Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2
Abstract
:1. Introduction
2. The Potential Risk of SARS-CoV-2 Transmission from Animals and the Role of ACE2 Receptors
3. SARS-CoV-2 Detection in Cats and Their Zoonotic Potential
4. SARS-CoV-2 Isolation in Dogs and Their Zoonotic Potential
5. Feline and Canine Models for SARS-CoV-2
6. Ferrets Models for SARS-CoV-2
7. SARS-CoV-2 Isolation in Farmed Minks and Their Zoonotic Potential
8. Hamsters Models for SARS-CoV-2
9. The Need for the Analysis of Epizootiological and Social Risks Analysis in the SARS-CoV-2 Transmission
10. Perspectives
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 20 May 2021).
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, L.; Protopopova, A.; Birkler, R.I.D.; Itin-Schwartz, B.; Sutton, G.A.; Gamliel, A.; Yakobson, B.; Raz, T. Human-dog relationships during the COVID-19 pandemic: Booming dog adoption during social isolation. Humanit. Soc. Sci. Commun. 2020, 7, 155. [Google Scholar] [CrossRef]
- Statista. How Has Your Pet Ownership Been Affected by COVID-19? Available online: https://www.statista.com/statistics/1191395/pet-ownership-status-due-to-covid-19-in-the-us/ (accessed on 17 November 2020).
- Wyborcza.pl. Jasna Strona Pandemii. Coraz Mniej Zwierząt w Schroniskach, a Więcej w Domach. Available online: https://trojmiasto.wyborcza.pl/trojmiasto/7,35612,26973696,mniej-czworonogow-w-schroniskach-wiecej-w-domach-dobra-strona.html?disableRedirects=true (accessed on 14 April 2021).
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-L.; Wang, J.-L.; Ma, X.-H.; Li, J.-S.; Yang, X.-F.; Shi, W.-F.; Duan, Z.-J. A novel SARS-CoV-2 related virus with complex recombination isolated from bats in Yunnan province, China. bioRxiv 2021, 17, 435823. [Google Scholar]
- Singla, R.; Mishra, A.; Joshi, R.; Jha, S.; Sharma, A.R.; Upadhyay, S.; Sarma, P.; Prakash, A.; Medhi, B. Human animal interface of SARS-CoV-2 (COVID-19) transmission: A critical appraisal of scientific evidence. Vet. Res. Commun. 2020, 44, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Martina, B.E.; Haagmans, B.L.; Kuiken, T.; Fouchier, R.A.; Rimmelzwaan, G.F.; van Amerongen, G.; Peiris, J.S.; Lim, W.; Osterhaus, A.D. SARS virus infection of cats and ferrets. Nature 2003, 425, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents 2020, 56, 106054. [Google Scholar] [CrossRef]
- Qian, Z.; Dominguez, S.R.; Holmes, K.V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE 2013, 8, e76469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, H.G.; Resck, M.E.B.; Caldas, G.C.; Resck, A.F.; da Silva, N.V.; Dos Santos, A.M.V.; Sousa, T.D.C.; Ogrzewalska, M.H.; Siqueira, M.M.; Pauvolid-Corrêa, A.; et al. Neutralizing antibodies for SARS-CoV-2 in stray animals from Rio de Janeiro, Brazil. PLoS ONE 2021, 16, e0248578. [Google Scholar] [CrossRef]
- Koopmans, M. SARS-CoV-2 and the human-animal interface: Outbreaks on mink farms. Lancet. Infect. Dis. 2021, 21, 18–19. [Google Scholar] [CrossRef]
- Sreenivasan, C.C.; Milton, T.; Wang, D.; Li, F. Susceptibility of livestock and companion animals to COVID-19. J. Med. Virol. 2021, 93, 1351–1360. [Google Scholar] [CrossRef]
- Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem. Biophys. Res. Commun. 2020, 526, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, D.; Szabla, R.; Zheng, M.; Li, G.; Du, P.; Zheng, S.; Li, X.; Song, C.; Li, R.; et al. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. J. Virol. 2020, 94, e00940-20. [Google Scholar] [CrossRef]
- American Veterinary Medical Association. US Pet Ownership Statistics. Available online: https://www.avma.org/resources-tools/reports-statistics/us-pet-ownership-statistics (accessed on 19 October 2020).
- Vets Begin Offering Coronavirus Tests for PETS in Germany, and Warn Cats Are the Most Likely to Be Infected. Available online: https://www.dailymail.co.uk/news/article-8195763/Vets-begin-offering-coronavirus-tests-PETS-Germany.html (accessed on 13 October 2020).
- American Veterinary Medical Association. In-Depth Summary of Reports of Naturally Acquired SARS-CoV-2 Infections in Domestic Animals and Farmed or Captive Wildlife. 2021. Available online: https://www.avma.org/resources-tools/animal-health-and-welfare/covid-19/depth-summary-reports-naturally-acquired-sars-cov-2 (accessed on 24 May 2021).
- Peltz, J. 2 Cats in NY Become First US Pets to Test Positive for Virus. 2020. Available online: https://apnews.com/37328ab8db093b8346e26e1840b48af8 (accessed on 13 September 2020).
- COVID-19 Update (70): China (Hong Kong) Cat, Pets and Stock. 2020. Available online: http://promedmail.org/post/20200326.7173286 (accessed on 13 September 2020).
- Barrs, V.R.; Peiris, M.; Tam, K.W.S.; Law, P.Y.T.; Brackman, C.J.; To, E.M.W.; Yu, V.; Chu, D.; Perera, R.A.P.M.; Sit, T.H.C. SARS-CoV-2 in Quarantined Domestic Cats from COVID-19 Households or Close Contacts, Hong Kong, China. Emerg. Infect. Dis. 2020, 26, 3071–3074. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Gao, J.; Huang, K.; Yang, Y.; Hui, X.; He, X.; Li, C.; Gong, W.; Zhang, Y.; et al. serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infect. 2020, 9, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Neira, V.; Brito, B.; Agüero, B.; Berrios, F.; Valdés, V.; Gutierrez, A.; Ariyama, N.; Espinoza, P.; Retamal, P.; Holmes, E.C.; et al. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerg. Microbes Infect. 2021, 10, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Cat in Belgium Tests Positive for Coronavirus after Being Infected by Owner, Experts Say ‘Rare Case’. Available online: https://www.india.com/viral/cat-in-belgium-tests-positive-for-coronavirus-after-being-infected-by-owner-experts-say-rare-case-3983980/ (accessed on 30 March 2021).
- Pagani, G.; Lai, A.; Bergna, A.; Rizzo, A.; Stranieri, A.; Giordano, A.; Paltrinieri, S.; Lelli, D.; Decaro, N.; Rusconi, S.; et al. Human-to-Cat SARS-CoV-2 Transmission: Case Report and Full-Genome Sequencing from an Infected Pet and Its Owner in Northern Italy. Pathogens 2021, 10, 252. [Google Scholar] [CrossRef]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef]
- Musso, N.; Costantino, A.; La Spina, S.; Finocchiaro, A.; Andronico, F.; Stracquadanio, S.; Liotta, L.; Visalli, R.; Emmanuele, G. New SARS-CoV-2 Infection Detected in an Italian Pet Cat by RT-qPCR from Deep Pharyngeal Swab. Pathogens 2020, 9, 746. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.; Palizzotto, C.; Zini, E.; Meli, M.L.; Leo, C.; Egberink, H.; Zhao, S.; Hofmann-Lehmann, R. SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma. Viruses 2021, 13, 527. [Google Scholar] [CrossRef]
- Staff, R. Dutch Dog, Three Cats Infected with Coronavirus: Minister. Available online: https://www.reuters.com/article/ushealth-coronavirus-netherlands-pets/dutch-dog-three-cats-infected-with-coronavirus-minister-idUSKBN22R2EN (accessed on 30 December 2020).
- Domínguez, N. Spain Records Its First Case of a Cat with Coronavirus. Available online: https://english.elpais.com/society/2020-05-08/spain-records-its-first-case-of-a-cat-with-coronavirus.html (accessed on 13 October 2020).
- Ruiz-Arrondo, I.; Portillo, A.; Palomar, A.M.; Santibáñez, S.; Santibáñez, P.; Cervera, C.; Oteo, J.A. Detection of SARS-CoV-2 in pets living with COVID-19 owners diagnosed during the COVID-19 lockdown in Spain: A case of an asymptomatic cat with SARS-CoV-2 in Europe. Transbound. Emerg. Dis. 2021, 68, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Libert, L. Feline Good: French Cat Survives Coronavirus Infection. 2020. Available online: https://www.reuters.com/article/us-health-coronavirus-france-cat/feline-good-french-cat-survives-coronavirus-infection-idUSKBN23427J?il=0 (accessed on 16 November 2020).
- Sailleau, C.; Dumarest, M.; Vanhomwegen, J.; Delaplace, M.; Caro, V.; Kwasiborski, A.; Hourdel, V.; Chevaillier, P.; Barbarino, A.; Comtet, L.; et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound. Emerg. Dis. 2020, 67, 2324–2328. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.; Meli, M.L.; Willi, B.; Nadeau, S.; Beisel, C.; Stadler, T.; Egberink, H.; Zhao, S.; Lutz, H.; Riond, B.; et al. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with Respiratory Signs in Switzerland. Viruses 2021, 13, 496. [Google Scholar] [CrossRef] [PubMed]
- The World Organization for Animal Health. A More Recent Case Has Been Detected in a Cat in Russia, But No Clinical Data Are Available. Available online: https://www.oie.int/en/scientific-expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/ (accessed on 2 February 2021).
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=32666 (accessed on 27 April 2021).
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=31360 (accessed on 21 March 2021).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Greece_cat_23.12.2020.pdf (accessed on 22 March 2021).
- The World Organisation for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=15477 (accessed on 22 March 2021).
- Hosie, M.J.; Epifano, I.; Herder, V.; Orton, R.J.; Stevenson, A.; Johnson, N.; MacDonald, E.; Dunbar, D.; McDonald, M.; Howie, F.; et al. Respiratory disease in cats associated with human-to-cat transmission of SARS-CoV-2 in the UK. bioRxiv 2020. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Sun, C.; Bai, J.; Sun, J.; Hao, L.; Li, X.; Tian, K. SARS-CoV-2 Serological Survey of Cats in China before and after the Pandemic. Virol. Sin. 2020, 35, 846–848. [Google Scholar] [CrossRef]
- Temmam, S.; Barbarino, A.; Maso, D.; Behillil, S.; Enouf, V.; Huon, C.; Jaraud, A.; Chevallier, L.; Backovic, M.; Pérot, P.; et al. Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. One Health 2020, 10, 100164. [Google Scholar] [CrossRef]
- Japan Confirms First Cases of COVID-19 in Pets as Two Dogs Test Positive. Available online: https://www.japantimes.co.jp/news/2020/08/03/national/japan-coronavirus-dogs/ (accessed on 24 April 2021).
- Calvet, G.A.; Pereira, S.A.; Ogrzewalska, M.; Pauvolid-Corrêa, A.; Resende, P.C.; Tassinari, W.S.; Costa, A.P.; Keidel, L.O.; da Rocha, A.S.B.; da Silva, M.F.B.; et al. Investigation of SARS-CoV-2 infection in dogs and cats of humans diagnosed with COVID-19 in Rio de Janeiro, Brazil. PLoS ONE 2021, 16, e0250853. [Google Scholar] [CrossRef] [PubMed]
- 1.1.6 of The Terrestrial Animal Health Code of the World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Canada_cat_10.02.2021.pdf (accessed on 23 March 2021).
- Bonilauri, P.; Rugna, G. Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know? Life 2021, 11, 123. [Google Scholar] [CrossRef]
- Hong Kong’s Information Services Department Pet Cat Tests Positive for COVID-19. Available online: http://www.news.gov.hk/ (accessed on 5 April 2021).
- Researchers Identify First Cat with Coronavirus in Brazil. Available online: https://www1.folha.uol.com.br/internacional/en/scienceandhealth/2020/10/researchers-identify-first-cat-with-coronavirus-in-brazil.shtml (accessed on 23 March 2021).
- Animal and Plant Health Inspection Service, U.S. Department of Agriculture. Available online: https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2020/sa-06/sars-cov-2-dog (accessed on 26 April 2021).
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, H.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Dutch House Pets Test Positive for Coronavirus. Available online: https://www.dw.com/en/dutch-house-pets-test-positive-for-coronavirus/a-53460111 (accessed on 13 September 2020).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Germany_1_December.pdf (accessed on 13 September 2020).
- Yoo, H.S.; Yoo, D. COVID-19 and veterinarians for one health, zoonotic- and reverse-zoonotic transmissions. J. Vet. Sci. 2020, 21. [Google Scholar] [CrossRef]
- Sit, T.H.C.; Brackman, C.J.; Ip, S.M.; Tam, K.W.S.; Law, P.Y.T.; To, E.M.W.; Yu, V.Y.T.; Sims, L.D.; Tsang, D.N.C.; Chu, D.K.W.; et al. Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=31060 (accessed on 16 April 2021).
- SARS-CoV-2 Infected Dog: Canada. Available online: https://www.wormsandgermsblog.com/2020/10/articles/animals/dogs/sars-cov-2-infected-dog-canada/ (accessed on 13 March 2021).
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=33320 (accessed on 25 May 2021).
- Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.I.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; VandeWoude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. USA 2020, 117, 26382–26388. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.M.; Selvan, M.T.; Cowan, S.; Midkiff, C.C.; Ritchey, J.W.; Miller, C.A. Clinicopathologic features of a feline SARS-CoV-2 infection model parallel acute COVID-19 in humans. bioRxiv 2021, 4, 439863. [Google Scholar]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Giner, J.; Villanueva-Saz, S.; Tobajas, A.P.; Pérez, M.D.; González, A.; Verde, M.; Yzuel, A.; García-García, A.; Taleb, V.; Lira-Navarrete, E.; et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals 2021, 11, 667. [Google Scholar] [CrossRef]
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=28156 (accessed on 24 March 2021).
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell. Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schon, J.; Sehl, J.; Wylezich, C.; Hoper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet. Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.A.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B.L.; Koopmans, M.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.B.; Dantas, W.M.; do Nascimento, J.C.F.; da Silva, M.V.; de Oliveira, R.N.; Pena, L.J. In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses 2021, 13, 379. [Google Scholar] [CrossRef] [PubMed]
- Marsh, G.A.; McAuley, A.J.; Brown, S.; Pharo, E.A.; Crameri, S.; Au, G.G.; Baker, M.L.; Barr, J.A.; Bergfeld, J.; Bruce, M.P.; et al. In vitro characterisation of SARS-CoV-2 and susceptibility of domestic ferrets (Mustela putorius furo). Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Park, S.J.; Yu, K.M.; Kim, S.M.; Kim, E.H.; Kim, S.G.; Kim, E.J.; Casel, A.B.; Rollon, R.; Jang, S.G.; Lee, M.H.; et al. Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. mBio 2020, 11, e01114-20. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.D.; Schmitz, K.S.; Bovier, F.T.; Predella, C.; Khao, J.; Noack, D.; Haagmans, B.L.; Herfst, S.; Stearns, K.N.; Drew-Bear, J.; et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 2021, 371, 1379–1382. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- Liu, H.L.; Yeh, I.J.; Phan, N.N.; Wu, Y.H.; Yen, M.C.; Hung, J.H.; Chiao, C.C.; Chen, C.F.; Sun, Z.; Jiang, J.Z.; et al. Gene signatures of SARS-CoV/SARS-CoV-2-infected ferret lungs in short- and long-term models. Infect. Genet. Evol. 2020, 85, 104438. [Google Scholar] [CrossRef]
- Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutic MK-4482/EIDD-2801 Blocks SARS-CoV-2 Transmission in Ferrets. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Domańska-Blicharz, K.; Orłowska, A.; Smreczak, M.; Niemczuk, K.; Iwan, E.; Bomba, A.; Lisowska, A.; Opolska, J.; Trębas, P.; Potyrało, P.; et al. Mink SARS-CoV-2 Infection in Poland-Short Communication. J. Vet. Res. 2021, 65, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Rabalski, L.; Kosinski, M.; Smura, T.; Aaltonen, K.; Kant, R.; Sironen, T.; Szewczyk, B.; Grzybek, M. Detection and molecular characterisation of SARS-CoV-2 2 in farmed mink (Neovision vision) in Poland. bioRxiv 2020, 12, 422670. [Google Scholar]
- Rabalski, L.; Kosinski, M.; Mazur-Panasiuk, N.; Szewczyk, B.; Bienkowska-Szewczyk, K.; Kant, R.; Sironen, T.; Pyrć, K.; Grzybek, M. Zoonotic spillover of SARS-CoV-2: Mink-adapted virus in humans. bioRxiv 2021, 3, 433713. [Google Scholar]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Informe_visones_OIE_16.07.20_.pdf (accessed on 23 September 2020).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Update_1_Letter_to_OIE_about_the_COVID-19_situation_in_Denmark.pdf (accessed on 13 September 2020).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Italy_COVID_30.10.2020.pdf (accessed on 23 September 2020).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Greece_First_COVID-19_case_in_mink_OIE.pdf (accessed on 23 September 2020).
- The World Organization for Animal Health. Available online: https://www.oie.int/fileadmin/Home/MM/Sweden_Update_1_29.10.2020.pdf (accessed on 23 September 2020).
- The World Organization for Animal Health. Available online: https://wahis.oie.int/#/report-info?reportId=32950 (accessed on 25 May 2021).
- United States Department of Agriculture, Foreign Agricultural Service. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=COVID-19%20Outbreak%20on%20Lithuanian%20Mink%20Farm_Warsaw_Lithuania_11-30-2020 (accessed on 24 March 2021).
- The World Organisation for Animal Health (OIE): Covid-19 Portal: Events in Animals 15 February 2021 Update. Available online: https://www.oie.int/scientific-expertise/specific-information-andrecommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/ (accessed on 3 March 2021).
- Lakdawala, S.S.; Menachery, V.D. The search for a COVID-19 animal model. Science 2020, 368, 942–943. [Google Scholar] [CrossRef]
- Sia, S.F.; Yan, L.M.; Chin, A.W.H.; Fung, K.; Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef]
- Boudewijns, R.; Thibaut, H.J.; Kaptein, S.J.F.; Li, R.; Vergote, V.; Seldeslachts, L.; Van Weyenbergh, J.; De Keyzer, C.; Bervoets, L.; Sharma, S.; et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat. Commun. 2020, 11, 5838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, Z.; Li, N.; Cui, H.; Meng, K.; Liu, L.; Zhao, L.; Zhang, S.; Qin, C.; Liu, J.; et al. Impact of Prior Infection on Protection and Transmission of SARS-CoV-2 in Golden Hamsters. bioXriV 2021, 1, 428920. [Google Scholar]
- Lau, S.Y.; Wang, P.; Mok, B.W.; Zhang, A.J.; Chu, H.; Lee, A.C.; Deng, S.; Chen, P.; Chan, K.H.; Song, W.; et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 2020, 9, 837–842. [Google Scholar] [CrossRef]
- Osterrieder, N.; Bertzbach, L.D.; Dietert, K.; Abdelgawad, A.; Vladimirova, D.; Kunec, D.; Hoffmann, D.; Beer, M.; Gruber, A.D.; Trimpert, J. Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses 2020, 12, 779. [Google Scholar] [CrossRef]
- Mohandas, S.; Shete, A.; Abraham, P.; Mohan, K. Immunogenicity and protective efficacy of BBV152: A whole virion inactivated SARS CoV-2 vaccine in the Syrian hamster model. Res. Sq. 2020, 24, 102054. [Google Scholar]
- Vitner, E.B.; Israeli, O.; Milrot, E.; Stein, D.; Cohen-gihon, I.; Lazar, S.; Gutman, H.; Lupu, E.; David, E.B.; Sittner, A.; et al. A single dose of recombinant VSV-∆G-spike vaccine provides protection against SARS-CoV-2 challenge Yfat. Nat. Commun. 2020, 11, 6402. [Google Scholar]
- Tostanoski, L.H.; Wegmann, F.; Martinot, A.J.; Loos, C.; McMahan, K.; Mercado, N.B.; Yu, J.; Chan, C.N.; Bondoc, S.; Starke, C.E.; et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 2020, 26, 1694–1700. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, R.; Chan, J.F.W.; Zhang, A.J.; Cheng, T.; Chik, K.K.H.; Ye, Z.W.; Wang, S.; Lee, A.C.Y.; Jin, L.; et al. Metallodrugranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat. Microbiol. 2020, 5, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, S.J.F.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Barthelemy, K.; et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2−infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA 2020, 117, 26955–26965. [Google Scholar] [CrossRef] [PubMed]
- Oliva, K.J.; Cryan, P.M.; Amman, B.R.; Baric, R.S.; Blehert, D.S.; Brook, C.E.; Calisher, C.H.; Castle, K.T.; Coleman, J.T.H.; Daszak, P.; et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020, 3, e1008758. [Google Scholar]
- Amman, B.R.; Schuh, A.J.; Towner, J.S. Ebola virus field sample collection. Methods. Mol. Biol. 2017, 1628, 373–393. [Google Scholar] [PubMed]
- Wood, J.L.N.; Leach, M.; Waldman, L.; MacGregor, H.; Fooks, A.R.; Jones, K.E. A framework for the study of zoonotic disease emergence and its drivers: Spillover of bat pathogens as a case study. Philos. Trans. R. Soc. B 2012, 367, 2881–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daszak, P. A qualitative study of zoonotic risk factors among rural communities in southern China. Int. Health 2020, 12, 77–85. [Google Scholar]
- Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol. 2020, 92, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, N. COVID-19 and pets: When pandemic meets panic. Forensic Sci. Int. 2020, 2, 100090. [Google Scholar] [CrossRef]
- Overgaauw, P.A.M.; Vinke, C.M.; van Hagen, M.A.E.; Lipman, L.J.A. A One Health Perspective on the Human–Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef]
Number of Tested Cats | COVID-19 Tested Positive Cats | Country/Area | Date (Month and Year of Publication) | Reference |
---|---|---|---|---|
920 | 6 | Germany | December 2020 | [18] |
191 | 11 | Italy | December 2020 | [26] |
50 | 6 | Hong Kong, China | December 2020 | [22] |
22 | 1 | France | June 2020 | [34] |
11 | 3 | The Netherlands | May 2020 | [30] |
8 | 1 | Spain | August 2020 | [32] |
5 | 5 | Japan | January 2021 | [44] |
4 | 10 | Brazil | April 2021 | [45] |
4 | 3 | United Kingdom | July 2020 | [41] |
4 | 3 | Chile | March 2021 | [24] |
3 | 3 | Latvia | February 2021 | [38] |
2 | 2 | The Switzerland | March 2021 | [35] |
2 | 2 | Canada | January 2021 | [46] |
2 | 2 | Argentina | November 2020 | [47] |
1 | 1 | Belguim | April 2020 | [25] |
1 | 1 | Hong Kong, China | March 2020 | [48] |
1 | 1 | Spain | May 2020 | [31] |
1 | 1 | Brazil | October 2020 | [49] |
1 | 1 | France | May 2020 | [33] |
1 | 1 | Italy | February 2021 | [27] |
1 | 1 | Italy | September 2020 | [28] |
1 | 1 | Greece | December 2020 | [41] |
1 | 1 | Croatia | December 2020 | [39] |
1 | 1 | Italy | March 2021 | [29] |
1 | 1 | Russia | June 2020 | [38] |
Number of Tested Dogs | COVID-19 Tested Positive Dogs | Country/Area | Date (Month and Year of Publication) | Reference |
---|---|---|---|---|
451 | 15 * | Italy | December 2020 | [27] |
18 | 10 | Mexico | December 2020 | [56] |
15 | 2 | Hong Kong, China | March 2020 | [51] |
9 | 29 | Brazil | April 2021 | [45] |
4 | 4 | Argentina | November 2020 | [47] |
4 | 4 | Japan | August 2020 | [44] |
3 | 3 | Croatia | April 2021 | [39] |
2 | 2 | Germany | November 2020 | [53] |
1 | 1 | The Netherlands | May 2020 | [52] |
1 | 2 | Canada | October 2020 | [57] |
1 | 1 | Bosnia and Herzegovina | February 2021 | [19] |
1 | 1 | Thailand | May 2021 | [58] |
The Potential Risk of SARS CoV-2 Transmission | |
---|---|
Diminishing Factors | Potentiating Factors |
Use of restrictive personal protection measures | Social habits (close contact with wild animals, e.g., traditional cuisine or natural medicine) |
Suitable procedures for the transport and handling of diagnostic samples | Lack of testing procedures and security measures in the transport of samples |
Non-invasive methods of collecting samples from animals that can reduce the risk of e.g., bites | Low social and living standards |
Information campaigns among the population about the possible threat and proper conduct of animals | Possibility of contact of domestic animals with wild ones |
Establishing and respecting the law on the circulation and trade of animals potentially acting as pathogens’ carriers | Illegal trade of wild animals |
Reduction in amateur, wildlife tourism and canyoning | The phenomenon of urbanization and globalization (appearance of wild animals in cities and occupation of new wild territories by humans) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dróżdż, M.; Krzyżek, P.; Dudek, B.; Makuch, S.; Janczura, A.; Paluch, E. Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses 2021, 13, 1149. https://doi.org/10.3390/v13061149
Dróżdż M, Krzyżek P, Dudek B, Makuch S, Janczura A, Paluch E. Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses. 2021; 13(6):1149. https://doi.org/10.3390/v13061149
Chicago/Turabian StyleDróżdż, Mateusz, Paweł Krzyżek, Barbara Dudek, Sebastian Makuch, Adriana Janczura, and Emil Paluch. 2021. "Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2" Viruses 13, no. 6: 1149. https://doi.org/10.3390/v13061149
APA StyleDróżdż, M., Krzyżek, P., Dudek, B., Makuch, S., Janczura, A., & Paluch, E. (2021). Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses, 13(6), 1149. https://doi.org/10.3390/v13061149