Potential Prophylactic Treatments for COVID-19
Abstract
:1. Introduction
2. Methods
- The drug is clinically evaluated for COVID-19.
- The drug possesses regulatory approval from the US Food and Drug Administration (FDA), European Medicines Agency (EMA), The Medicines and Healthcare Products Regulatory Agency (MHRA), or the Pharmaceuticals and Medical Devices Agency (PMDA).
- The drug is evaluated for prophylactic use for COVID-19/the drug is used prophylactically for other medical conditions/there’s data about previous long-term usage.
3. Current Prophylaxis Options for COVID-19
3.1. Antivirals
3.1.1. Favipiravir
3.1.2. Combined Antiretroviral Medications
Emtricitabine/Tenofovir
3.2. Repurposed Drugs
3.2.1. Ivermectin
3.2.2. Interferons
3.2.3. Nitazoxanide
3.2.4. Bromhexine Hydrochloride
3.3. Miscellaneous
3.3.1. Doxycycline
3.3.2. Famotidine
3.3.3. Nitric Oxide
3.3.4. Colchicine
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Park, W.B.; Kwon, N.J.; Choi, S.J.; Kang, C.K.; Choe, P.G.; Kim, J.Y.; Yun, J.; Lee, G.W.; Seong, M.W.; Kim, N.J.; et al. Virus Isolation from the First Patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020, 35, e84. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Ho, Y.-C. SARS-CoV-2: A Storm Is Raging. J. Clin. Invest. 2020, 130, 2202–2205. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Pre-Exposure Prophylaxis (PrEP)|HIV Risk and Prevention|HIV/AIDS|CDC. Available online: https://www.cdc.gov/hiv/risk/prep/index.html (accessed on 22 June 2021).
- Eagle, H. The Effect of the Size of the Inoculum and the Age of the Infection on the Curative Dose of Penicillin in Experimental Infections with Streptococci, Pneumococci, and Treponema Pallidum. J. Exp. Med. 1949, 90, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Gibbons, A.E.; Bergstrom, R.; Winn, V. The Eagle Effect Revisited: Efficacy of Clindamycin, Erythromycin, and Penicillin in the Treatment of Streptococcal Myositis. J. Infect. Dis. 1988, 158, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Drugs.Com|Prescription Drug Information, Interactions & Side Effects. Available online: https://www.drugs.com/ (accessed on 28 March 2021).
- Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a Potential Countermeasure against Neglected and Emerging RNA Viruses. Antiviral Res. 2018, 153, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Shannon, A.; Selisko, B.; Le, N.-T.-T.; Huchting, J.; Touret, F.; Piorkowski, G.; Fattorini, V.; Ferron, F.; Decroly, E.; Meier, C.; et al. Rapid Incorporation of Favipiravir by the Fast and Permissive Viral RNA Polymerase Complex Results in SARS-CoV-2 Lethal Mutagenesis. Nat. Commun. 2020, 11, 4682. [Google Scholar] [CrossRef]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a Broad Spectrum Inhibitor of Viral RNA Polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Borrego, B.; de Ávila, A.I.; Domingo, E.; Brun, A. Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir. Antimicrob. Agents Chemother. 2019, 63, e00669-19. [Google Scholar] [CrossRef] [Green Version]
- Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a Novel Viral RNA Polymerase Inhibitor. Antiviral Res. 2013, 100, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, F.G.; Shindo, N. Influenza Virus Polymerase Inhibitors in Clinical Development. Curr. Opin. Infect. Dis. 2019, 32, 176–186. [Google Scholar] [CrossRef]
- Mishima, E.; Anzai, N.; Miyazaki, M.; Abe, T. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J. Exp. Med. 2020, 251, 87–90. [Google Scholar] [CrossRef]
- Louchet, M.; Sibiude, J.; Peytavin, G.; Picone, O.; Tréluyer, J.-M.; Mandelbrot, L. Placental Transfer and Safety in Pregnancy of Medications under Investigation to Treat Coronavirus Disease 2019. Am. J. Obstet. Gynecol. MFM 2020, 2, 100159. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.; Aarons, E.; Bhagani, S.; Buchanan, R.; Cropley, I.; Hopkins, S.; Lester, R.; Martin, D.; Marshall, N.; Mepham, S.; et al. Post-Exposure Prophylaxis against Ebola Virus Disease with Experimental Antiviral Agents: A Case-Series of Health-Care Workers. Lancet Infect. Dis. 2015, 15, 1300–1304. [Google Scholar] [CrossRef]
- Yamada, K.; Noguchi, K.; Komeno, T.; Furuta, Y.; Nishizono, A. Efficacy of Favipiravir (T-705) in Rabies Postexposure Prophylaxis. J. Infect. Dis. 2016, 213, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Kaptein, S.J.F.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; Ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Barthelemy, K.; et al. Favipiravir at High Doses Has Potent Antiviral Activity in SARS-CoV-2-Infected Hamsters, Whereas Hydroxychloroquine Lacks Activity. Proc. Natl. Acad. Sci. USA 2020, 117, 26955–26965. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Eng. Beijing China 2020, 6, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Udwadia, Z.F.; Singh, P.; Barkate, H.; Patil, S.; Rangwala, S.; Pendse, A.; Kadam, J.; Wu, W.; Caracta, C.F.; Tandon, M. Efficacy and Safety of Favipiravir, an Oral RNA-Dependent RNA Polymerase Inhibitor, in Mild-to-Moderate COVID-19: A Randomized, Comparative, Open-Label, Multicenter, Phase 3 Clinical Trial. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 103, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Hibino, M.; Hase, R.; Yamamoto, M.; Kasamatsu, Y.; Hirose, M.; Mutoh, Y.; Homma, Y.; Terada, M.; Ogawa, T.; et al. A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.; Rockstroh, J.K. Safety of Lopinavir/Ritonavir for the Treatment of HIV-Infection. Expert Opin. Drug Saf. 2005, 4, 403–420. [Google Scholar] [CrossRef]
- Tuccori, M.; Convertino, I.; Ferraro, S.; Cappello, E.; Valdiserra, G.; Focosi, D.; Blandizzi, C. The Impact of the COVID-19 “Infodemic” on Drug-Utilization Behaviors: Implications for Pharmacovigilance. Drug Saf. 2020, 43, 699–709. [Google Scholar] [CrossRef]
- Pasley, M.V.; Martinez, M.; Hermes, A.; d’Amico, R.; Nilius, A. Safety and Efficacy of Lopinavir/Ritonavir during Pregnancy: A Systematic Review. AIDS Rev. 2013, 15, 38–48. [Google Scholar]
- Lopinavir/Ritonavir (Kaletra) Use During Pregnancy. Available online: https://www.drugs.com/pregnancy/lopinavir-ritonavir.html (accessed on 28 March 2021).
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; et al. Role of Lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L.; Tse, M.W.; Que, T.L.; Peiris, J.S.M.; Sung, J.; et al. Treatment of Severe Acute Respiratory Syndrome with Lopinavir/Ritonavir: A Multicentre Retrospective Matched Cohort Study. Hong Kong Med. J. Xianggang Yi Xue Za Zhi 2003, 9, 399–406. [Google Scholar]
- Meini, S.; Pagotto, A.; Longo, B.; Vendramin, I.; Pecori, D.; Tascini, C. Role of Lopinavir/Ritonavir in the Treatment of Covid-19: A Review of Current Evidence, Guideline Recommendations, and Perspectives. J. Clin. Med. 2020, 9, 2050. [Google Scholar] [CrossRef]
- Magro, P.; Zanella, I.; Pescarolo, M.; Castelli, F.; Quiros-Roldan, E. Lopinavir/Ritonavir: Repurposing an Old Drug for HIV Infection in COVID-19 Treatment. Biomed. J. 2021, 44, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- WHO Discontinues Hydroxychloroquine and Lopinavir/Ritonavir Treatment Arms for COVID-19. Available online: https://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19 (accessed on 22 June 2021).
- Smolders, E.J.; Te Brake, L.H.; Burger, D.M. SARS-CoV-2 and HIV Protease Inhibitors: Why Lopinavir/Ritonavir Will Not Work for COVID-19 Infection. Antivir. Ther. 2020. [Google Scholar] [CrossRef]
- Charre, C.; Icard, V.; Pradat, P.; Brochier, C.; Lina, B.; Chidiac, C.; Cotte, L. Coronavirus Disease 2019 Attack Rate in HIV-Infected Patients and in Preexposure Prophylaxis Users. AIDS 2020, 34, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp): A Molecular Docking Study. Life Sci. 2020, 253, 117592. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, S.; Tao, C.; Li, X.; Anderson, T.K.; Chien, M.; Kumar, S.; Russo, J.J.; Kirchdoerfer, R.N.; Ju, J. Triphosphates of the Two Components in DESCOVY and TRUVADA Are Inhibitors of the SARS-CoV-2 Polymerase. bioRxiv 2020. [Google Scholar] [CrossRef]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-Approved Drug Ivermectin Inhibits the Replication of SARS-CoV-2 in Vitro. Antiviral Res. 2020, 178, 104787. [Google Scholar] [CrossRef] [PubMed]
- Jans, D.A.; Martin, A.J.; Wagstaff, K.M. Inhibitors of Nuclear Transport. Curr. Opin. Cell Biol. 2019, 58, 50–60. [Google Scholar] [CrossRef]
- Varghese, F.S.; Kaukinen, P.; Gläsker, S.; Bespalov, M.; Hanski, L.; Wennerberg, K.; Kümmerer, B.M.; Ahola, T. Discovery of Berberine, Abamectin and Ivermectin as Antivirals against Chikungunya and Other Alphaviruses. Antiviral Res. 2016, 126, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.; Rayner, C.; Noël, F.; Jans, D.; Wagstaff, K. Ivermectin and COVID-19: A Report in Antiviral Research, Widespread Interest, an FDA Warning, Two Letters to the Editor and the Authors’ Responses. Antiviral Res. 2020, 178, 104805. [Google Scholar] [CrossRef]
- Schmith, V.D.; Zhou, J.J.; Lohmer, L.R.L. The Approved Dose of Ivermectin Alone Is Not the Ideal Dose for the Treatment of COVID-19. Clin. Pharmacol. Ther. 2020, 108, 762–765. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Xiong, H.; Ci, X.; Li, H.; Yu, L.; Zhang, L.; Deng, X. Inhibitory Effects of Ivermectin on Nitric Oxide and Prostaglandin E2 Production in LPS-Stimulated RAW 264.7 Macrophages. Int. Immunopharmacol. 2009, 9, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, Y.; Ci, X.; An, N.; Ju, Y.; Li, H.; Wang, X.; Han, C.; Cui, J.; Deng, X. Ivermectin Inhibits LPS-Induced Production of Inflammatory Cytokines and Improves LPS-Induced Survival in Mice. Inflamm. Res. 2008, 57, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, M.; Ochani, M.; Amella, C.A.; Tanovic, M.; Susarla, S.; Li, J.H.; Wang, H.; Yang, H.; Ulloa, L.; et al. Nicotinic Acetylcholine Receptor Alpha7 Subunit Is an Essential Regulator of Inflammation. Nature 2003, 421, 384–388. [Google Scholar] [CrossRef]
- De Melo, G.D.; Lazarini, F.; Larrous, F.; Feige, L.; Kergoat, L.; Marchio, A.; Pineau, P.; Lecuit, M.; Lledo, P.-M.; Changeux, J.-P.; et al. Anti-COVID-19 Efficacy of Ivermectin in the Golden Hamster. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rajter, J.C.; Sherman, M.S.; Fatteh, N.; Vogel, F.; Sacks, J.; Rajter, J.-J. Use of Ivermectin Is Associated with Lower Mortality in Hospitalized Patients with Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. Chest 2021, 159, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.E.; Bode, C.O.; Ajayi, A.A.; Alakaloko, F.M.; Akase, I.E.; Otrofanowei, E.; Salu, O.B.; Adeyemo, W.L.; Ademuyiwa, A.O.; Omilabu, S. Ivermectin Shows Clinical Benefits in Mild to Moderate COVID19: A Randomised Controlled Double Blind Dose Response Study in Lagos. medRxiv 2021. [Google Scholar] [CrossRef]
- Behera, P.; Patro, B.K.; Singh, A.K.; Chandanshive, P.D.; Pradhan, S.K.; Pentapati, S.S.K.; Batmanabane, G.; Mohapatra, P.R.; Padhy, B.M.; Bal, S.K.; et al. Role of Ivermectin in the Prevention of SARS-CoV-2 Infection among Healthcare Workers in India: A Matched Case-Control Study. PLoS ONE 2021, 16, e0247163. [Google Scholar] [CrossRef]
- Hellwig, M.D.; Maia, A. A COVID-19 Prophylaxis? Lower Incidence Associated with Prophylactic Administration of Ivermectin. Int. J. Antimicrob. Agents 2021, 57, 106248. [Google Scholar] [CrossRef]
- Kumaki, Y.; Ennis, J.; Rahbar, R.; Turner, J.D.; Wandersee, M.K.; Smith, A.J.; Bailey, K.W.; Vest, Z.G.; Madsen, J.R.; Li, J.K.-K.; et al. Single-Dose Intranasal Administration with MDEF201 (Adenovirus Vectored Mouse Interferon-Alpha) Confers Protection from Mortality in a Lethal SARS-CoV BALB/c Mouse Model. Antiviral Res. 2011, 89, 75. [Google Scholar] [CrossRef] [PubMed]
- Robek, M.D.; Boyd, B.S.; Chisari, F.V. Lambda Interferon Inhibits Hepatitis B and C Virus Replication. J. Virol. 2005, 79, 3851–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniou, K.M.; Ferdoutsis, E.; Bouros, D. Interferons and Their Application in the Diseases of the Lung. Chest 2003, 123, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Kudo, D.; Uno, K.; Aoyagi, T.; Akahori, Y.; Ishii, K.; Kanno, E.; Maruyama, R.; Kushimoto, S.; Kaku, M.; Kawakami, K. Low-Dose Interferon-α Treatment Improves Survival and Inflammatory Responses in a Mouse Model of Fulminant Acute Respiratory Distress Syndrome. Inflammation 2013, 36, 812–820. [Google Scholar] [CrossRef]
- Gao, L.; Yu, S.; Chen, Q.; Duan, Z.; Zhou, J.; Mao, C.; Yu, D.; Zhu, W.; Nie, J.; Hou, Y. A Randomized Controlled Trial of Low-Dose Recombinant Human Interferons Alpha-2b Nasal Spray to Prevent Acute Viral Respiratory Infections in Military Recruits. Vaccine 2010, 28, 4445–4451. [Google Scholar] [CrossRef] [PubMed]
- Scagnolari, C.; Vicenzi, E.; Bellomi, F.; Stillitano, M.G.; Pinna, D.; Poli, G.; Clementi, M.; Dianzani, F.; Antonelli, G. Increased Sensitivity of SARS-Coronavirus to a Combination of Human Type I and Type II Interferons. Antivir. Ther. 2004, 9, 1003–1011. [Google Scholar]
- Bellingan, G.; Maksimow, M.; Howell, D.C.; Stotz, M.; Beale, R.; Beatty, M.; Walsh, T.; Binning, A.; Davidson, A.; Kuper, M.; et al. The Effect of Intravenous Interferon-Beta-1a (FP-1201) on Lung CD73 Expression and on Acute Respiratory Distress Syndrome Mortality: An Open-Label Study. Lancet Respir. Med. 2014, 2, 98–107. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, L.; Wei, Q.; Duan, Z.; Tu, X.; Yu, Z.; Deng, W.; Zhang, L.; Bao, L.; Zhang, B.; et al. Preventive and therapeutic effects of recombinant IFN-alpha2b nasal spray on SARS-CoV infection in Macaca mulata. Zhonghua Shi Yan He Lin Chuang Bing Xue Za Zhi Zhonghua Shiyan He Linchuang Bingduxue Zazhi Chin. J. Exp. Clin. Virol. 2005, 19, 207–210. [Google Scholar]
- Chen, Q.; Zhang, L.; Yu, D.; Yu, Z.; Liu, Y.; Zhang, L.; Li, Z.; Duan, Z.; Wang, B.; Wei, X.; et al. A field trial for evaluating the safety of recombinant human interferon alpha-2b for nasal spray. Zhonghua Shi Yan He Lin Chuang Bing Xue Za Zhi Zhonghua Shiyan He Linchuang Bingduxue Zazhi Chin. J. Exp. Clin. Virol. 2005, 19, 211–215. [Google Scholar]
- Sleijfer, S.; Bannink, M.; Van Gool, A.R.; Kruit, W.H.J.; Stoter, G. Side Effects of Interferon-Alpha Therapy. Pharm. World Sci. PWS 2005, 27, 423–431. [Google Scholar] [CrossRef]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against Type I IFNs in Patients with Life-Threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef] [PubMed]
- De Prost, N.; Bastard, P.; Arrestier, R.; Fourati, S.; Mahévas, M.; Burrel, S.; Dorgham, K.; Gorochov, G.; Tandjaoui-Lambiotte, Y.; Azzaoui, I.; et al. Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J. Clin. Immunol. 2021, 41, 536–544. [Google Scholar] [CrossRef]
- Acharya, D.; Liu, G.; Gack, M.U. Dysregulation of Type I Interferon Responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 397–398. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhuang, M.-W.; Han, L.; Zhang, J.; Nan, M.-L.; Zhan, P.; Kang, D.; Liu, X.; Gao, C.; Wang, P.-H. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Membrane (M) Protein Inhibits Type I and III Interferon Production by Targeting RIG-I/MDA-5 Signaling. Signal Transduct. Target. Ther. 2020, 5, 1–13. [Google Scholar] [CrossRef]
- Dinnon, K.H.; Leist, S.R.; Schäfer, A.; Edwards, C.E.; Martinez, D.R.; Montgomery, S.A.; West, A.; Yount, B.L.; Hou, Y.J.; Adams, L.E.; et al. A Mouse-Adapted Model of SARS-CoV-2 to Test COVID-19 Countermeasures. Nature 2020, 586, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Andreakos, E.; Tsiodras, S. COVID-19: Lambda Interferon against Viral Load and Hyperinflammation. EMBO Mol. Med. 2020, 12, e12465. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.-S.; Xiang, X.; Wang, X.; Wang, Z.-H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferon-A2b Treatment for COVID-19. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Wang, T.; Chen, L.; Chen, X.; Li, L.; Qin, X.; Li, H.; Luo, J. An Experimental Trial of Recombinant Human Interferon Alpha Nasal Drops to Prevent COVID-19 in Medical Staff in an Epidemic Area. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Trabattoni, D.; Gnudi, F.; Ibba, S.V.; Saulle, I.; Agostini, S.; Masetti, M.; Biasin, M.; Rossignol, J.-F.; Clerici, M. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication. Sci. Rep. 2016, 6, 27148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignol, J.-F. Nitazoxanide, a New Drug Candidate for the Treatment of Middle East Respiratory Syndrome Coronavirus. J. Infect. Public Health 2016, 9, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepperrell, T.; Pilkington, V.; Owen, A.; Wang, J.; Hill, A.M. Review of Safety and Minimum Pricing of Nitazoxanide for Potential Treatment of COVID-19. J. Virus Erad. 2020, 6, 52–60. [Google Scholar] [CrossRef]
- Rossignol, J.-F. Nitazoxanide: A First-in-Class Broad-Spectrum Antiviral Agent. Antiviral Res. 2014, 110, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elazar, M.; Liu, M.; McKenna, S.A.; Liu, P.; Gehrig, E.A.; Puglisi, J.D.; Rossignol, J.-F.; Glenn, J.S. The Anti-Hepatitis C Agent Nitazoxanide Induces Phosphorylation of Eukaryotic Initiation Factor 2alpha via Protein Kinase Activated by Double-Stranded RNA Activation. Gastroenterology 2009, 137, 1827–1835. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, H.J.; Song, C.S.; Choi, I.S.; Lee, J.B.; Park, S.Y. Nitazoxanide Suppresses IL-6 Production in LPS-Stimulated Mouse Macrophages and TG-Injected Mice. Int. Immunopharmacol. 2012, 13, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Kelleni, M.T. Nitazoxanide/Azithromycin Combination for COVID-19: A Suggested New Protocol for Early Management. Pharmacol. Res. 2020, 157, 104874. [Google Scholar] [CrossRef] [PubMed]
- Rajoli, R.K.; Pertinez, H.; Arshad, U.; Box, H.; Tatham, L.; Curley, P.; Neary, M.; Sharp, J.; Liptrott, N.J.; Valentijn, A.; et al. Dose Prediction for Repurposing Nitazoxanide in SARS-CoV-2 Treatment or Chemoprophylaxis. medRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Rocco, P.R.M.; Silva, P.L.; Cruz, F.F.; Junior, M.A.C.M.; Tierno, P.F.G.M.M.; Moura, M.A.; De Oliveira, L.F.G.; Lima, C.C.; Dos Santos, E.A.; Junior, W.F.; et al. Early Use of Nitazoxanide in Mild Covid-19 Disease: Randomised, Placebo-Controlled Trial. Eur. Respir. J. 2021. [Google Scholar] [CrossRef]
- Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2. J. Virol. 2010, 84, 12658–12664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; et al. Evidence That TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. 2011, 85, 4122–4134. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Matsuyama, S.; Li, X.; Takeda, M.; Kawaguchi, Y.; Inoue, J.-I.; Matsuda, Z. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob. Agents Chemother. 2016, 60, 6532–6539. [Google Scholar] [CrossRef] [Green Version]
- Maggio, R.; Corsini, G.U. Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection. Pharmacol. Res. 2020, 157, 104837. [Google Scholar] [CrossRef]
- Fu, Q.; Zheng, X.; Zhou, Y.; Tang, L.; Chen, Z.; Ni, S. Re-Recognizing Bromhexine Hydrochloride: Pharmaceutical Properties and Its Possible Role in Treating Pediatric COVID-19. Eur. J. Clin. Pharmacol. 2021, 77, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Ansarin, K.; Tolouian, R.; Ardalan, M.; Taghizadieh, A.; Varshochi, M.; Teimouri, S.; Vaezi, T.; Valizadeh, H.; Saleh, P.; Safiri, S.; et al. Effect of Bromhexine on Clinical Outcomes and Mortality in COVID-19 Patients: A Randomized Clinical Trial. BioImpacts BI 2020, 10, 209–215. [Google Scholar] [CrossRef]
- Li, T.; Sun, L.; Zhang, W.; Zheng, C.; Jiang, C.; Chen, M.; Chen, D.; Dai, Z.; Bao, S.; Shen, X. Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled Pilot Study. Clin. Transl. Sci. 2020, 13, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, C. Goodman & Gilman’s: The Pharmacological Basis of Therapeutic, 13th ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Gaillard, T.; Briolant, S.; Madamet, M.; Pradines, B. The End of a Dogma: The Safety of Doxycycline Use in Young Children for Malaria Treatment. Malar. J. 2017, 16, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakeri, B.; Wright, G.D. Chemical Biology of Tetracycline Antibiotics. Biochem. Cell Biol. 2008, 86, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Mohamed, Z.; Paydar, M.; Rahman, N.A.; Yusof, R. Inhibitory Effect of Doxycycline against Dengue Virus Replication in Vitro. Arch. Virol. 2014, 159, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Abrams, R.P.M.; Yasgar, A.; Teramoto, T.; Lee, M.-H.; Dorjsuren, D.; Eastman, R.T.; Malik, N.; Zakharov, A.V.; Li, W.; Bachani, M.; et al. Therapeutic Candidates for the Zika Virus Identified by a High-Throughput Screen for Zika Protease Inhibitors. Proc. Natl. Acad. Sci. USA 2020, 117, 31365–31375. [Google Scholar] [CrossRef]
- Phillips, J.M.; Gallagher, T.; Weiss, S.R. Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendrot, M.; Andreani, J.; Jardot, P.; Hutter, S.; Delandre, O.; Boxberger, M.; Mosnier, J.; Le Bideau, M.; Duflot, I.; Fonta, I.; et al. In Vitro Antiviral Activity of Doxycycline against SARS-CoV-2. Molecules 2020, 25, 5064. [Google Scholar] [CrossRef]
- Dutta, K.; Basu, A. Use of Minocycline in Viral Infections. Indian J. Med. Res. 2011, 133, 467–470. [Google Scholar] [PubMed]
- Henehan, M.; Montuno, M.; De Benedetto, A. Doxycycline as an Anti-Inflammatory Agent: Updates in Dermatology. J. Eur. Acad. Dermatol. Venereol. JEADV 2017, 31, 1800–1808. [Google Scholar] [CrossRef]
- Griffin, M.O.; Fricovsky, E.; Ceballos, G.; Villarreal, F. Tetracyclines: A Pleitropic Family of Compounds with Promising Therapeutic Properties. Review of the Literature. Am. J. Physiol. Cell Physiol. 2010, 299, C539–C548. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.; Bijlmer, H.; Fournier, P.-E.; Graves, S.; Hartzell, J.; Kersh, G.J.; Limonard, G.; Marrie, T.J.; Massung, R.F.; McQuiston, J.H.; et al. Diagnosis and Management of Q Fever--United States, 2013: Recommendations from CDC and the Q Fever Working Group. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2013, 62, 1–30. [Google Scholar]
- Alam, M.M.; Mahmud, S.; Rahman, M.M.; Simpson, J.; Aggarwal, S.; Ahmed, Z. Clinical Outcomes of Early Treatment with Doxycycline for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New York. Cureus 2020, 12. [Google Scholar] [CrossRef]
- Yates, P.A.; Newman, S.A.; Oshry, L.J.; Glassman, R.H.; Leone, A.M.; Reichel, E. Doxycycline Treatment of High-Risk COVID-19-Positive Patients with Comorbid Pulmonary Disease. Ther. Adv. Respir. Dis. 2020, 14, 1753466620951053. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.C.; Dorward, J.; Yu, L.-M.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Hecke, O.V.; Berry, N.; Detry, M.; Saunders, C.; et al. Azithromycin for Community Treatment of Suspected COVID-19 in People at Increased Risk of an Adverse Clinical Course in the UK (PRINCIPLE): A Randomised, Controlled, Open-Label, Adaptive Platform Trial. Lancet 2021, 397, 1063–1074. [Google Scholar] [CrossRef]
- Humphries, T.J.; Merritt, G.J. Review Article: Drug Interactions with Agents Used to Treat Acid-Related Diseases. Aliment. Pharmacol. Ther. 1999, 13 (Suppl. S3), 18–26. [Google Scholar] [CrossRef]
- Bourinbaiar, A.S.; Fruhstorfer, E.C. The Effect of Histamine Type 2 Receptor Antagonists on Human Immunodeficiency Virus (HIV) Replication: Identification of a New Class of Antiviral Agents. Life Sci. 1996, 59, 365–370. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of Therapeutic Targets for SARS-CoV-2 and Discovery of Potential Drugs by Computational Methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Conigliaro, J.; Wang, T.C.; Tracey, K.J.; Callahan, M.V.; Abrams, J.A.; Famotidine Research Group Famotidine. Use Is Associated with Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study. Gastroenterology 2020, 159, 1129–1131.e3. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Leung, W.K. Association Between Famotidine Use and COVID-19 Severity in Hong Kong: A Territory-Wide Study. Gastroenterology 2021, 160, 1898–1899. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Lee, S.; Wu, W.K.K.; Cheung, B.M.Y.; Zhang, Q.; Tse, G. Proton Pump Inhibitor or Famotidine Use and Severe COVID-19 Disease: A Propensity Score-Matched Territory-Wide Study. Gut 2020. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C. Nitric Oxide and the Immune Response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Goldbart, A.; Golan-Tripto, I.; Pillar, G.; Livnat-Levanon, G.; Efrati, O.; Spiegel, R.; Lubetzky, R.; Lavie, M.; Carmon, L.; Ghaffari, A.; et al. Inhaled Nitric Oxide Therapy in Acute Bronchiolitis: A Multicenter Randomized Clinical Trial. Sci. Rep. 2020, 10, 9605. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Channick, R.; Ivy, D.; Goldstein, B. Clinical Perspectives with Long-Term Pulsed Inhaled Nitric Oxide for the Treatment of Pulmonary Arterial Hypertension. Pulm. Circ. 2012, 2, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Reiss, C.S.; Komatsu, T. Does Nitric Oxide Play a Critical Role in Viral Infections? J. Virol. 1998, 72, 4547–4551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benz, D.; Cadet, P.; Mantione, K.; Zhu, W.; Stefano, G. Tonal Nitric Oxide and Health—A Free Radical and a Scavenger of Free Radicals. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2002, 8, RA1–RA4. [Google Scholar]
- Saura, M.; Zaragoza, C.; McMillan, A.; Quick, R.A.; Hohenadl, C.; Lowenstein, J.M.; Lowenstein, C.J. An Antiviral Mechanism of Nitric Oxide: Inhibition of a Viral Protease. Immunity 1999, 10, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Akerström, S.; Mousavi-Jazi, M.; Klingström, J.; Leijon, M.; Lundkvist, A.; Mirazimi, A. Nitric Oxide Inhibits the Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2005, 79, 1966–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karupiah, G.; Xie, Q.W.; Buller, R.M.; Nathan, C.; Duarte, C.; MacMicking, J.D. Inhibition of Viral Replication by Interferon-Gamma-Induced Nitric Oxide Synthase. Science 1993, 261, 1445–1448. [Google Scholar] [CrossRef] [PubMed]
- Rimmelzwaan, G.F.; Baars, M.M.; de Lijster, P.; Fouchier, R.A.; Osterhaus, A.D. Inhibition of Influenza Virus Replication by Nitric Oxide. J. Virol. 1999, 73, 8880–8883. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, P.; Gao, H.; Sun, B.; Chao, D.; Wang, F.; Zhu, Y.; Hedenstierna, G.; Wang, C.G. Inhalation of Nitric Oxide in the Treatment of Severe Acute Respiratory Syndrome: A Rescue Trial in Beijing. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 39, 1531–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelidis, C.; Kotsialou, Z.; Kossyvakis, C.; Vrettou, A.-R.; Zacharoulis, A.; Kolokathis, F.; Kekeris, V.; Giannopoulos, G. Colchicine Pharmacokinetics and Mechanism of Action. Curr. Pharm. Des. 2018, 24, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Ben-Chetrit, E.; Bergmann, S.; Sood, R. Mechanism of the Anti-Inflammatory Effect of Colchicine in Rheumatic Diseases: A Possible New Outlook through Microarray Analysis. Rheumatology 2006, 45, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herscovici, T.; Merlob, P.; Stahl, B.; Laron-Kenet, T.; Klinger, G. Colchicine Use during Breastfeeding. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2015, 10, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Götestam Skorpen, C.; Hoeltzenbein, M.; Tincani, A.; Fischer-Betz, R.; Elefant, E.; Chambers, C.; da Silva, J.; Nelson-Piercy, C.; Cetin, I.; Costedoat-Chalumeau, N.; et al. The EULAR Points to Consider for Use of Antirheumatic Drugs before Pregnancy, and during Pregnancy and Lactation. Ann. Rheum. Dis. 2016, 75, 795–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indraratna, P.L.; Virk, S.; Gurram, D.; Day, R.O. Use of Colchicine in Pregnancy: A Systematic Review and Meta-Analysis. Rheumatol. Oxf. Engl. 2018, 57, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.P.; Gasparyan, A.Y.; Zimba, O. Benefits and Adverse Effects of Hydroxychloroquine, Methotrexate and Colchicine: Searching for Repurposable Drug Candidates. Rheumatol. Int. 2020, 40, 1741–1751. [Google Scholar] [CrossRef]
- Gloperba (Colchicine Oral Solution): Uses, Dosage, Side Effects, Interactions, Warning. Available online: https://www.rxlist.com/gloperba-drug.htm (accessed on 17 April 2021).
- Colchicine—FDA Prescribing Information, Side Effects and Uses. Available online: https://www.drugs.com/pro/colchicine.html (accessed on 17 April 2021).
- Mitigare Uses, Side Effects & Warnings. Available online: https://www.drugs.com/mtm/mitigare.html (accessed on 17 April 2021).
- Misawa, T.; Takahama, M.; Kozaki, T.; Lee, H.; Zou, J.; Saitoh, T.; Akira, S. Microtubule-Driven Spatial Arrangement of Mitochondria Promotes Activation of the NLRP3 Inflammasome. Nat. Immunol. 2013, 14, 454–460. [Google Scholar] [CrossRef]
- Marchetti, C.; Mould, K.; Tengesdal, I.W.; Janssen, W.J.; Dinarello, C.A. Targeting of the NLRP3 Inflammasome for Early COVID-19. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Bouabdallaoui, N.; L’Allier, P.L.; Gaudet, D.; Shah, B.; Pillinger, M.H.; Lopez-Sendon, J.; da Luz, P.; Verret, L.; Audet, S.; et al. Efficacy of Colchicine in Non-Hospitalized Patients with COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Follmann, D.; Fintzi, J.; Fay, M.P.; Janes, H.E.; Baden, L.; Sahly, H.E.; Fleming, T.R.; Mehrotra, D.V.; Carpp, L.N.; Juraska, M.; et al. Assessing Durability of Vaccine Effect Following Blinded Crossover in COVID-19 Vaccine Efficacy Trials. medRxiv 2020. [Google Scholar] [CrossRef]
- Hung, I.; Lung, K.-C.; Tso, E.; Chung, T.; Chu, M.-Y.; Ng, Y.-Y.; Lo, J.; Chan, J.; Tam, A.; Shum, H.; et al. Triple Combination of Interferon Beta-1b, Lopinavir–Ritonavir, and Ribavirin in the Treatment of Patients Admitted to Hospital with COVID-19: An Open-Label, Randomised, Phase 2 Trial. Lancet 2020, 395. [Google Scholar] [CrossRef]
- Jeffreys, L.; Pennington, S.H.; Duggan, J.; Breen, A.; Jinks, J.; Ardrey, A.; Donnellan, S.; Patterson, E.I.; Hughes, G.L.; Hong, D.; et al. Remdesivir-Ivermectin Combination Displays Synergistic Interaction with Improved in Vitro Antiviral Activity against SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sahraei, Z.; Shabani, M.; Shokouhi, S.; Saffaei, A. Aminoquinolines against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. Int. J. Antimicrob. Agents 2020, 55, 105945. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Zaidi, S.Z.A.; Shang, T.; Zhang, J.Y.; Al-Khlaiwi, T.; Bukhari, I.A.; Akram, J.; Klonoff, D.C. Biological, Molecular and Pharmacological Characteristics of Chloroquine, Hydroxychloroquine, Convalescent Plasma, and Remdesivir for COVID-19 Pandemic: A Comparative Analysis. J. King Saud Univ. Sci. 2020, 32, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Sahebnasagh, A.; Saghafi, F.; Avan, R.; Khoshi, A.; Khataminia, M.; Safdari, M.; Habtemariam, S.; Ghaleno, H.R.; Nabavi, S.M. The Prophylaxis and Treatment Potential of Supplements for COVID-19. Eur. J. Pharmacol. 2020, 887, 173530. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; et al. Deployment of Convalescent Plasma for the Prevention and Treatment of COVID-19. J. Clin. Invest. 2020, 130, 2757–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on Monoclonal Antibody Therapy as Potential Therapeutic Intervention for Coronavirus Disease-19 (COVID-19). Asian Pac. J. Allergy Immunol. 2020, 38, 10–18. [Google Scholar] [CrossRef]
- Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M. Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020, 181, 969–977. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Cotton, M.F.; Eisele, B.; Gengenbacher, M.; Grode, L.; Hesseling, A.C.; Walzl, G. The BCG Replacement Vaccine VPM1002: From Drawing Board to Clinical Trial. Expert Rev. Vaccines 2014, 13, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Rosero, S.; Torres, I.; Goodridge, A. Mast Cell C57 Activation by Mycobacterium Tuberculosis Lipids and Mycobacterium Bovis Bacille Calmette-Guerin (BCG). In C58. Tuberculosis Infection and Disease; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2016; p. A5484. [Google Scholar]
Drug | All Clinical Trials | Prophylactic Clinical Trials |
---|---|---|
Favipiravir | 38 | 1 |
LPV/r | 38 | 4 |
Emtricitabine/Tenofovir | 7 | 3 |
Ivermectin | 68 | 10 |
Interferons | 40 | 5 |
Nitazoxanide | 28 | 5 |
Bromhexine hydrochloride (HCl) | 6 | 2 |
Doxycycline | 14 | 1 |
Famotidine | 8 | 0 |
Nitric Oxide (NO) | 22 | 5 |
Colchicine | 26 | 0 |
Drug | Safety | Cost 2 | Long-Term Treatment | COVID-19 Clinical Trial | Administration 3 | ||
---|---|---|---|---|---|---|---|
(Price per Dose in USD, Single Dose) | Age +65 | Prophylaxis | |||||
Antiviral | Favipiravir | ++++ | N.A. 4 | 25 days (COVID-19) | + | + | per os (P.O.) |
LPV/r | +++ | 3.9–4.6 (400–100 mg/5 mL) | Unlimited | + | P.O. | ||
Emtricitabine/ tenofovir | +++ | 36.02–49.32 (300 mg) | Unlimited (HIV) 12 weeks (COVID-19) | + | P.O. | ||
Repurposed Drugs | Ivermectin | +++ | 3.95 (3 mg) | 15–17 year (up to ×2 a year) | + | P.O./intravenous (I.V.) | |
Interferons | ++++ | 9274 (4 mL) 5 6985 (0.3 mg) 6 | 28 days (COVID-19) | + | Mucosal, Parenteral | ||
Nitazoxanide | ++++ | 140.8 (500 mg) 7 | 3–24 months | + | + | P.O. | |
Bromhexine HCl | ++++ | 0.1–0.6 (8 mg) | 2 months (COVID-19) | + | P.O. | ||
Miscellaneous | Doxycycline | +++ | 0.6–2 (50/100 mg) | Months | P.O./I.V. | ||
Famotidine | ++++ | 0.08–2.04 (20 mg) | Unlimited | +/− | P.O./I.V. | ||
Nitric Oxide (NO) | ++++ 1 | N.A. | 5–17 months 4 weeks (COVID-19) | + | Inhalation, Topical 3 | ||
Colchicine | +++ | 2.24–2.55 (0.6 mg) | Unlimited 21 days (COVID-19) | + | P.O. |
Drug | NCT | Phase | Participants | Country | Remarks |
---|---|---|---|---|---|
Ivermectin | NCT04832945 | Completed | 713 | Dominican Republic | |
NCT04668469 | Completed | 600 | Egypt | ||
NCT04425850 | Completed | 229 | Argentina | Positive results | |
NCT04446104 | 3 | 4257 | Singapore | ||
NCT04891250 | 4 | 800 | Zambia | Not yet recruiting | |
NCT04527211 | 3 | 550 | Colombia | Not yet recruiting | |
NCT04894721 | 2/3 | 750 | Argentina | Recruiting | |
NCT04422561 | 2/3 | 340 | Egypt | ||
NCT04701710 | 1/2 | 300 | Argentina | +Iota-carrageenan | |
NCT04384458 | N.A. | 400 | Brazil | Recruiting | |
Nitazoxanide | NCT04788407 | 4 | 456 | Argentina | Recruiting |
NCT04359680 | 3 | 1407 | USA | ||
NCT04343248 1 | 3 | 800 | USA | ||
NCT04561063 | 2 | 1950 | South Africa | Recruiting | |
NCT04435314 | 2 | 200 | Brazil | Not yet recruiting | |
Emtricitabine/Tenofovir | NCT04334928 | 3 | 4000 | Spain | Recruiting |
NCT04405271 | 3 | 1378 | Argentina | Not yet recruiting | |
NCT04519125 | 2/3 | 950 | Colombia | Not yet recruiting | |
LPV/r | NCT04328285 | 3 | 1200 | France | |
NCT04364022 | 3 | 326 | Switzerland | ||
NCT04321174 | 3 | 1220 | Canada | Recruiting | |
NCT04251871 | N.A. | 150 | China | Recruiting 6 | |
Interferons | NCT04534725 | 3 | 2282 | Australia 5 | Recruiting |
NCT04320238 | 3 | 2944 | China | Recruiting | |
NCT04552379 | 3 | 1240 | Chile | Recruiting | |
NCT04344600 | 2 | 164 | USA | Recruiting | |
NCT04251871 | N.A. | 150 | China | Recruiting 6 | |
Doxycycline | NCT04584567 3 | 3 | 1100 | Tunisia | Recruiting |
Nitric Oxide (NO) | NCT04842331 | 2/3 | 600 | UK | Recruiting |
NCT04408183 | 2 | 225 | USA | Recruiting | |
NCT04337918 | 2 | 143 | Canada | ||
NCT04858451 2 | 2 | 150 | UK | Not yet recruiting | |
NCT04312243 | 2 | 24 | USA | ||
Favipiravir | NCT04448119 | 2 | 760 | Canada | |
Bromhexine HCl | NCT04405999 | Completed | 50 | Russia | |
NCT04340349 4 | 1 | 214 | Mexico |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Zuk, N.; Dechtman, I.-D.; Henn, I.; Weiss, L.; Afriat, A.; Krasner, E.; Gal, Y. Potential Prophylactic Treatments for COVID-19. Viruses 2021, 13, 1292. https://doi.org/10.3390/v13071292
Ben-Zuk N, Dechtman I-D, Henn I, Weiss L, Afriat A, Krasner E, Gal Y. Potential Prophylactic Treatments for COVID-19. Viruses. 2021; 13(7):1292. https://doi.org/10.3390/v13071292
Chicago/Turabian StyleBen-Zuk, Noam, Ido-David Dechtman, Itai Henn, Libby Weiss, Amichay Afriat, Esther Krasner, and Yoav Gal. 2021. "Potential Prophylactic Treatments for COVID-19" Viruses 13, no. 7: 1292. https://doi.org/10.3390/v13071292
APA StyleBen-Zuk, N., Dechtman, I. -D., Henn, I., Weiss, L., Afriat, A., Krasner, E., & Gal, Y. (2021). Potential Prophylactic Treatments for COVID-19. Viruses, 13(7), 1292. https://doi.org/10.3390/v13071292