Adaptation and Virulence of Enterovirus-A71
Abstract
:1. Epidemiology of Enterovirus-A71 (EV-A71)
2. Viral Replication
3. Studies on Pathogenicity
3.1. Evaluation of EV-A71 Virulence
3.2. HS-Binding Mutations and Tissue Culture Adaptation
3.3. Mouse (Rodent) Adaptation
3.4. Possible Neurovirulence Determinants Not Influenced by Adaptation Mutations
4. Identification of True Virulence Determinants
Author Contributions
Funding
Conflicts of Interest
References
- Herrero, L.J.; Lee, C.S.; Hurrelbrink, R.J.; Chua, B.H.; Chua, K.B.; McMinn, P.C. Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997–2000. Arch. Virol. 2003, 148, 1369–1385. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.G.; Parashar, U.D.; Lye, M.S.; Ong, F.G.; Zaki, S.R.; Alexander, J.P.; Ho, K.K.; Han, L.L.; Pallansch, M.A.; Suleiman, A.B.; et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: Clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin. Infect. Dis. 2000, 31, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.; Lin, T.Y.; Hsu, K.H.; Huang, Y.C.; Lin, K.L.; Hsueh, C.; Shih, S.R.; Ning, H.C.; Hwang, M.S.; Wang, H.S.; et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 1999, 354, 1682–1686. [Google Scholar] [CrossRef]
- Shih, S.R.; Ho, M.S.; Lin, K.H.; Wu, S.L.; Chen, Y.T.; Wu, C.N.; Lin, T.Y.; Chang, L.Y.; Tsao, K.C.; Ning, H.C.; et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res. 2000, 68, 127–136. [Google Scholar] [CrossRef]
- Ho, M.; Chen, E.R.; Hsu, K.H.; Twu, S.J.; Chen, K.T.; Tsai, S.F.; Wang, J.R.; Shih, S.R. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N. Engl. J. Med. 1999, 341, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Chang, H.L.; Yan, T.R.; Cheng, Y.T.; Chen, K.T. An eight-year study of epidemiologic features of enterovirus 71 infection in Taiwan. Am. J. Trop. Med. Hyg. 2007, 77, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Hwang, K.P.; Ke, G.M.; Wang, C.F.; Ke, L.Y.; Hsu, Y.T.; Tung, Y.C.; Chu, P.Y.; Chen, B.H.; Chen, H.L.; et al. Evolution of EV71 genogroup in Taiwan from 1998 to 2005: An emerging of subgenogroup C4 of EV71. J. Med. Virol. 2006, 78, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wan, Z.; Li, Y.; Hu, Y.; Jin, X.; Zhang, C. National Epidemiology and Evolutionary History of Four Hand, Foot and Mouth Disease-Related Enteroviruses in China from 2008 to 2016. Virol. Sin. 2020, 35, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Khanh, T.H.; Sabanathan, S.; Thanh, T.T.; Thoa, L.P.K.; Thuong, T.C.; Hang, V.; Farrar, J.; Hien, T.T.; Chau, N.; van Doorn, H.R. Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg. Infect. Dis. 2012, 18, 2002–2005. [Google Scholar] [CrossRef]
- Seiff, A. Cambodia unravels cause of mystery illness. Lancet 2012, 380, 206. [Google Scholar] [CrossRef]
- Duong, V.; Mey, C.; Eloit, M.; Zhu, H.; Danet, L.; Huang, Z.; Zou, G.; Tarantola, A.; Cheval, J.; Perot, P.; et al. Molecular epidemiology of human enterovirus 71 at the origin of an epidemic of fatal hand, foot and mouth disease cases in Cambodia. Emerg. Microbes Infect. 2016, 5, e104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racaniello, V. Picornaviridae: The Viruses and Their Replication. In Fields Virology, 6th ed.; Knipe, D., Howley, P.M., Eds.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 453–489. [Google Scholar]
- Yamayoshi, S.; Yamashita, Y.; Li, J.; Hanagata, N.; Minowa, T.; Takemura, T.; Koike, S. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 2009, 15, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Ohka, S.; Fujii, K.; Koike, S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J. Virol. 2013, 87, 3335–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Zhao, Y.; Kotecha, A.; Fry, E.E.; Kelly, J.T.; Wang, X.; Rao, Z.; Rowlands, D.J.; Ren, J.; Stuart, D.I. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 2019, 4, 414–419. [Google Scholar] [CrossRef]
- Nishimura, Y.; Shimojima, M.; Tano, Y.; Miyamura, T.; Wakita, T.; Shimizu, H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 2009, 15, 794–797. [Google Scholar] [CrossRef]
- Tan, C.W.; Poh, C.L.; Sam, I.C.; Chan, Y.F. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J. Virol. 2013, 87, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Su, P.Y.; Liu, Y.T.; Chang, H.Y.; Huang, S.W.; Wang, Y.F.; Yu, C.K.; Wang, J.R.; Chang, C.F. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol. 2012, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Chou, Y.T.; Wu, C.N.; Ho, M.S. Annexin II Binds to Capsid Protein VP1 of Enterovirus 71 and Enhances Viral Infectivity. J. Virol. 2011, 85, 11809–11820. [Google Scholar] [CrossRef] [Green Version]
- Su, P.Y.; Wang, Y.F.; Huang, S.W.; Lo, Y.C.; Wang, Y.H.; Wu, S.R.; Shieh, D.B.; Chen, S.H.; Wang, J.R.; Lai, M.D.; et al. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J. Virol. 2015, 89, 4527–4538. [Google Scholar] [CrossRef] [Green Version]
- Du, N.; Cong, H.; Tian, H.; Zhang, H.; Zhang, W.; Song, L.; Tien, P. Cell surface vimentin is an attachment receptor for enterovirus 71. J. Virol. 2014, 88, 5816–5833. [Google Scholar] [CrossRef] [Green Version]
- He, Q.Q.; Ren, S.; Xia, Z.C.; Cheng, Z.K.; Peng, N.F.; Zhu, Y. Fibronectin Facilitates Enterovirus 71 Infection by Mediating Viral Entry. J. Virol. 2018, 92, e02251-17. [Google Scholar] [CrossRef] [Green Version]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Wakita, T.; Shimizu, H. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection. PLoS Pathog. 2010, 6, e1001174. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zou, Q.; Chen, L.; Zhang, H.; Wang, Y. Molecular analysis of virulent determinants of enterovirus 71. PLoS ONE 2011, 6, e26237. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.C.; Li, W.C.; Chen, G.W.; Tsao, K.C.; Huang, C.G.; Huang, Y.C.; Chiu, C.H.; Kuo, C.Y.; Tsai, K.N.; Shih, S.R.; et al. Genetic characterization of enterovirus 71 isolated from patients with severe disease by comparative analysis of complete genomes. J. Med. Virol. 2012, 84, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-S.; Liao, C.-C.; Liou, A.-T.; Chou, Y.-C.; Yu, Y.-Y.; Lin, C.-Y.; Lin, J.-S.; Suen, C.-S.; Hwang, M.-J.; Shih, C. Novel Naturally Occurring Mutations of Enterovirus 71 Associated With Disease Severity. Front. Microbiol. 2021, 11, 3535. [Google Scholar] [CrossRef] [PubMed]
- Nagata, N.; Shimizu, H.; Ami, Y.; Tano, Y.; Harashima, A.; Suzaki, Y.; Sato, Y.; Miyamura, T.; Sata, T.; Iwasaki, T. Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. J. Med. Virol. 2002, 67, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Koike, S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J. Virol. 2011, 85, 4937–4946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, B.H.; Phuektes, P.; Sanders, S.A.; Nicholls, P.K.; McMinn, P.C. The molecular basis of mouse adaptation by human enterovirus 71. J. Gen. Virol. 2008, 89, 1622–1632. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chou, C.T.; Lei, H.Y.; Liu, C.C.; Wang, S.M.; Yan, J.J.; Su, I.J.; Wang, J.R.; Yeh, T.M.; Chen, S.H.; et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J. Virol. 2004, 78, 7916–7924. [Google Scholar] [CrossRef] [Green Version]
- Khong, W.X.; Yan, B.; Yeo, H.; Tan, E.L.; Lee, J.J.; Ng, J.K.; Chow, V.T.; Alonso, S. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J. Virol. 2012, 86, 2121–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caine, E.A.; Moncla, L.H.; Ronderos, M.D.; Friedrich, T.C.; Osorio, J.E.; López, S. A Single Mutation in the VP1 of Enterovirus 71 Is Responsible for Increased Virulence and Neurotropism in Adult Interferon-Deficient Mice. J. Virol. 2016, 90, 8592–8604. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.W.; Wang, Y.F.; Yu, C.K.; Su, I.J.; Wang, J.R. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012, 422, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Nagata, N.; Sato, Y.; Ong, K.C.; Wong, K.T.; Yamayoshi, S.; Shimanuki, M.; Shitara, H.; Taya, C.; Koike, S. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 14753–14758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.W.; Yu, S.L.; Shao, H.Y.; Lin, H.Y.; Liu, C.C.; Hsiao, K.N.; Chitra, E.; Tsou, Y.L.; Chang, H.W.; Sia, C.; et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS ONE 2013, 8, e57591. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Liang, C.T.; Jiang, S.T.; Chen, K.H.; Yang, C.C.; Cheng, M.L.; Ho, H.Y. A Novel Murine Model Expressing a Chimeric mSCARB2/hSCARB2 Receptor Is Highly Susceptible to Oral Infection with Clinical Isolates of Enterovirus 71. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, Q.; Wu, X.; Chen, P.; Wu, X.; Guo, Y.; Liu, S.; Liang, Z.; Fan, C.; Wang, Y. A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice. Vaccine 2016, 34, 2729–2736. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Zhou, S.; Zheng, K.; Sun, L.; Zhang, Y.; Cao, L.; Zhang, X.; Xiang, Q.; Chen, Z.; et al. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg. Microbes Infect. 2018, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Koike, S. Cellular receptors for enterovirus A71. J. Biomed. Sci. 2020, 27, 23. [Google Scholar] [CrossRef]
- Tan, C.W.; Sam, I.C.; Lee, V.S.; Wong, H.V.; Chan, Y.F. VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction. Virology 2017, 501, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Tseligka, E.D.; Sobo, K.; Stoppini, L.; Cagno, V.; Abdul, F.; Piuz, I.; Meylan, P.; Huang, S.; Constant, S.; Tapparel, C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018, 14, e1007190. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, Y.; Liu, Y.; Miao, Y.; Zheng, C.; Luo, D.; Sun, J.; Hu, Q.; Xu, Y.; Wang, H.; et al. A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses 2020, 12, 883. [Google Scholar] [CrossRef]
- Kobayashi, K.; Mizuta, K.; Koike, S. Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog. 2020, 16, e1008428. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Lee, H.; Hafenstein, S.; Kataoka, C.; Wakita, T.; Bergelson, J.M.; Shimizu, H. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013, 9, e1003511. [Google Scholar] [CrossRef] [Green Version]
- Cordey, S.; Petty, T.J.; Schibler, M.; Martinez, Y.; Gerlach, D.; van Belle, S.; Turin, L.; Zdobnov, E.; Kaiser, L.; Tapparel, C. Identification of site-specific adaptations conferring increased neural cell tropism during human enterovirus 71 infection. PLoS Pathog. 2012, 8, e1002826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arita, M.; Ami, Y.; Wakita, T.; Shimizu, H. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J. Virol. 2008, 82, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Zaini, Z.; Phuektes, P.; McMinn, P. A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cell cultures. Virus Res. 2012, 165, 151–156. [Google Scholar] [CrossRef]
- Kataoka, C.; Suzuki, T.; Kotani, O.; Iwata-Yoshikawa, N.; Nagata, N.; Ami, Y.; Wakita, T.; Nishimura, Y.; Shimizu, H. The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model. PLoS Pathog. 2015, 11, e1005033. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Sudaka, Y.; Takashino, A.; Imura, A.; Fujii, K.; Koike, S. Amino Acid Variation at VP1-145 of Enterovirus 71 Determines Attachment Receptor Usage and Neurovirulence in Human Scavenger Receptor B2 Transgenic Mice. J. Virol. 2018, 92, e00681-18. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Sudaka, Y.; Takashino, A.; Kobayashi, K.; Kataoka, C.; Suzuki, T.; Iwata-Yoshikawa, N.; Kotani, O.; Ami, Y.; Shimizu, H.; et al. VP1 Amino Acid Residue 145 of Enterovirus 71 Is a Key Residue for Its Receptor Attachment and Resistance to Neutralizing Antibody during Cynomolgus Monkey Infection. J. Virol. 2018, 92, e00682-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tee, H.K.; Tan, C.W.; Yogarajah, T.; Lee, M.H.P.; Chai, H.J.; Hanapi, N.A.; Yusof, S.R.; Ong, K.C.; Lee, V.S.; Sam, I.C.; et al. Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive enterovirus A71 virulence in mice. PLoS Pathog. 2019, 15, e1007863. [Google Scholar] [CrossRef] [Green Version]
- Caine, E.A.; Partidos, C.D.; Santangelo, J.D.; Osorio, J.E. Adaptation of Enterovirus 71 to Adult Interferon Deficient Mice. PLoS ONE 2013, 8, e59501. [Google Scholar] [CrossRef] [Green Version]
- Zaini, Z.; Phuektes, P.; McMinn, P. Mouse adaptation of a sub-genogroup B5 strain of human enterovirus 71 is associated with a novel lysine to glutamic acid substitution at position 244 in protein VP1. Virus Res. 2012, 167, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, S.; Zhu, L.; Huang, Z.; Chen, L.; Xu, Y.; Yin, H.; Peng, T.; Wang, Y. Clinically isolated enterovirus A71 subgenogroup C4 strain with lethal pathogenicity in 14-day-old mice and the application as an EV-A71 mouse infection model. Antivir. Res. 2017, 137, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, K.; Nishimura, Y.; Abo, M.; Wakita, T.; Shimizu, H. Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1. J. Gen. Virol. 2011, 92, 287–291. [Google Scholar] [CrossRef]
- Victorio, C.B.L.; Xu, Y.; Ng, Q.; Chow, V.T.K.; Chua, K.B. Phenotypic and Genotypic Characteristics of Novel Mouse Cell Line (NIH/3T3)-Adapted Human Enterovirus 71 Strains (EV71:TLLm and EV71:TLLmv). PLoS ONE 2014, 9, e92719. [Google Scholar] [CrossRef] [Green Version]
- Victorio, C.B.L.; Xu, Y.; Ng, Q.; Meng, T.; Chow, V.T.K.; Chua, K.B. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain). Emerg. Microbes Infect. 2016, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, J.K.; Kirkegaard, K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog. 2005, 1, e11. [Google Scholar] [CrossRef]
- Fitzsimmons, W.J.; Woods, R.J.; McCrone, J.T.; Woodman, A.; Arnold, J.J.; Yennawar, M.; Evans, R.; Cameron, C.E.; Lauring, A.S. A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biol. 2018, 16, e2006459. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.; Kwang, J.; Kirkegaard, K. Attenuation of Human Enterovirus 71 High-Replication-Fidelity Variants in AG129 Mice. J. Virol. 2014, 88, 5803–5815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kew, O.M.; Sutter, R.W.; de Gourville, E.M.; Dowdle, W.R.; Pallansch, M.A. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu. Rev. Microbiol. 2005, 59, 587–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arita, M.; Shimizu, H.; Nagata, N.; Ami, Y.; Suzaki, Y.; Sata, T.; Iwasaki, T.; Miyamura, T. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J. Gen. Virol. 2005, 86, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Kung, Y.-H.; Huang, S.-W.; Kuo, P.-H.; Kiang, D.; Ho, M.-S.; Liu, C.-C.; Yu, C.-K.; Su, I.-J.; Wang, J.-R. Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010, 396, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-W.; Huang, Y.-H.; Tsai, H.-P.; Kuo, P.-H.; Wang, S.-M.; Liu, C.-C.; Wang, J.-R.; Pfeiffer, J.K. A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans. J. Virol. 2017, 91, e01062-17. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.T.; Kobayashi, K.; Bi, X.; Ishizaki, A.; Tran, T.T.; Phung, T.T.B.; Pham, C.T.T.; Nguyen, L.V.; Ta, T.A.; Khu, D.T.K.; et al. Newly emerged enterovirus-A71 C4 sublineage may be more virulent than B5 in the 2015–2016 hand-foot-and-mouth disease outbreak in northern Vietnam. Sci. Rep. 2020, 10, 159. [Google Scholar] [CrossRef]
Amino Acid Position | Amino Acid Residue | Description | References | |
---|---|---|---|---|
Virulent | Avirulent | |||
VP1-145 | G/Q/R | E | VP1-145G/Q/R was more frequently detected in severe human cases than VP1-145E. | [25] |
VP1-145 | Q | E | VP1-145Q was found in two of nine isolates from severe human cases, but all mild cases were VP1-145E. | [26] |
VP1-145 | Non-E | E | VP1-145 non-E (the actual amino acid residues are not shown in the paper) was more frequently detected in HFMD severe cases than VP1-145E. | [27] |
VP1-97 | R | L | VP1-97R was isolated from cerebrospinal fluid, stool, and plasma of an immunocompromised patient. VP1-97R conferred a replicative advantage in a human neuroblastoma cell line, SH-SY5Y. VP1-97R conferred HS-binding ability. | [42,46] |
VP1-98 | E | K | VP1-E98K was acquired by 30 passages of a mouse-adapted strain in a mouse cell line, L929. VP1-E98K conferred a replicative advantage in mouse cell lines L929 and Neuro2A. VP1-E98K enhanced binding to HS. VP1-E98K attenuated the virulence in 2-week-old BALB/c mice. | [43] |
VP1-145 | E | G | VP1-G145E was acquired by six passages of Chinese Hamster Ovary (CHO) cells-adapted strain in 1-day-old BALB/c mice. VP1-G145E enhanced virulence in 1-day-old BALB/c mice. | [30] |
VP1-145 | E | G | VP1-G145E was acquired by three passages in 3-week-old NOD/SCID mice. VP1-G145E enhanced virulence in 3-week-old NOD/SCID mice. | [47] |
VP1-145 | E | Q | VP1-Q145E was introduced in a C4 strain and enhanced virulence in 5-day-old BALB/c mice. | [48] |
VP1-145 | E | Q | VP1-Q145E was acquired after four passages in 1-day-old ICR mice. VP1-Q145E and VP2-K149M co-operatively enhanced virulence in 1-day-old ICR mice. | [31,33] |
VP1-145 | E | G | VP1-145E is virulent, but VP1-145G is avirulent in cynomolgus monkeys. | [49] |
VP1-145 | E | G | VP1-145G proliferates well in cell lines, such as RD and L-SCARB2, whereas VP1-145E does not. VP1-145G binds well to HS, whereas VP1-145E does not. VP1-145E is virulent, but VP1-145G is avirulent in 6–7-week-old hSCARB2-tg mice. VP1-145G is unable to disseminate in the mouse body and reach the CNS. | [50] |
VP1-145 | E | G | VP1-145E is virulent, but VP1-145G is avirulent in cynomolgus monkeys. VP1-145G is easily neutralized by antibodies, but VP1-145E is not. | [51] |
VP1-145 VP1-244 | E E | Q K | VP1-145Q binds well to HS, whereas VP1-145E does not. VP1-145E is virulent, but VP1-145G is avirulent in 1-day-old ICR mice. The VP1-K244E mutation was found in the brains of mice infected with VP1-145Q and was developed (VP1-145Q/244E). VP1-145Q/244E showed low HS-binding and high mouse virulence. | [52] |
VP1-145 | E | G/Q | VP1-E145G/Q occurs during growth in cultured cells. VP1-E145G/Q does not occur when growing in HS-deficient hSCARB2 overexpressing cells (RD-∆EXT1+hSCARB2). | [44] |
VP1-244 | E | K | VP1-K244E was detected in a strain that was passaged three times in AG129 mice. VP1-244E is virulent, but VP1-244K is avirulent in 6-week-old AG129 mice. | [34,53] |
VP1-244 | E | K | VP1-K244E was detected in a strain that was passaged five times in 1-day-old BALB/c mice. VP1-244E is virulent, but VP1-244K is avirulent in 5-day-old BALB/c mice. | [54] |
Mouse Adaptation Mutation | Adapted Strain | Adaptation Procedure | Replication in Cell Lines | Virulence in an Animal Model | References |
---|---|---|---|---|---|
VP2-K149M | MP4 | Four passages in 1-day-old ICR mice | MP4 is highly proliferative in several human cell lines | VP2-K149M and VP1-Q145E are together responsible for mouse virulence | [31,33] |
VP2-K149I | CHO-26M MP-26M | Six passages in a hamster cell line (CHO), then f our passages in suckling mice | NT | VP2-K149I did not contribute much, and VP1-G145E was the most critical mutation | [30] |
VP2-K149I VP2-K149M | 1095-LPS1 SK-EV006-LPS1 C7/Osaka-LPS1 75-Yamagata-LPS1 | One passage in a human PSGL1 overexpressing mouse cell line (L-PSGL1) | Adaptation increased proliferation in L-PSGL1 | NT | [56] |
VP2-K149I VP2-K149M | CHO-B5 CHO-C2 | Four to eight passages in a hamster cell line (CHO) | CHO-B5, CHO-C4, and the parental strains containing VP2-K149I or VP2-K149M showed enhanced proliferation in CHO cells. All of these viruses are VP1-145Q (HS-binding) | NT | [48] |
VP2-K149I | EV71:TLLm EV71:TLLmv | 60 and 100 passages in a mouse cell line (NIH/3T3) | TLLm and TLLmv show increased efficiency for infecting various rodent cell lines, but the VP2-K149I point mutant does not show the same increase in infection in such cells. The reason for this may be that the strains used are HS-nonbinding | No increase in virulence was observed with VP2-K149I | [57,58] |
VP2-K149I | GZ-CII | VP2-149I have been isolated from a human patient | NT | GZ-CII and artificially mutated VP2-K149I viruses are highly virulent in mice | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, K.; Koike, S. Adaptation and Virulence of Enterovirus-A71. Viruses 2021, 13, 1661. https://doi.org/10.3390/v13081661
Kobayashi K, Koike S. Adaptation and Virulence of Enterovirus-A71. Viruses. 2021; 13(8):1661. https://doi.org/10.3390/v13081661
Chicago/Turabian StyleKobayashi, Kyousuke, and Satoshi Koike. 2021. "Adaptation and Virulence of Enterovirus-A71" Viruses 13, no. 8: 1661. https://doi.org/10.3390/v13081661
APA StyleKobayashi, K., & Koike, S. (2021). Adaptation and Virulence of Enterovirus-A71. Viruses, 13(8), 1661. https://doi.org/10.3390/v13081661