis in the European rabbit. Vet. Res. 2009, 40, 14. [Google Scholar] [CrossRef] [Green Version]
- Mossman, K.; Lee, S.F.; Barry, M.; Boshkov, L.; McFadden, G. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J. Virol. 1996, 70, 4394–4410. [Google Scholar] [CrossRef] [Green Version]
- Kochneva, G.; Kolosova, I.; Maksyutova, T.; Ryabchikova, E.; Shchelkunov, S. Effects of deletions of kelch-like genes on cowpox virus biological properties. Arch. Virol. 2005, 150, 1857–1870. [Google Scholar] [CrossRef]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Sur, J.-H.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. The Genomes of Sheeppox and Goatpox Viruses. J. Virol. 2002, 76, 6054–6061. [Google Scholar] [CrossRef] [Green Version]
- Kara, P.D.; Afonso, C.L.; Wallace, D.B.; Kutish, G.F.; Abolnik, C.; Lu, Z.; Vreede, F.; Taljaard, L.C.F.; Zsak, A.; Viljoen, G.J.; et al. Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of Lumpy skin disease virus. Arch. Virol. 2003, 148, 1335–1356. [Google Scholar] [CrossRef]
- Alejo, A.; Pontejo, S.M.; Alcami, A. Poxviral TNFRs: Properties and role in viral pathogenesis. In Advances in TNF Family Research; Springer: New York, NY, USA, 2011; Volume 691, pp. 203–210. [Google Scholar]
- Hernaez, B.; Alonso-Lobo, J.M.; Montanuy, I.; Fischer, C.; Sauer, S.; Sigal, L.; Sevilla, N.; Alcamí, A. A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Kluczyk, A.; Siemion, I.Z.; Szewczuk, Z.; Wieczorek, Z. The immunosuppressive activity of peptide fragments of vaccinia virus C10L protein and a hypothesis on the role of this protein in the viral invasion. Peptides 2002, 23, 823–834. [Google Scholar] [CrossRef]
- Meyer, H.; Totmenin, A.; Gavrilova, E.; Shchelkunov, S. Variola and camelpox virus-specific sequences are part of a single large open reading frame identified in two German cowpox virus strains. Virus Res. 2005, 108, 39–43. [Google Scholar] [CrossRef]
- Reynolds, S.E.; Earl, P.L.; Minai, M.; Moore, I.; Moss, B. A homolog of the variola virus B22 membrane protein contributes to ectromelia virus pathogenicity in the mouse footpad model. Virology 2017, 501, 107–114. [Google Scholar] [CrossRef]
- Alzhanova, D.; Hammarlund, E.; Reed, J.; Meermeier, E.; Rawlings, S.; Ray, C.A.; Edwards, D.M.; Bimber, B.; Legasse, A.; Planer, S.; et al. T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence. PLoS Pathog. 2014, 10, e1004123. [Google Scholar] [CrossRef]
- McFadden, G. Poxvirus tropism. Nat. Rev. Genet. 2005, 3, 201–213. [Google Scholar] [CrossRef]
Isolate | Location of Collection | Date of Collection | Origin | Plaque Isolation | Reference |
---|---|---|---|---|---|
ECTV-Hampstead (ECTV-H) | National Institute for Medical Research, London, United Kingdom | 1930 | Mouse colony outbreak | no | [8] |
ECTV-Moscow (ECTV-M) | Moscow, Russia | 1946 | Mouse colony outbreak and cell culture passages | yes | [17] |
ECTV-Hamsptead Egg(ECTV-HE) | - | 1949 | ECTV-H passed in chorioalantoic membranes | no | [15] |
ECTV-Mill Hill (ECTV-MH) | - | 1959 | ECTV-H passed in chorioalantoic membranes | no | [16] |
ECTV-Ishibashi (ECTV-I) | Ishibashi, Japan | 1966 | Mouse colony outbreak and cell culture passages | yes | [28] |
ECTV-MP1 (ECTV-M1) | Munich, Germany | 1976 | Mouse colony outbreak | no | [24] |
ECTV-MP4 (ECTV-M4) | Nuremberg, Germany | 1976 | Mouse colony outbreak | no | [25] |
ECTV-MP5 (ECTV-M5) | Wien, Austria | 1994 | Mouse colony outbreak | no | [25] |
ECTV-Naval (ECTV-N) | US Naval Medical Research Institute in Bethesda | 1995 | Mouse colony outbreak and cell culture passages | yes | [35] |
ECTV-MouKre (ECTV-MK) | Krefeld, Germany | 2008 | Wildlife | no | This study |
ECTV a | Reads | Average Size (bp) | Mapped Reads | Coverage (x) | Genome Size (bp) |
---|---|---|---|---|---|
ECTV-H | 96,434 | 365 | 69,503 (72.0%) | 122 | 206,771 |
ECTV-HE | 240,573 | 370 | 218,157 (90.7%) | 390 | 206,745 |
ECTV-I | 25,360 | 396 | 17,411 (68.6%) | 33 | 207,479 |
ECTV-MH | 120,182 | 387 | 117,070 (97.4%) | 218 | 207,108 |
ECTV-M1 | 79,430 | 396 | 69,600 (87.6%) | 133 | 206,842 |
ECTV-M4 | 77,287 | 385 | 71,527 (92.5%) | 132 | 207,700 |
ECTV-M5 | 46,469 | 393 | 41,334 (88.9%) | 78 | 207,348 |
ECTV-MK | 112,670 | 302 | 57,779 (51.3%) | 83 | 209,592 |
ECTV-M | 22,391,099 | 100 |
10,490,202 (46.85%) | 5001 | 209,771 |
ECTV-M | ECTV-H | ECTV-I | ECTV-MH | ECTV-M1 | ECTV-M4 | ECTV-M5 | ECTV-MK | |
---|---|---|---|---|---|---|---|---|
ECTV-M | - | 30 | 167 | 361 | 148 | 186 | 362 | 589 |
ECTV-H | 30 | - | 138 | 331 | 138 | 156 | 353 | 559 |
ECTV-I | 167 | 138 | - | 437 | 258 | 274 | 473 | 689 |
ECTV-MH | 361 | 331 | 437 | - | 352 | 348 | 531 | 732 |
ECTV-M1 | 148 | 138 | 258 | 352 | - | 130 | 297 | 527 |
ECTV-M4 | 186 | 156 | 274 | 348 | 130 | - | 363 | 565 |
ECTV-M5 | 362 | 353 | 473 | 531 | 297 | 363 | - | 285 |
ECTV-MK | 589 | 559 | 689 | 732 | 527 | 565 | 285 | - |
Transition | Bayes Factor | Evidence against H0 |
---|---|---|
Germany to Austria | 460.2 | very strong evidence |
United Kingdom to Russia | 17.1 | strong evidence |
United Kingdom to Germany | 14.5 | strong evidence |
China to USA | 9.9 | evidence |
United Kingdom to Japan | 7.5 | evidence |
USA to China | 7.2 | evidence |
Russia to Japan | 4.1 | weak evidence |
USA to United Kingdom | 3.2 | weak evidence |
ECTV-M | ECTV-H | aa Change | ||||
---|---|---|---|---|---|---|
nt | ORF | Published a | Re-Sequenced b | ORF | Sequenced | |
13,526 | EVM008 | A | A | EVH012 | G | V164A |
39,775 | EVM025 | A | C | EVH041 | C | |
41,907 | EVM028 | T | T | EVH044 | C | I258V |
59,134 | Intergenic | ATAAGATAAG | - | Intergenic | - | |
102,467 | EVM089 | T | A | EVH107 | A | |
147,842 | Region Q | T | - | EVH148 | G | Stop183G |
157,777 | Region S | 21xC | - | EVH167P | 10xC | |
189,000 | Region Y | T | - | EVH195P | TAT | |
191,424 | Region Y | A | - | EVH195P | AT | |
195,294 | Region Z | G | - | EVH198P | T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavian, C.; López-Bueno, A.; Martín, R.; Nitsche, A.; Alcamí, A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021, 13, 1146. https://doi.org/10.3390/v13061146
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses. 2021; 13(6):1146. https://doi.org/10.3390/v13061146
Chicago/Turabian StyleMavian, Carla, Alberto López-Bueno, Rocío Martín, Andreas Nitsche, and Antonio Alcamí. 2021. "Comparative Pathogenesis, Genomics and Phylogeography of Mousepox" Viruses 13, no. 6: 1146. https://doi.org/10.3390/v13061146
APA StyleMavian, C., López-Bueno, A., Martín, R., Nitsche, A., & Alcamí, A. (2021). Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses, 13(6), 1146. https://doi.org/10.3390/v13061146