Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Campylobacter Strains and Bacteriophages
2.2. Broiler Rearing and In Vivo Trial
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar]
- Marotta, F.; Garofolo, G.; Di Donato, G.; Aprea, G.; Platone, I.; Cianciavicchia, S.; Alessiani, A.; Di Giannatale, E. Population Diversity ofCampylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat. BioMed Res. Int. 2015, 2015, 859845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreling, V.; Falcone, F.H.; Kehrenberg, C.; Hensel, A. Campylobacter sp.: Pathogenicity factors and prevention methods—new molecular targets for innovative antivirulence drugs? Appl. Microbiol. Biotechnol. 2020, 104, 10409–10436. [Google Scholar] [CrossRef] [PubMed]
- Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1353–1377. [Google Scholar] [CrossRef]
- European Food Safety Authority. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses, in the EU, 2008-Part B: Analysis of factors associated with Campylobacter colonisation of broiler batches and with Campylobacter contamination of broiler carcasses; and investigation of the culture method diagnostic characteristics used to analyse broiler carcass samples. EFSA J. 2010, 8, 1522. [Google Scholar]
- Marotta, F.; Janowicz, A.; Di Marcantonio, L.; Ercole, C.; Di Donato, G.; Garofolo, G.; Di Giannatale, E. Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Pathogens 2020, 9, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, P.; Duim, B.; Rigter, A.; van der Plas, J.; Jacobs-Reitsma, W.F.; Wagenaar, J.A. Computer-Assisted Analysis and Epidemiological Value of Genotyping Methods for Campylobacter jejuni andCampylobacter coli. J. Clin. Microbiol. 2000, 38, 1940–1946. [Google Scholar] [CrossRef] [Green Version]
- Boysen, L.; Rosenquist, H.; Larsson, J.T.; Nielsen, E.M.; Sørensen, G.; Nordentoft, S.; Hald, T. Source attribution of human campylobacteriosis in Denmark. Epidemiol. Infect. 2014, 142, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Kittl, S.; Heckel, G.; Korczak, B.M.; Kuhnert, P. Source Attribution of Human Campylobacter Isolates by MLST and Fla-Typing and Association of Genotypes with Quinolone Resistance. PLoS ONE 2013, 8, e81796. [Google Scholar] [CrossRef] [Green Version]
- Ravel, A.; Hurst, M.; Petrica, N.; David, J.; Mutschall, S.K.; Pintar, K.; Taboada, E.N.; Pollari, F. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting. PLoS ONE 2017, 12, e0183790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotariu, O.; Smith-Palmer, A.; Cowden, J.; Bessell, P.R.; Innocent, G.T.; Reid, S.W.J.; Matthews, L.; Dallas, J.; Ogden, I.D.; Forbes, K.J.; et al. Putative household outbreaks of campylobacteriosis typically comprise single MLST genotypes. Epidemiol. Infect. 2010, 138, 1744–1747. [Google Scholar] [CrossRef]
- Noormohamed, A.; Fakhr, M.K. Prevalence and Antimicrobial Susceptibility of Campylobacter spp. in Oklahoma Conventional and Organic Retail Poultry. Open Microbiol. J. 2014, 8, 130–137. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2018 zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar]
- Lu, T.; Marmion, M.; Ferone, M.; Wall, P.; Scannell, A.G. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br. Poult. Sci. 2021, 62, 53–67. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Campylobacter in broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [Google Scholar] [CrossRef]
- Carrillo, C.M.L.; Connerton, P.; Pearson, T.; Connerton, I.F. Free-range layer chickens as a source of Campylobacter bacteriophage. Antonie Leeuwenhoek 2007, 92, 275–284. [Google Scholar] [CrossRef]
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.T.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in Natural and Artificial Environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinivasagam, H.N.; Estella, W.; Maddock, L.; Mayer, D.G.; Weyand, C.; Connerton, P.L.; Connerton, I. Bacteriophages to Control Campylobacter in Commercially Farmed Broiler Chickens, in Australia. Front. Microbiol. 2020, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- El-Shibiny, A.; Scott, A.; Timms, A.; Metawea, Y.; Connerton, P.; Connerton, I. Application of a Group II Campylobacter Bacteriophage To Reduce Strains of Campylobacter jejuni and Campylobacter coli Colonizing Broiler Chickens. J. Food Prot. 2009, 72, 733–740. [Google Scholar] [CrossRef]
- Atterbury, R.; Connerton, P.; Dodd, C.; Rees, C.; Connerton, I. Application of Host-Specific Bacteriophages to the Surface of Chicken Skin Leads to a Reduction in Recovery of Campylobacter jejuni. Appl. Environ. Microbiol. 2003, 69, 6302–6306. [Google Scholar] [CrossRef] [Green Version]
- Tetz, G.V.; Ruggles, K.; Zhou, H.; Heguy, A.; Tsirigos, A.; Tetz, V. Bacteriophages as potential new mammalian pathogens. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, P.J.; Connerton, P.L.; Connerton, I. Phage Biocontrol of Campylobacter jejuni in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. Front. Microbiol. 2019, 10, 476. [Google Scholar] [CrossRef]
- Aprea, G.; Zocchi, L.; Di Fabio, M.; De Santis, S.; Prencipe, V.A.; Migliorati, G. The applications of bacteriophages and their lysins as biocontrol agents against the foodborne pathogens Listeria monocytogenes and Campylobacter: An updated look. Veter. Ital. 2018, 54, 293–303. [Google Scholar]
- Carrillo, C.L.; Atterbury, R.; El-Shibiny, A.; Connerton, P.; Dillon, E.; Scott, A.; Connerton, I. Bacteriophage Therapy To Reduce Campylobacter jejuni Colonization of Broiler Chickens. Appl. Environ. Microbiol. 2005, 71, 6554–6563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenaar, J.A.; Van Bergen, M.A.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M. Phage therapy reduces Campylobacter jejuni colonization in broilers. Veter. Microbiol. 2005, 109, 275–283. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Gannon, B.W.; Halfhide, D.E.; Santos, S.B.; Hayes, C.M.; Roe, J.M.; Azeredo, J. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 2010, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprea, G.; D’Angelantonio, D.; Boni, A.; Scattolini, S.; Di Serafino, G.; Neri, D.; Sacchini, L.; Acciari, V.A.; Torresi, M.; Centorame, P.; et al. Activity of Bacteriophages to Control Listeria Monocytogenes and Campylobacter Jejuni Antibiotic Resistant Strains. 2018. Available online: www.remedypublications.com/open-access/pactivity-of-bacteriophages-to-controlem-listeria-monocytogenes-and-campylobacter-jejuniem-antibiotic-resistant-strainsp-2228.pdf (accessed on 16 July 2021).
- Aprea, G.; D’Angelantonio, D.; Boni, A.; Connerton, P.; Connerton, I.; Scattolini, S.; Marotta, F.; Pomilio; Francesco; Migliorati, G.; et al. Isolation and Morphological Characterization of New Bacteriophages Active against Campylobacter Jejuni. 2018. Available online: http://www.remedypublications.com/open-access/pisolation-and-morphological-characterization-of-new-bacteriophages-active-against-campylobacter-jejunip-2046.pdf (accessed on 16 July 2021).
- European Food Safety Authority. Scientific Opinion on the evaluation of the safety and efficacy of Listex™ P100 for the removal of Listeria monocytogenes surface contamination of raw fish. EFSA J. 2012, 10, 2615. [Google Scholar]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glünder, G.; Klein, G. Effect of Bacteriophage Application on Campylobacter jejuni Loads in Commercial Broiler Flocks. Appl. Environ. Microbiol. 2013, 79, 7525–7533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelantonio, D.; Aprea, G.; Boni, A.; Serafino, G.d.; Marotta, F.; Connerton, P.; Connerton, I.; di Giannatale, E.; Pomilio, F.; Migliorati, G. Evaluation of new active lytic bacteriophages against Campylobacter, through in vitro efficacy tests. In Proceedings of the XVII Congresso Nazionale S.I.Di.L.V. Hotel Parchi Del Garda, Pacengo di Lazise, Verona, Italy, 30 September 2016; SIDILV c/o MV Congressi Spa, Via Marchesi 26 D, 43126, Parma, Italy. pp. 274–275. [Google Scholar]
- Tomat, D.D.; Migliore, L.; Aquili, V.; Quiberoni, A.d.L.; Balagué, C. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products. Front. Cell. Infect. Microbiol. 2013, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Cairns, B.; Timms, A.; Jansen, V.A.; Connerton, I.; Payne, R.J.H. Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy. PLOS Pathog. 2009, 5, e1000253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, K.; Malik, D.J. Microencapsulation of Bacteriophages Using Membrane Emulsification in Different pH-Triggered Controlled Release Formulations for Oral Administration. Pharmaceuticals 2021, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Rhys-Davies, L.; Ogden, J. Vets’ and Pet Owners’ Views About Antibiotics for Companion Animals and the Use of Phages as an Alternative. Front. Veter-Sci. 2020, 7, 513770. [Google Scholar] [CrossRef] [PubMed]
Day of Life | Temperature °C |
---|---|
Day 1 | 33 |
Day 4 | 32 |
Day 7 | 30 |
Day 10 | 29 |
Day 13 | 28 |
Day 16 | 27 |
Day 19 | 25 |
Day 22 | 24 |
Day 25 | 23 |
Day 28 | 22 |
Day 31 | 21 |
Day 34 | 20 |
Day 40 | 20 |
Days of Life | Feed |
---|---|
0–10 days | Starter feed |
11–21 days | 1st growing feed |
22–30 days | 2nd growing feed |
31–39 days | Finishing feed |
Day | Experimental Action | Number of Animals | Aim | Results |
---|---|---|---|---|
T0 | Cloacal swab | 75 | To verify the absence of natural Campylobacter spp. colonization | 0 cfu/swab |
T1 | C. jejuni administration | 75 | Experimental infection | |
T10 | Cloacal swab | 75 | To verify C. jejuni experimental infection | 108 cfu/swab |
T30 | Partial slaughtering | 6 | Evaluation of C. jejuni counts for MOI preparations | 108 cfu/gr cecal content |
T37 | Group construction (A, B and C) | 23 per group | ||
T38 | Phage 16 and SM-CaCO3 administration | 46 treated with phage 16 23 treated with SM-CaCO3 | Phage therapy | |
T39 | Phage 7 and SM-CaCO3 administration | 46 treated with phage 7 23 treated with SM-CaCO3 | Phage therapy | |
T40 | Slaughtering | 69 | Phage therapy | Group A: 108 cfu/gr cecal content Group B: 107 cfu/gr cecal content Group C: 106 cfu/gr cecal content |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelantonio, D.; Scattolini, S.; Boni, A.; Neri, D.; Di Serafino, G.; Connerton, P.; Connerton, I.; Pomilio, F.; Di Giannatale, E.; Migliorati, G.; et al. Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses 2021, 13, 1428. https://doi.org/10.3390/v13081428
D’Angelantonio D, Scattolini S, Boni A, Neri D, Di Serafino G, Connerton P, Connerton I, Pomilio F, Di Giannatale E, Migliorati G, et al. Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses. 2021; 13(8):1428. https://doi.org/10.3390/v13081428
Chicago/Turabian StyleD’Angelantonio, Daniela, Silvia Scattolini, Arianna Boni, Diana Neri, Gabriella Di Serafino, Philippa Connerton, Ian Connerton, Francesco Pomilio, Elisabetta Di Giannatale, Giacomo Migliorati, and et al. 2021. "Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter" Viruses 13, no. 8: 1428. https://doi.org/10.3390/v13081428
APA StyleD’Angelantonio, D., Scattolini, S., Boni, A., Neri, D., Di Serafino, G., Connerton, P., Connerton, I., Pomilio, F., Di Giannatale, E., Migliorati, G., & Aprea, G. (2021). Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses, 13(8), 1428. https://doi.org/10.3390/v13081428