Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. RSV Detection
2.3. RSV-Specific Microneutralization (MN) Assay
2.4. Western Blot (WB)
2.5. Palivizumab Competitive Antibody (PCA) Assay
2.6. Statistical Analysis
3. Results
3.1. Study Subjects
3.2. Comparison of Humoral and Mucosal RSV Antibody Level in Acute and Convalescent Samples
3.3. Comparison of Humoral and Mucosal Anti-RSV Antibody Levels in HCT Recipients Who Shed RSV for <14 Versus ≥14 Days
3.4. Association of Humoral and Mucosal RSV Antibody Level with Virus Resolution in RSV-Infected HCT Recipients
3.5. Comparison of Humoral and Mucosal RSV Antibody Level between RSV/A- and RSV/B-Infected HCT Recipients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D.; et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Falsey, A.R. Editorial commentary: Respiratory syncytial virus: A global pathogen in an aging world. Clin. Infect. Dis. 2013, 57, 1078–1080. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.W.; Binnicker, M.J.; Harris, D.M.; Chirila, R.M.; Brumble, L.; Mandrekar, J.; Hata, D.J. Morbidity and mortality among patients with respiratory syncytial virus infection: A 2-year retrospective review. Diagn. Microbiol. Infect. Dis. 2016, 85, 367–371. [Google Scholar] [CrossRef]
- Higgins, D.; Trujillo, C.; Keech, C. Advances in RSV vaccine research and development—A global agenda. Vaccine 2016, 34, 2870–2875. [Google Scholar] [CrossRef]
- Turner, T.L.; Kopp, B.T.; Paul, G.; Landgrave, L.C.; Hayes, D., Jr.; Thompson, R. Respiratory syncytial virus: Current and emerging treatment options. Clinicoecon. Outcomes Res. 2014, 6, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Els, C.; Mjaaland, S.; Naess, L.; Sarkadi, J.; Gonczol, E.; Korsholm, K.S.; Hansen, J.; de Jonge, J.; Kersten, G.; Warner, J.; et al. Fast vaccine design and development based on correlates of protection (COPs). Hum. Vaccin. Immunother. 2014, 10, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Tomaras, G.D.; Plotkin, S.A. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol. Rev. 2017, 275, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.S.; Hurwitz, J.L.; Simoes, E.A.F.; Piedra, P.A. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field. Viral Immunol. 2018, 31, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.; Klaiber-Franco, R.; Paradiso, P.R. Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus. J. Gen. Virol. 1987, 68 Pt 9, 2521–2524. [Google Scholar] [CrossRef]
- Walsh, E.E.; Hruska, J. Monoclonal antibodies to respiratory syncytial virus proteins: Identification of the fusion protein. J. Virol. 1983, 47, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Tran, K.C.; Luthra, P.; Teng, M.N.; He, B. Function of the respiratory syncytial virus small hydrophobic protein. J. Virol. 2007, 81, 8361–8366. [Google Scholar] [CrossRef] [Green Version]
- Carter, S.D.; Dent, K.C.; Atkins, E.; Foster, T.L.; Verow, M.; Gorny, P.; Harris, M.; Hiscox, J.A.; Ranson, N.A.; Griffin, S.; et al. Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Lett. 2010, 584, 2786–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.W.; Tan, E.; Lin, X.; Yu, D.; Wang, J.; Tan, G.M.; Vararattanavech, A.; Yeo, C.Y.; Soon, C.H.; Soong, T.W.; et al. The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J. Biol. Chem. 2012, 287, 24671–24689. [Google Scholar] [CrossRef] [Green Version]
- Grosfeld, H.; Hill, M.G.; Collins, P.L. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J. Virol. 1995, 69, 5677–5686. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Hardy, R.W.; Wertz, G.W. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J. Virol. 1995, 69, 2412–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermingham, A.; Collins, P.L. The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc. Natl. Acad. Sci. USA 1999, 96, 11259–11264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piedra, P.A.; Glezen, W.P.; Kasel, J.A.; Welliver, R.C.; Jewel, A.M.; Rayford, Y.; Hogerman, D.A.; Hildreth, S.W.; Paradiso, P.R. Safety and immunogenicity of the PFP vaccine against respiratory syncytial virus (RSV): The western blot assay aids in distinguishing immune responses of the PFP vaccine from RSV infection. Vaccine 1995, 13, 1095–1101. [Google Scholar] [CrossRef]
- Piedra, P.A.; Grace, S.; Jewell, A.; Spinelli, S.; Bunting, D.; Hogerman, D.A.; Malinoski, F.; Hiatt, P.W. Purified fusion protein vaccine protects against lower respiratory tract illness during respiratory syncytial virus season in children with cystic fibrosis. Pediatr. Infect. Dis. J. 1996, 15, 23–31. [Google Scholar] [CrossRef]
- August, A.; Glenn, G.M.; Kpamegan, E.; Hickman, S.P.; Jani, D.; Lu, H.; Thomas, D.N.; Wen, J.; Piedra, P.A.; Fries, L.F. A Phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age. Vaccine 2017, 35, 3749–3759. [Google Scholar] [CrossRef]
- Piedra, P.A.; Jewell, A.M.; Cron, S.G.; Atmar, R.L.; Glezen, W.P. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: Establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine 2003, 21, 3479–3482. [Google Scholar] [CrossRef]
- Groothuis, J.R.; Simoes, E.A.; Levin, M.J.; Hall, C.B.; Long, C.E.; Rodriguez, W.J.; Arrobio, J.; Meissner, H.C.; Fulton, D.R.; Welliver, R.C.; et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The Respiratory Syncytial Virus Immune Globulin Study Group. N. Engl. J. Med. 1993, 329, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.; Van Kirk, J.E.; Wright, P.F.; Chanock, R.M. Experimental respiratory syncytial virus infection of adults. Possible mechanisms of resistance to infection and illness. J. Immunol. 1971, 107, 123–130. [Google Scholar] [PubMed]
- Watt, P.J.; Robinson, B.S.; Pringle, C.R.; Tyrrell, D.A. Determinants of susceptibility to challenge and the antibody response of adult volunteers given experimental respiratory syncytial virus vaccines. Vaccine 1990, 8, 231–236. [Google Scholar] [CrossRef]
- Bagga, B.; Cehelsky, J.E.; Vaishnaw, A.; Wilkinson, T.; Meyers, R.; Harrison, L.M.; Roddam, P.L.; Walsh, E.E.; DeVincenzo, J.P. Effect of Preexisting Serum and Mucosal Antibody on Experimental Respiratory Syncytial Virus (RSV) Challenge and Infection of Adults. J. Infect. Dis. 2015, 212, 1719–1725. [Google Scholar] [CrossRef] [Green Version]
- Habibi, M.S.; Jozwik, A.; Makris, S.; Dunning, J.; Paras, A.; DeVincenzo, J.P.; de Haan, C.A.; Wrammert, J.; Openshaw, P.J.; Chiu, C.; et al. Impaired Antibody-mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults with Respiratory Syncytial Virus. Am. J. Respir. Crit. Care Med. 2015, 191, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.A.; Shah, D.P.; Chemaly, R.F.; et al. Comparison of Palivizumab-Like Antibody Binding to Different Conformations of the RSV F Protein in RSV-Infected Adult Hematopoietic Cell Transplant Recipients. J. Infect. Dis. 2018, 217, 1247–1256. [Google Scholar] [CrossRef]
- Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.A.; Shah, D.P.; Chemaly, R.F.; et al. Antigenic Site-Specific Competitive Antibody Responses to the Fusion Protein of Respiratory Syncytial Virus Were Associated With Viral Clearance in Hematopoietic Cell Transplantation Adults. Front. Immunol. 2019, 10, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Cabral de Rezende, W.; Iwuchukwu, O.P.; Avadhanula, V.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.A.; Shah, D.P.; Che-maly, R.F.; Piedra, P.A. Antibody Response to the Furin Cleavable Twenty-Seven Amino Acid Peptide (p27) of the Fusion Protein in Respiratory Syncytial Virus (RSV) Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Vaccines 2020, 8, 192. [Google Scholar] [CrossRef]
- Avadhanula, V.; Chemaly, R.F.; Shah, D.P.; Ghantoji, S.S.; Azzi, J.M.; Aideyan, L.O.; Mei, M.; Piedra, P.A. Infection with novel respiratory syncytial virus genotype Ontario (ON1) in adult hematopoietic cell transplant recipients, Texas, 2011–2013. J. Infect. Dis. 2015, 211, 582–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piedra, P.A.; Wyde, P.R.; Castleman, W.L.; Ambrose, M.W.; Jewell, A.M.; Speelman, D.J.; Hildreth, S.W. Enhanced pulmonary pathology associated with the use of formalin-inactivated respiratory syncytial virus vaccine in cotton rats is not a unique viral phenomenon. Vaccine 1993, 11, 1415–1423. [Google Scholar] [CrossRef]
- Piedra, P.A.; Hause, A.M.; Aideyan, L. Respiratory Syncytial Virus (RSV): Neutralizing Antibody, a Correlate of Immune Protection. Methods Mol. Biol. 2016, 1442, 77–91. [Google Scholar] [PubMed]
- Ueba, O. Respiratory syncytial virus. I. Concentration and purification of the infectious virus. Acta Med. Okayama 1978, 32, 265–272. [Google Scholar] [PubMed]
- Johnson, S.M.; McNally, B.A.; Ioannidis, I.; Flano, E.; Teng, M.N.; Oomens, A.G.; Walsh, E.E.; Peeples, M.E. Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures. PLoS Pathog. 2015, 11, e1005318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortjens, B.; Yasuda, E.; Yu, X.; Wagner, K.; Claassen, Y.B.; Bakker, A.Q.; van Woensel, J.B.M.; Beaumont, T. Broadly Reactive Anti-Respiratory Syncytial Virus G Antibodies from Exposed Individuals Effectively Inhibit Infection of Primary Airway Epithelial Cells. J. Virol. 2017, 91, e02357-16. [Google Scholar] [CrossRef] [Green Version]
- Jacobino, S.R.; Nederend, M.; Reijneveld, J.F.; Augustijn, D.; Jansen, J.H.M.; Meeldijk, J.; Reiding, K.R.; Wuhrer, M.; Coenjaerts, F.E.J.; Hack, C.E.; et al. Reformatting palivizumab and motavizumab from IgG to human IgA impairs their efficacy against RSV infection in vitro and in vivo. MAbs 2018, 10, 453–462. [Google Scholar] [CrossRef] [PubMed]
- De Magistris, M.T. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv. Drug Deliv. Rev. 2006, 58, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Renegar, K.B.; Small, P.A., Jr.; Boykins, L.G.; Wright, P.F. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 2004, 173, 1978–1986. [Google Scholar] [CrossRef]
- Lee, F.E.; Walsh, E.E.; Falsey, A.R.; Betts, R.F.; Treanor, J.J. Experimental infection of humans with A2 respiratory syncytial virus. Antivir. Res. 2004, 63, 191–196. [Google Scholar] [CrossRef]
- Zlateva, K.T.; Lemey, P.; Moes, E.; Vandamme, A.M.; Van Ranst, M. Genetic variability and molecular evolution of the human respiratory syncytial virus subgroup B attachment G protein. J. Virol. 2005, 79, 9157–9167. [Google Scholar] [CrossRef] [Green Version]
- Levitz, R.; Gao, Y.; Dozmorov, I.; Song, R.; Wakeland, E.K.; Kahn, J.S. Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus. PLoS ONE 2017, 12, e0184318. [Google Scholar] [CrossRef] [Green Version]
Sample Types | Antibody | Acute Samples (n = 40) | Convalescent Samples (n = 40) | p-Value 2 |
---|---|---|---|---|
Serum | RSV/A Nt Ab | 6.8 (5.5–8.4) 1 | 9.5 (7.6–11.0) | <0.001 |
RSV/B Nt Ab | 7.0 (6.0–8.9) | 9.8 (7.0–12.5) | <0.001 | |
IgG G | 5.0 (1.3–17.5) | 10.0 (5.0–20.0) | 0.018 | |
IgG F | 0.0 (0.0–0.0) | 2.5 (0.0–10.0) | 0.004 | |
IgG N | 0.0 (0.0–0.0) | 5.0 (0.0–17.5) | 0.002 | |
IgG P | 0.0 (0.0–5.0) | 5.0 (0.0–10.0) | 0.007 | |
IgG M2-1 | 0.0 (0.0–5.0) | 5.0 (0.0–17.5) | 0.001 | |
PLA | 2.6 (0.5–182.2) | 10.5 (0.5–768.0) | <0.001 | |
Nasal Wash | RSV/A Nt Ab | 2.0 (2.0–2.4) | 2.0 (2.0–2.0) | 0.237 |
RSV/B Nt Ab | 2.0 (2.0–3.0) | 2.0 (2.0–2.0) | 0.526 | |
IgA G | 2.5 (0.0–10.0) | 7.5 (5.0–30.0) | 0.001 | |
IgA F | 0.0 (0.0–5.0) | 2.5 (0.0–5.0) | 0.251 | |
IgA N | 0.0 (0.0–5.0) | 2.5 (0.0–10.0) | 0.007 | |
IgA P | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.729 | |
IgA M2-1 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.014 | |
PLA | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | NA |
RSV Ab Type | Virus Shedding Period (Days) | p-Values 2 | |
---|---|---|---|
<14 (n = 20) | ≥14 (n = 20) | ||
Humoral Ab in acute serum | |||
RSV/A Nt Ab | 7.3 (5.5–8.5) 1 | 6.3 (5.1–8.0) | 0.447 |
RSV/B Nt Ab | 6.8 (6.0–9.9) | 7.0 (5.6–8.0) | 0.337 |
IgG G | 5.0 (1.3–17.5) | 7.5 (1.3–17.5) | 0.625 |
IgG F | 0.0 (0.0–0.0) | 0.0 (0.0–3.8) | 0.725 |
IgG N | 0.0 (0.0–3.8) | 0.0 (0.0–0.0) | 0.236 |
IgG P | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.947 |
IgG M2-1 | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.479 |
PLA | 2.9 (0.5–182.2) | 2.5 (0.5–10.4) | 0.139 |
Humoral Ab in convalescent serum | |||
RSV/A Nt Ab | 10.8 (8.5–12.8) | 8.8 (6.5–9.9) | 0.014 |
RSV/B Nt Ab | 11.5 (8.8–13.5) | 8.5 (7.0–10.4) | 0.007 |
IgG G | 10.0 (6.3–20.0) | 7.5 (5.0–20.0) | 0.361 |
IgG F | 10.0 (0.0–20.0) | 0.0 (0.0–5.0) | 0.003 |
IgG N | 10.0 (1.3–20.0) | 0.0 (0.0–5.0) | 0.005 |
IgG P | 7.5 (5.0–20.0) | 0.0 (0.0–5.0) | 0.001 |
IgG M2-1 | 10.0 (5.0–20.0) | 5.0 (0.0–5.0) | 0.053 |
PLA | 78.7 (1.5–768.0) | 9.6 (0.5–117.0) | <0.001 |
Mucosal Ab in acute nasal wash | |||
RSV/A Nt Ab | 2.0 (2.0–3.0) | 2.0 (2.0–2.0) | 0.160 |
RSV/B Nt Ab | 2.0 (2.0–5.3) | 2.0 (2.0–2.4) | 0.089 |
IgA G | 5.0 (0.0–10.0) | 0.0 (0.0–10.0) | 0.621 |
IgA F | 0.0 (0.0–8.8) | 0.0 (0.0–3.8) | 0.155 |
IgA N | 0.0 (0.0–0.0) | 0.0 (0.0–5.0) | 0.116 |
IgA P | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.491 |
IgA M2-1 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.317 |
PLA | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | NA |
Mucosal Ab in convalescent nasal wash | |||
RSV/A Nt Ab | 2.0 (2.0–2.5) | 2.0 (2.0–2.0) | 0.047 |
RSV/B Nt Ab | 2.0 (2.0–4.5) | 2.0 (2.0–2.0) | 0.009 |
IgA G | 25.0 (5.0–40.0) | 5.0 (0.0–20.0) | 0.027 |
IgA F | 2.5 (0.0–10.0) | 2.5 (0.0–5.0) | 0.703 |
IgA N | 5.0 (0.0–10.0) | 0.0 (0.0–8.8) | 0.221 |
IgA P | 5.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.156 |
IgA M2-1 | 0.0 (0.0–5.0) | 0.0 (0.0–0.0) | 0.004 |
PLA | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | NA |
RSV Ab Type | OR (95% CI) | p-Values 1 |
---|---|---|
Humoral Ab in acute serum (n = 40) | ||
RSV/A Nt Ab | 0.85 (0.60–1.21) | 0.376 |
RSV/B Nt Ab | 0.88 (0.64–1.21) | 0.428 |
IgG G | 1.00 (0.94–1.10) | 0.633 |
IgG F | 1.10 (0.97–1.29) | 0.124 |
IgG N | 0.97 (0.86–1.10) | 0.642 |
IgG P | 1.04 (0.92–1.17) | 0.567 |
IgG M2-1 | 1.02 (0.92–1.12) | 0.768 |
PLA | 0.86 (0.54–1.36) | 0.516 |
Humoral Ab in convalescent serum (n = 40) | ||
RSV/A Nt Ab | 0.82 (0.59–1.13) | 0.227 |
RSV/B Nt Ab | 0.79 (0.59–1.07) | 0.134 |
IgG G | 0.99 (0.93–1.05) | 0.704 |
IgG F | 0.89 (0.79–0.99) | 0.032 |
IgG N | 0.91 (0.83–1.00) | 0.054 |
IgG P | 0.86 (0.75–0.98) | 0.023 |
IgG M2-1 | 0.97 (0.90–1.04) | 0.363 |
PLA | 0.64 (0.45–0.92) | 0.016 |
Mucosal Ab in acute nasal wash (n = 40) | ||
RSV/A Nt Ab | 0.67 (0.31–1.45) | 0.308 |
RSV/B Nt Ab | 0.57 (0.27–1.19) | 0.133 |
IgA G | 0.99 (0.93–1.06) | 0.780 |
IgA F | 0.90 (0.77–1.05) | 0.164 |
IgA N | 1.11 (0.92–1.34) | 0.270 |
IgA P | 0.94 (0.84–1.06) | 0.332 |
IgA M2-1 | 0.11 (0.00–NA) | 1.000 |
PLA | NA | NA |
Mucosal Ab in convalescent nasal wash (n = 40) | ||
RSV/A Nt Ab | 0.29 (0.05–1.91) | 0.200 |
RSV/B Nt Ab | 0.45 (0.18–1.14) | 0.091 |
IgA G | 0.96 (0.91–1.01) | 0.095 |
IgA F | 1.00 (0.91–1.10) | 0.979 |
IgA N | 0.96 (0.88–1.05) | 0.373 |
IgA P | 0.87 (0.72–1.05) | 0.147 |
IgA M2-1 | 0.02 (0.00–NA) | 0.999 |
PLA | NA | NA |
RSV Ab Type | RSV Subtype | p-Values 2 | |
---|---|---|---|
RSV/A (n = 22) | RSV/B (n = 18) | ||
Humoral Ab in acute serum | |||
RSV/A Nt Ab | 7.0 (5.4–8.8) 1 | 6.3 (5.4–8.1) | 0.539 |
RSV/B Nt Ab | 6.8 (6.0–9.5) | 7.0 (5.4–8.1) | 0.859 |
IgG G | 5.0 (3.8–12.5) | 5.0 (0.0–20.0) | 0.900 |
IgG F | 0.0 (0.0–1.3) | 0.0 (0.0–1.3) | 0.985 |
IgG N | 0.0 (0.0–5.0) | 0.0 (0.0–0.0) | 0.088 |
IgG P | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.699 |
IgG M2-1 | 0.0 (0.0–5.0) | 2.5 (0.0–5.0) | 0.236 |
PLA | 3.4 (0.5–182.2) | 2.3 (0.5–8.8) | 0.179 |
Humoral Ab in convalescent serum | |||
RSV/A Nt Ab | 9.5 (7.4–10.6) | 9.5 (7.6–12.3) | 0.827 |
RSV/B Nt Ab | 9.5 (7.0–11.0) | 11.0 (7.8–13.1) | 0.276 |
IgG G | 20.0 (5.0–20.0) | 10.0 (5.0–12.5) | 0.243 |
IgG F | 0.0 (0.0–10.0) | 5.0 (0.0–20.0) | 0.511 |
IgG N | 10.0 (0.0–12.5) | 0.0 (0.0–20.0) | 0.314 |
IgG P | 5.0 (0.0–12.5) | 5.0 (0.0–5.0) | 0.566 |
IgG M2-1 | 5.0 (0.0–20.0) | 5.0 (0.0–12.5) | 0.612 |
PLA | 7.1 (0.5–768.0) | 12.7 (2.1–385.1) | 0.751 |
Mucosal Ab in acute nasal wash | |||
RSV/A Nt Ab | 2.0 (2.0–2.6) | 2.0 (2.0–2.3) | 0.830 |
RSV/B Nt Ab | 2.0 (2.0–2.6) | 2.0 (2.0–3.1) | 0.632 |
IgA G | 0.0 (0.0–10.0) | 5.0 (0.0–10.0) | 0.683 |
IgA F | 0.0 (0.0–5.0) | 0.0 (0.0–6.3) | 0.974 |
IgA N | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.565 |
IgA P | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.809 |
IgA M2-1 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.366 |
PLA | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | NA |
Mucosal Ab in convalescent nasal wash | |||
RSV/A Nt Ab | 2.0 (2.0–2.1) | 2.0 (2.0–2.0) | 0.334 |
RSV/B Nt Ab | 2.0 (2.0–2.3) | 2.0 (2.0–2.5) | 0.911 |
IgA G | 12.5 (0.0–40.0) | 7.5 (5.0–22.5) | 0.770 |
IgA F | 0.0 (0.0–5.0) | 5.0 (0.0–12.5) | 0.227 |
IgA N | 5.0 (0.0–10.0) | 0.0 (0.0–10.0) | 0.725 |
IgA P | 5.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.430 |
IgA M2-1 | 0.0 (0.0–5.0) | 0.0 (0.0–0.0) | 0.073 |
PLA | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Henke, D.M.; Patel, K.D.; Piedra, F.-A.; Angelo, L.S.; Shah, D.P.; et al. Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Viruses 2021, 13, 991. https://doi.org/10.3390/v13060991
Ye X, Iwuchukwu OP, Avadhanula V, Aideyan LO, McBride TJ, Henke DM, Patel KD, Piedra F-A, Angelo LS, Shah DP, et al. Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Viruses. 2021; 13(6):991. https://doi.org/10.3390/v13060991
Chicago/Turabian StyleYe, Xunyan, Obinna P. Iwuchukwu, Vasanthi Avadhanula, Letisha O. Aideyan, Trevor J. McBride, David M. Henke, Kirtida D. Patel, Felipe-Andres Piedra, Laura S. Angelo, Dimpy P. Shah, and et al. 2021. "Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients" Viruses 13, no. 6: 991. https://doi.org/10.3390/v13060991
APA StyleYe, X., Iwuchukwu, O. P., Avadhanula, V., Aideyan, L. O., McBride, T. J., Henke, D. M., Patel, K. D., Piedra, F. -A., Angelo, L. S., Shah, D. P., Chemaly, R. F., & Piedra, P. A. (2021). Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Viruses, 13(6), 991. https://doi.org/10.3390/v13060991