Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
2.2.1. Neuroimaging
2.2.2. Determination of SNP Genotypes
2.2.3. Statistical Analyses
3. Results
3.1. Neuroimaging Findings
3.2. Frequencies of the SNPs Genotypes in the Study Population
3.3. Associations between Selected Gene SNPs and cUS Results in Infants with cCMV
3.4. Associations between Selected Gene SNPs and MRI Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheeran, M.C.; Lokensgard, J.R.; Schleiss, M.R. Neuropathogenesis of congenital cytomegalovirus infection: Disease mechanisms and prospects for intervention. Clin. Microbiol. Rev. 2009, 22, 99–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, A.S.; Lanzieri, T.M.; Claussen, A.H.; Vinson, S.S.; Turcich, M.R.; Iovino, I.R.; Voigt, R.G.; Caviness, A.C.; Miller, J.A.; Williamson, W.D.; et al. Intelligence and Academic Achievement With Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2017, 140, e20171517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diogo, M.C.; Glatter, S.; Binder, J.; Kiss, H.; Prayer, D. The MRI spectrum of congenital cytomegalovirus infection. Prenat. Diagn. 2020, 40, 110–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Petrisli, E.; Dolcetti, R.; Guerra, B.; Piccioli, M.; Lanari, M.; et al. Congenital cytomegalovirus infection: Patterns of fetal brain damage. Clin. Microbiol. Infect. 2012, 18, E419–E427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinmura, Y.; Kosugi, I.; Aiba-Masago, S.; Baba, S.; Yong, L.R.; Tsutsui, Y. Disordered migration and loss of virus-infected neuronal cells in developing mouse brains infected with murine cytomegalovirus. Acta Neuropathol. 1997, 93, 551–557. [Google Scholar] [CrossRef]
- Krstanović, F.; Britt, W.J.; Jonjić, S.; Brizić, I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021, 13, 1078. [Google Scholar] [CrossRef] [PubMed]
- Cannie, M.M.; Devlieger, R.; Leyder, M.; Claus, F.; Leus, A.; De Catte, L.; Cossey, V.; Foulon, I.; Van der Valk, E.; Foulon, W.; et al. Congenital cytomegalovirus infection: Contribution and best timing of prenatal MR imaging. Eur. Radiol. 2016, 26, 3760–3769. [Google Scholar] [CrossRef]
- Escobar Castellanos, M.; de la Mata Navazo, S.; Carrón Bermejo, M.; García Morín, M.; Ruiz Martín, Y.; Saavedra Lozano, J.; Miranda Herrero, M.C.; Barredo Valderrama, E.; Castro de Castro, P.; Vázquez López, M. Association between neuroimaging findings and neurological sequelae in patients with congenital cytomegalovirus infection. Neurologia 2019. [Google Scholar] [CrossRef]
- Kwak, M.; Yum, M.S.; Yeh, H.R.; Kim, H.J.; Ko, T.S. Brain Magnetic Resonance Imaging Findings of Congenital Cytomegalovirus Infection as a Prognostic Factor for Neurological Outcome. Pediatr. Neurol. 2018, 83, 14–18. [Google Scholar] [CrossRef]
- Lucignani, G.; Rossi Espagnet, M.C.; Napolitano, A.; Figà Talamanca, L.; Calò Carducci, F.I.; Auriti, C.; Longo, D. A new MRI severity score to predict long-term adverse neurologic outcomes in children with congenital Cytomegalovirus infection. J. Matern. Fetal Neonatal Med. 2021, 34, 859–866. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Guilleminot, T.; Stirnemann, J.; Salomon, L.J.; Spaggiari, E.; Faure-Bardon, V.; Magny, J.F.; Ville, Y. Quantifying the Burden of Congenital Cytomegalovirus Infection With Long-term Sequelae in Subsequent Pregnancies of Women Seronegative at Their First Pregnancy. Clin. Infect. Dis. 2020, 71, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Kamil, J. Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses 2018, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, S.; Lazzarotto, T.; Gatto, M.R.; Dal Monte, P.; Landini, M.P.; Faldella, G.; Lanari, M. Cytomegalovirus gN Genotypes Distribution among Congenitally Infected Newborns and Their Relationship with Symptoms at Birth and Sequelae. Clin. Infect. Dis. 2010, 51, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Paradowska, E.; Jablonska, A.; Studzinska, M.; Suski, P.; Kasztelewicz, B.; Zawilinska, B.; Wisniewska-Ligier, M.; Dzierzanowska-Fangrat, K.; Wozniakowska-Gesicka, T.; Czech-Kowalska, J.; et al. Distribution of cytomegalovirus gN variants and associated clinical sequelae in infants. J. Clin. Virol. 2013, 58, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.; An, P.; Winkler, C.A. Host Genetics of Cytomegalovirus Pathogenesis. Front. Genet. 2019, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- Wujcicka, W.; Paradowska, E.; Studzińska, M.; Gaj, Z.; Wilczyński, J.; Leśnikowski, Z.; Nowakowska, D. TLR9 2848 GA Heterozygotic Status Possibly Predisposes Fetuses and Newborns to Congenital Infection with Human Cytomegalovirus. PLoS ONE 2015, 10, e0122831. [Google Scholar] [CrossRef] [PubMed]
- Paradowska, E.; Jablonska, A.; Studzinska, M.; Skowronska, K.; Suski, P.; Wisniewska-Ligier, M.; Wozniakowska-Gesicka, T.; Nowakowska, D.; Gaj, Z.; Wilczynski, J.; et al. TLR9-1486T/C and 2848C/T SNPs Are Associated with Human Cytomegalovirus Infection in Infants. PLoS ONE 2016, 11, e0154100. [Google Scholar] [CrossRef]
- Cheneau, C.; Coulon, F.; Porkolab, V.; Fieschi, F.; Laurant, S.; Razanajaona-Doll, D.; Pin, J.J.; Borst, E.M.; Messerle, M.; Bressollette-Bodin, C.; et al. Fine Mapping the Interaction Between Dendritic Cell-Specific Intercellular Adhesion Molecule (ICAM)-3-Grabbing Nonintegrin and the Cytomegalovirus Envelope Glycoprotein B. J. Infect. Dis. 2018, 218, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Compton, T.; Kurt-Jones, E.A.; Boehme, K.W.; Belko, J.; Latz, E.; Golenbock, D.T.; Finberg, R.W. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 2003, 77, 4588–4596. [Google Scholar] [CrossRef] [Green Version]
- Wujcicka, W.; Paradowska, E.; Studzińska, M.; Wilczyński, J.; Nowakowska, D. TLR2 2258 G>A single nucleotide polymorphism and the risk of congenital infection with human cytomegalovirus. Virol. J. 2017, 14, 12. [Google Scholar] [CrossRef] [Green Version]
- Yew, K.H.; Carpenter, C.; Duncan, R.S.; Harrison, C.J. Human cytomegalovirus induces TLR4 signaling components in monocytes altering TIRAP, TRAM and downstream interferon-beta and TNF-alpha expression. PLoS ONE 2012, 7, e44500. [Google Scholar] [CrossRef] [PubMed]
- Kasztelewicz, B.; Czech-Kowalska, J.; Lipka, B.; Milewska-Bobula, B.; Borszewska-Kornacka, M.K.; Romanska, J.; Dzierzanowska-Fangrat, K. Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1811–1818. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.W.; Halimi, J.M.; Buchler, M.; Velge-Roussel, F.; Goudeau, A.; Al Najjar, A.; Boulanger, M.D.; Houssaini, T.S.; Marliere, J.F.; Lebranchu, Y.; et al. Association between a polymorphism in the IL-12p40 gene and cytomegalovirus reactivation after kidney transplantation. Transplantation 2008, 85, 1406–1411. [Google Scholar] [CrossRef]
- Egli, A.; Levin, A.; Santer, D.M.; Joyce, M.; O’Shea, D.; Thomas, B.S.; Lisboa, L.F.; Barakat, K.; Bhat, R.; Fischer, K.P.; et al. Immunomodulatory Function of Interleukin 28B during primary infection with cytomegalovirus. J. Infect. Dis. 2014, 210, 717–727. [Google Scholar] [CrossRef]
- Wujcicka, W.; Wilczyński, J.; Paradowska, E.; Studzińska, M.; Nowakowska, D. The role of single nucleotide polymorphisms, contained in proinflammatory cytokine genes, in the development of congenital infection with human cytomegalovirus in fetuses and neonates. Microb. Pathog. 2017, 105, 106–116. [Google Scholar] [CrossRef]
- Hamilton, S.T.; Scott, G.; Naing, Z.; Iwasenko, J.; Hall, B.; Graf, N.; Arbuckle, S.; Craig, M.E.; Rawlinson, W.D. Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS ONE 2012, 7, e52899. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, J.; Steffens, M.; Arlt, E.M.; Toliat, M.R.; Mezger, M.; Suk, A.; Wienker, T.F.; Hebart, H.; Nurnberg, P.; Boeckh, M.; et al. Polymorphisms in the genes encoding chemokine receptor 5, interleukin-10, and monocyte chemoattractant protein 1 contribute to cytomegalovirus reactivation and disease after allogeneic stem cell transplantation. J. Clin. Microbiol. 2006, 44, 1847–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, D.; Solano, C.; Gimenez, E.; Remigia, M.J.; Corrales, I.; Amat, P.; Navarro, D. Effect of the IL28B Rs12979860 C/T polymorphism on the incidence and features of active cytomegalovirus infection in allogeneic stem cell transplant patients. J. Med Virol. 2014, 86, 838–844. [Google Scholar] [CrossRef]
- Kijpittayarit, S.; Eid, A.J.; Brown, R.A.; Paya, C.V.; Razonable, R.R. Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin. Infect. Dis. 2007, 44, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Ruiz, M.; Corrales, I.; Arias, M.; Campistol, J.M.; Gimenez, E.; Crespo, J.; Lopez-Oliva, M.O.; Beneyto, I.; Martin-Moreno, P.L.; Llamas-Fuente, F.; et al. Association between individual and combined SNPs in genes related to innate immunity and incidence of CMV infection in seropositive kidney transplant recipients. Am. J. Transplant. 2015, 15, 1323–1335. [Google Scholar] [CrossRef]
- Perez-Flores, I.; Santiago, J.L.; Fernandez-Perez, C.; Urcelay, E.; Moreno de la Higuera, M.A.; Romero, N.C.; Cubillo, B.R.; Sanchez-Fructuoso, A.I. Impacts of Interleukin-18 Polymorphisms on the Incidence of Delayed-Onset Cytomegalovirus Infection in a Cohort of Kidney Transplant Recipients. Open Forum. Infect. Dis. 2019, 6, ofz325. [Google Scholar] [CrossRef]
- Taniguchi, R.; Koyano, S.; Suzutani, T.; Goishi, K.; Ito, Y.; Morioka, I.; Oka, A.; Nakamura, H.; Yamada, H.; Igarashi, T.; et al. Polymorphisms in TLR-2 are associated with congenital cytomegalovirus (CMV) infection but not with congenital CMV disease. Int. J. Infect. Dis. IJID 2013, 17, e1092–e1097. [Google Scholar] [CrossRef] [Green Version]
- Jedlinska-Pijanowska, D.; Kasztelewicz, B.; Czech-Kowalska, J.; Jaworski, M.; Charusta-Sienkiewicz, K.; Dobrzanska, A. Association between single nucleotide polymorphisms (SNPs) of IL1, IL12, IL28 and TLR4 and symptoms of congenital cytomegalovirus infection. PLoS ONE 2020, 15, e0233096. [Google Scholar] [CrossRef] [PubMed]
- Wujcicka, W.I.; Wilczyński, J.S.; Nowakowska, D.E. Association of SNPs from IL1A, IL1B, and IL6 Genes with Human Cytomegalovirus Infection Among Pregnant Women. Viral Immunol. 2017, 30, 288–297. [Google Scholar] [CrossRef]
- Wujcicka, W.; Wilczyński, J.; Nowakowska, D. Alterations inTLRsas new molecular markers of congenital infections withHuman cytomegalovirus? Pathog. Dis. 2014, 70, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Abdel-Massih, R.C.; Brown, R.A.; Dierkhising, R.A.; Kremers, W.K.; Razonable, R.R. Homozygosity for the toll-like receptor 2 R753Q single-nucleotide polymorphism is a risk factor for cytomegalovirus disease after liver transplantation. J. Infect. Dis. 2012, 205, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Eldar-Yedidia, Y.; Hillel, M.; Cohen, A.; Bar-Meir, M.; Freier-Dror, Y.; Schlesinger, Y. Association of toll-like receptors polymorphism and intrauterine transmission of cytomegalovirus. PLoS ONE 2017, 12, e0189921. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska, A.; Paradowska, E.; Studzińska, M.; Suski, P.; Nowakowska, D.; Wiśniewska-Ligier, M.; Woźniakowska-Gęsicka, T.; Wilczyński, J.; Leśnikowski, Z.J. Relationship between toll-like receptor 2 Arg677Trp and Arg753Gln and toll-like receptor 4 Asp299Gly polymorphisms and cytomegalovirus infection. Int. J. Infect. Dis. IJID 2014, 25, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wujcicka, W.; Paradowska, E.; Studzińska, M.; Wilczyński, J.; Nowakowska, D. Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women. Virol. J. 2017, 14, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.S.; Ebberson, J.; Kestenbaum, L.A.; Hodinka, R.L.; Zorc, J.J. Age-specific reference values for cerebrospinal fluid protein concentration in neonates and young infants. J. Hosp. Med. 2011, 6, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, L.S.; Gunardi, H.; Barth, P.G.; Bok, L.A.; Verboon-Maciolek, M.A.; Groenendaal, F. The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 2004, 35, 113–119. [Google Scholar]
- Smiljkovic, M.; Renaud, C.; Tapiero, B.; Lamarre, V.; Kakkar, F. Head ultrasound, CT or MRI? The choice of neuroimaging in the assessment of infants with congenital cytomegalovirus infection. BMC Pediatr. 2019, 19, 180. [Google Scholar] [CrossRef] [Green Version]
- Capretti, M.G.; Lanari, M.; Tani, G.; Ancora, G.; Sciutti, R.; Marsico, C.; Lazzarotto, T.; Gabrielli, L.; Guerra, B.; Corvaglia, L.; et al. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection. Brain Dev. 2014, 36, 203–211. [Google Scholar] [CrossRef]
- Luck, S.E.; Wieringa, J.W.; Blázquez-Gamero, D.; Henneke, P.; Schuster, K.; Butler, K.; Capretti, M.G.; Cilleruelo, M.J.; Curtis, N.; Garofoli, F.; et al. Congenital Cytomegalovirus: A European Expert Consensus Statement on Diagnosis and Management. Pediatr. Infect. Dis. J. 2017, 36, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutre, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Foulon, I.; Pass, R.; Ville, Y. Cytomegalovirus infection during pregnancy: State of the science. Am. J. Obstet. Gynecol. 2020, 223, 330–349. [Google Scholar] [CrossRef]
- Njue, A.; Coyne, C.; Margulis, A.V.; Wang, D.; Marks, M.A.; Russell, K.; Das, R.; Sinha, A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Teissier, N.; Fallet-Bianco, C.; Delezoide, A.-L.; Laquerrière, A.; Marcorelles, P.; Khung-Savatovsky, S.; Nardelli, J.; Cipriani, S.; Csaba, Z.; Picone, O.; et al. Cytomegalovirus-Induced Brain Malformations in Fetuses. J. Neuropathol. Exp. Neurol. 2014, 73, 143–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellier, Y.; Marliot, F.; Bessières, B.; Stirnemann, J.; Encha-Razavi, F.; Guilleminot, T.; Haicheur, N.; Pages, F.; Ville, Y.; Leruez-Ville, M. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms 2020, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Hawkins-Villarreal, A.; Moreno-Espinosa, A.L.; Eixarch, E.; Marcos, M.A.; Martinez-Portilla, R.J.; Salazar, L.; Garcia-Otero, L.; Lopez, M.; Borrell, A.; Figueras, F.; et al. Blood parameters in fetuses infected with cytomegalovirus according to the severity of brain damage and trimester of pregnancy at cordocentesis. J. Clin. Virol. 2019, 119, 37–43. [Google Scholar] [CrossRef]
- Lanari, M.; Lazzarotto, T.; Venturi, V.; Papa, I.; Gabrielli, L.; Guerra, B.; Landini, M.P.; Faldella, G. Neonatal cytomegalovirus blood load and risk of sequelae in symptomatic and asymptomatic congenitally infected newborns. Pediatrics 2006, 117, e76–e83. [Google Scholar] [CrossRef] [Green Version]
- Walter, S.; Atkinson, C.; Sharland, M.; Rice, P.; Raglan, E.; Emery, V.C.; Griffiths, P.D. Congenital cytomegalovirus: Association between dried blood spot viral load and hearing loss. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F280–F285. [Google Scholar] [CrossRef]
- Smiljkovic, M.; Le Meur, J.B.; Malette, B.; Boucoiran, I.; Minsart, A.F.; Lamarre, V.; Tapiero, B.; Renaud, C.; Kakkar, F. Blood viral load in the diagnostic workup of congenital cytomegalovirus infection. J. Clin. Virol. 2020, 122, 104231. [Google Scholar] [CrossRef] [PubMed]
- Marsico, C.; Aban, I.; Kuo, H.; James, S.H.; Sanchez, P.J.; Ahmed, A.; Arav-Boger, R.; Michaels, M.G.; Ashouri, N.; Englund, J.A.; et al. Blood Viral Load in Symptomatic Congenital Cytomegalovirus Infection. J. Infect. Dis. 2019, 219, 1398–1406. [Google Scholar] [CrossRef]
- Studzinska, M.; Jablonska, A.; Wisniewska-Ligier, M.; Nowakowska, D.; Gaj, Z.; Lesnikowski, Z.J.; Wozniakowska-Gesicka, T.; Wilczynski, J.; Paradowska, E. Association of TLR3 L412F Polymorphism with Cytomegalovirus Infection in Children. PLoS ONE 2017, 12, e0169420. [Google Scholar] [CrossRef] [Green Version]
- Jedlińska-Pijanowska, D.; Kasztelewicz, B.; Dobrzańska, A.; Dzierżanowska-Fangrat, K.; Jaworski, M.; Czech-Kowalska, J. Association between single nucleotide polymorphisms and viral load in congenital cytomegalovirus infection. J. Mother. Child. 2021, 24, 9–17. [Google Scholar]
- Leruez-Ville, M.; Stirnemann, J.; Sellier, Y.; Guilleminot, T.; Dejean, A.; Magny, J.F.; Couderc, S.; Jacquemard, F.; Ville, Y. Feasibility of predicting the outcome of fetal infection with cytomegalovirus at the time of prenatal diagnosis. Am. J. Obstet. Gynecol. 2016, 215, 342.e1–342.e9. [Google Scholar] [CrossRef] [Green Version]
- Woolf, N.K.; Jaquish, D.V.; Koehrn, F.J. Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol. J. 2007, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, M.A.; Borton, J.A.; Keech, A.M.; Wong, J.; Britt, W.J.; Magun, B.E.; Nelson, J.A. Human cytomegalovirus attenuates interleukin-1beta and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-kappaB activation. J. Virol. 2006, 80, 5588–5598. [Google Scholar] [CrossRef] [Green Version]
- Ben-Sasson, S.Z.; Hu-Li, J.; Quiel, J.; Cauchetaux, S.; Ratner, M.; Shapira, I.; Dinarello, C.A.; Paul, W.E. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA 2009, 106, 7119–7124. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.L.; Thio, C.L.; Martin, M.P.; Qi, Y.; Ge, D.; O’Huigin, C.; Kidd, J.; Kidd, K.; Khakoo, S.I.; Alexander, G.; et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 2009, 461, 798–801. [Google Scholar] [CrossRef]
- Sakharkar, P.; Deb, S.; Mashayekhi, N. Association Between Polymorphisms in Cytokine Gene and Viral Infections in Renal and Liver Transplant Recipients: A Systematic Review. J. Pharm. Pharm. Sci. 2020, 23, 109–131. [Google Scholar] [CrossRef]
- Clement, M.; Humphreys, I.R. Cytokine-Mediated Induction and Regulation of Tissue Damage during Cytomegalovirus Infection. Front. Immunol. 2019, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska, A.; Studzińska, M.; Szenborn, L.; Wiśniewska-Ligier, M.; Karlikowska-Skwarnik, M.; Gęsicki, T.; Paradowska, E. TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Sci. Rep. 2020, 10, 13154. [Google Scholar] [CrossRef] [PubMed]
- Czech-Kowalska, J.; Jedlińska-Pijanowska, D.; Kasztelewicz, B.; Kłodzińska, M.; Pietrzyk, A.; Sarkaria, E.; Dunin-Wąsowicz, D.; Gradowska, K.; Niezgoda, A.; Gruszfeld, D.; et al. The Limitations of Cytomegalovirus DNA Detection in Cerebrospinal Fluid of Newborn Infants With Congenital CMV Infection: A Tertiary Care Neonatal Center Experience. Pediatr. Infect. Dis. J. 2021, 40, 838–845. [Google Scholar] [CrossRef]
Gene dbSNP ID Number | Alleles | MAF * |
---|---|---|
IL1B rs16944 | G/A | A = 0.335 |
IL12B rs3212227 | T/G | G = 0.202 |
IL28B rs12979860 | C/T | T = 0.309 |
CCL2 rs1024611 | A/G | G = 0.271 |
DC-SIGN rs735240 | G/A | A = 0.440 |
TLR2 rs5743708 | G/A | A = 0.029 |
TLR4 rs4986791 | C/T | T = 0.061 |
TLR9 rs352140 | C/T | T = 0.534 |
Symptoms | Study Population (n = 92) |
---|---|
microcephaly, n (%) | 22 (23.91) |
opisthotonos, n (%) | 11 (12.09) |
abnormal muscle tone, n (%) | 53 (58.89) |
seizures, n (%) | 2 (2.17) |
lumbar puncture, n(%) | 83 (90.22) |
positive PCR (DNA HCMV) in CSF, n (%) | 15 (16.3%) |
protein level in CSF (>115 mg/dL), n(%) | 5 (6.02) |
chorioretinitis, n (%) | |
at least one eye | 17 (18.48) |
both eyes | 8 (8.70) |
abnormal OAE, n (%) | |
at least one ear | 36 (39.13) |
both ears | 22 (23.91) |
abnormal ABR, n (%) | |
at least one ear | 29 (34.94) (n = 83) |
both ears | 13 (16.05) (n = 81) |
IUGR, n (%) | 26 (28.26) |
petechiae, n (%) | 15 (16.30) |
thrombocytopenia, n (%) | 28 (30.43) |
neutropenia, n (%) | 10 (10.87) |
hepatosplenomegaly, n (%) | 17 (18.48) |
hepatitis, n (%) | 8 (8.79) |
cholestasis, n (%) | 15 (17.44) |
qPCR blood, (×103 copies/mL) | 11.5 (2.15–110) |
qPCR urine, (×106 copies/mL) | 9.0 (1.2–10) |
Neuroimaging Findings | Study Population (n = 92) |
---|---|
abnormal cUS, n (%) | 72 (78.26) |
calcification, n (%) | 25 (27.17) |
ventricular dilatation, n (%) | 29 (31.52) |
cystic lesions, n (%) | 50 (54.35) |
lenticulostriate vasculopathy, n (%) | 41 (44.57) |
periventricular echogenicity, n (%) | 24 (26.09) |
abnormal MRI, n (%) | 75 (86.21) (n = 87) |
calcification, n (%) | 15 (17.24) |
ventricular dilatation, n (%) | 43 (49.43) |
cystic lesions, n (%) | 26 (29.89) |
abnormal white matter, n (%) | 64 (73.56) |
abnormal myelination, n (%) | 15 (17.24) |
cortical migration defect, n (%) | 12 (13.79) |
Gene | dbSNPID Number a | Genotype | n (%) | HWE p-Value b |
---|---|---|---|---|
IL1B | rs16944 | G/G | 36 (39.1%) | 0.11 |
G/A | 49 (53.3%) | |||
A/A | 7 (7.6%) | |||
IL12B | rs3212227 | T/T | 57 (62.0%) | 0.23 |
T/G | 28 (30.4%) | |||
G/G | 7 (7.6%) | |||
IL28B | rs12979860 | C/C | 41 (44.6%) | 0.37 |
C/T | 38 (41.3%) | |||
T/T | 13 (14.1%) | |||
CCL2 | rs1024611 | A/A | 50 (54.3%) | 0.26 |
A/G | 39 (42.4%) | |||
G/G | 3 (3.3%) | |||
DC-SIGN | rs735240 | G/G | 35 (38.0%) | 0.092 |
G/A | 37 (40.0%) | |||
A/A | 20 (22.0%) | |||
TLR2 | rs5743708 | G/G | 82 (89.1%) | 1.0 |
G/A | 10 (10.9%) | |||
TLR4 | rs4986791 | C/C | 83 (90.2%) | 1.0 |
C/T | 9 (9.8%) | |||
TLR9 | rs352140 | T/T | 30 (32.6%) | 0.83 |
C/T | 47 (50.1%) | |||
C/C | 15 (16.3%) |
Gene | dbSNPID Number a | Genetic Model | Genotype | Without Cystic Lesins n = 42 | Cystic Lesions n = 50 | OR (95% CI) | p-Value b | AIC |
---|---|---|---|---|---|---|---|---|
IL1B | rs16944 (G/A) | Codominant | G/G | 18 (42.9%) | 18 (36%) | 1.00 | 0.56 | 131.7 |
G/A | 22 (52.4%) | 27 (54%) | 1.23 (0.52–2.91) | |||||
A/A | 2 (4.8%) | 5 (10%) | 2.50 (0.43–14.61) | |||||
Dominant | G/G | 18 (42.9%) | 18 (36%) | 1.00 | 0.5 | 130.4 | ||
G/A-A/A | 24 (57.1%) | 32 (64%) | 1.33 (0.58–3.09) | |||||
Recessive | G/G-G/A | 40 (95.2%) | 45 (90%) | 1.00 | 0.34 | 129.9 | ||
A/A | 2 (4.8%) | 5 (10%) | 2.22 (0.41–12.09) | |||||
Overdominant | G/G-A/A | 20 (47.6%) | 23 (46%) | 1.00 | 0.88 | 130.8 | ||
G/A | 22 (52.4%) | 27 (54%) | 1.07 (0.47–2.43) | |||||
Log-additive | --- | --- | --- | 1.39 (0.70–2.77) | 0.34 | 129.9 | ||
IL12B | rs3212227 (T/G) | Codominant | T/T | 27 (64.3%) | 30 (60%) | 1.00 | 0.64 | 131.9 |
T/G | 11 (26.2%) | 17 (34%) | 1.39 (0.55–3.49) | |||||
G/G | 4 (9.5%) | 3 (6%) | 0.67 (0.14–3.29) | |||||
Dominant | T/T | 27 (64.3%) | 30 (60%) | 1.00 | 0.67 | 130.7 | ||
T/G-G/G | 15 (35.7%) | 20 (40%) | 1.20 (0.51–2.80) | |||||
Recessive | T/T-T/G | 38 (90.5%) | 47 (94%) | 1.00 | 0.53 | 130.4 | ||
G/G | 4 (9.5%) | 3 (6%) | 0.61 (0.13–2.88) | |||||
Overdominant | T/T-G/G | 31 (73.8%) | 33 (66%) | 1.00 | 0.42 | 130.2 | ||
T/G | 11 (26.2%) | 17 (34%) | 1.45 (0.59–3.58) | |||||
Log-additive | --- | --- | --- | 1.02 (0.53–1.95) | 0.95 | 130.8 | ||
IL28B | rs12979860 (C/T) | Codominant | C/C | 22 (52.4%) | 19 (38%) | 1.00 | 0.015 | 124.4 |
C/T | 11 (26.2%) | 27 (54%) | 2.84 (1.12–7.22) | |||||
T/T | 9 (21.4%) | 4 (8%) | 0.51 (0.14–1.94) | |||||
Dominant | C/C | 22 (52.4%) | 19 (38%) | 1.00 | 0.17 | 128.9 | ||
C/T-T/T | 20 (47.6%) | 31 (62%) | 1.79 (0.78–4.13) | |||||
Recessive | C/C-C/T | 33 (78.6%) | 46 (92%) | 1.00 | 0.064 | 127.4 | ||
T/T | 9 (21.4%) | 4 (8%) | 0.32 (0.09–1.12) | |||||
Overdominant | C/C-T/T | 31 (73.8%) | 23 (46%) | 1.00 | 0.0064 c | 123.4 | ||
C/T | 11 (26.2%) | 27 (54%) | 3.31 (1.37–8.01) | |||||
Log-additive | --- | --- | --- | 1.02 (0.57–1.83) | 0.95 | 130.8 | ||
CCL2 | rs1024611 (A/G) | Codominant | A/A | 22 (52.4%) | 28 (56%) | 1.00 | 0.12 | 128.6 |
G/A | 20 (47.6%) | 19 (38%) | 0.75 (0.32–1.73) | |||||
G/G | 0 (0%) | 3 (6%) | NA (0.00–NA) | |||||
Dominant | A/A | 22 (52.4%) | 28 (56%) | 1.00 | 0.73 | 130.7 | ||
A/G-G/G | 20 (47.6%) | 22 (44%) | 0.86 (0.38–1.97) | |||||
Recessive | A/A-A/G | 42 (100%) | 47 (94%) | 1.00 | 0.053 | 127.1 | ||
G/G | 0 (0%) | 3 (6%) | NA (0.00–NA) | |||||
Overdominant | A/A-G/G | 22 (52.4%) | 31 (62%) | 1.00 | 0.35 | 130 | ||
A/G | 20 (47.6%) | 19 (38%) | 0.67 (0.29–1.55) | |||||
Log-additive | --- | --- | --- | 1.08 (0.52–2.24) | 0.84 | 130.8 | ||
DC-SIGN | rs735240 (G/A) | Codominant | G/G | 13 (30.9%) | 22 (44%) | 1.00 | 0.43 | 131.2 |
G/A | 19 (45.2%) | 18 (36%) | 0.56 (0.22–1.43) | |||||
A/A | 10 (23.8%) | 10 (20%) | 0.59 (0.19–1.80) | |||||
Dominant | G/G | 13 (30.9%) | 22 (44%) | 1.00 | 0.2 | 129.2 | ||
G/A-A/A | 29 (69%) | 28 (56%) | 0.57 (0.24–1.35) | |||||
Recessive | G/G-G/A | 32 (76.2%) | 40 (80%) | 1.00 | 0.66 | 130.6 | ||
A/A | 10 (23.8%) | 10 (20%) | 0.80 (0.30–2.16) | |||||
Overdominant | G/G-A/A | 23 (54.8%) | 32 (64%) | 1.00 | 0.37 | 130 | ||
G/A | 19 (45.2%) | 18 (36%) | 0.68 (0.29–1.57) | |||||
Log-additive | --- | --- | --- | 0.74 (0.43–1.29) | 0.29 | 129.7 | ||
TLR2 | rs5743708 (G/A) | --- | G/G | 38 (90.5%) | 44 (88%) | 1.00 | 0.7 | 130.7 |
G/A | 4 (9.5%) | 6 (12%) | 1.30 (0.34–4.94) | |||||
TLR4 | rs4986791 (C/T) | --- | C/C | 37 (88.1%) | 46 (92%) | 1.00 | 0.53 | 130.4 |
T/C | 5 (11.9%) | 4 (8%) | 0.64 (0.16–2.57) | |||||
TLR9 | rs352140 (C/T) | Codominant | T/T | 10 (23.8%) | 20 (40%) | 1.00 | 0.23 | 129.9 |
C/T | 25 (59.5%) | 22 (44%) | 0.44 (0.17–1.14) | |||||
C/C | 7 (16.7%) | 8 (16%) | 0.57 (0.16–2.03) | |||||
Dominant | T/T | 10 (23.8%) | 20 (40%) | 1.00 | 0.096 | 128.1 | ||
C/T-C/C | 32 (76.2%) | 30 (60%) | 0.47 (0.19–1.16) | |||||
Recessive | T/T-C/T | 35 (83.3%) | 42 (84%) | 1.00 | 0.93 | 130.8 | ||
C/C | 7 (16.7%) | 8 (16%) | 0.95 (0.31–2.89) | |||||
Overdominant | T/T-C/C | 17 (40.5%) | 28 (56%) | 1.00 | 0.14 | 128.6 | ||
C/T | 25 (59.5%) | 22 (44%) | 0.53 (0.23–1.23) | |||||
Log-additive | --- | --- | --- | 0.69 (0.38–1.28) | 0.24 | 129.4 |
Gene | dbSNPID Number a | Genetic Model | Genotype | Without Ventricular Dilatation n = 63 | Ventricular Dilatation n = 29 | OR (95% CI) | p-Value b | AIC |
---|---|---|---|---|---|---|---|---|
IL1B | rs16944 (G/A) | Codominant | G/G | 20 (31.8%) | 16 (55.2%) | 1.00 | 0.098 | 116 |
G/A | 38 (60.3%) | 11 (37.9%) | 0.36 (0.14–0.93) | |||||
A/A | 5 (7.9%) | 2 (6.9%) | 0.50 (0.09–2.93) | |||||
Dominant | G/G | 20 (31.8%) | 16 (55.2%) | 1.00 | 0.034 c | 114.1 | ||
G/A-A/A | 43 (68.2%) | 13 (44.8%) | 0.38 (0.15–0.93) | |||||
Recessive | G/G-G/A | 58 (92.1%) | 27 (93.1%) | 1.00 | 0.86 | 118.6 | ||
A/A | 5 (7.9%) | 2 (6.9%) | 0.86 (0.16–4.71) | |||||
Overdominant | G/G-A/A | 25 (39.7%) | 18 (62.1%) | 1.00 | 0.045 | 114.7 | ||
G/A | 38 (60.3%) | 11 (37.9%) | 0.40 (0.16–0.99) | |||||
Log-additive | --- | --- | --- | 0.50 (0.23–1.08) | 0.068 | 115.3 | ||
IL12B | rs3212227 (T/G) | Codominant | T/T | 37 (58.7%) | 20 (69%) | 1.00 | 0.46 | 119.1 |
T/G | 20 (31.8%) | 8 (27.6%) | 0.74 (0.28–1.98) | |||||
G/G | 6 (9.5%) | 1 (3.5%) | 0.31 (0.03–2.74) | |||||
Dominant | T/T | 37 (58.7%) | 20 (69%) | 1.00 | 0.34 | 117.8 | ||
T/G-G/G | 26 (41.3%) | 9 (31%) | 0.64 (0.25–1.63) | |||||
Recessive | T/T-T/G | 57 (90.5%) | 28 (96.5%) | 1.00 | 0.28 | 117.5 | ||
G/G | 6 (9.5%) | 1 (3.5%) | 0.34 (0.04–2.96) | |||||
Overdominant | T/T-G/G | 43 (68.2%) | 21 (72.4%) | 1.00 | 0.69 | 118.5 | ||
T/G | 20 (31.8%) | 8 (27.6%) | 0.82 (0.31–2.16) | |||||
Log-additive | --- | --- | --- | 0.65 (0.30–1.37) | 0.24 | 117.3 | ||
IL28B | rs12979860 (C/T) | Codominant | C/C | 32 (50.8%) | 9 (31%) | 1.00 | 0.17 | 117.1 |
C/T | 24 (38.1%) | 14 (48.3%) | 2.07 (0.77–5.59) | |||||
T/T | 7 (11.1%) | 6 (20.7%) | 3.05 (0.82–11.38) | |||||
Dominant | C/C | 32 (50.8%) | 9 (31%) | 1.00 | 0.073 | 115.5 | ||
C/T-T/T | 31 (49.2%) | 20 (69%) | 2.29 (0.91–5.81) | |||||
Recessive | C/C-C/T | 56 (88.9%) | 23 (79.3%) | 1.00 | 0.23 | 117.2 | ||
T/T | 7 (11.1%) | 6 (20.7%) | 2.09 (0.63–6.88) | |||||
Overdominant | C/C-T/T | 39 (61.9%) | 15 (51.7%) | 1.00 | 0.36 | 117.8 | ||
C/T | 24 (38.1%) | 14 (48.3%) | 1.52 (0.62–3.69) | |||||
Log-additive | --- | --- | --- | 1.80 (0.96–3.30) | 0.064 | 115.2 | ||
CCL2 | rs1024611 (A/G) | Codominant | A/A | 37 (58.7%) | 13 (44.8%) | 1.00 | 0.1 | 116.1 |
A/G | 23 (36.5%) | 16 (55.2%) | 1.98 (0.81–4.86) | |||||
G/G | 3 (4.8%) | 0 (0%) | 0.00 (0.00-NA) | |||||
Dominant | A/A | 37 (58.7%) | 13 (44.8%) | 1.00 | 0.21 | 117.1 | ||
A/G-G/G | 26 (41.3%) | 16 (55.2%) | 1.75 (0.72–4.25) | |||||
Recessive | A/A-A/G | 60 (95.2%) | 29 (100%) | 1.00 | 0.13 | 116.4 | ||
G/G | 3 (4.8%) | 0 (0%) | 0.00 (0.00-NA) | |||||
Overdominant | A/A-G/G | 40 (63.5%) | 13 (44.8%) | 1.00 | 0.093 | 115.9 | ||
A/G | 23 (36.5%) | 16 (55.2%) | 2.14 (0.88–5.23) | |||||
Log-additive | --- | --- | --- | 1.33 (0.61–2.89) | 0.47 | 118.1 | ||
DC-SIGN | rs735240 (G/A) | Codominant | G/G | 28 (44.4%) | 7 (24.1%) | 1.00 | 0.16 | 117 |
G/A | 23 (36.5%) | 14 (48.3%) | 2.43 (0.84–7.04) | |||||
A/A | 12 (19.1%) | 8 (27.6%) | 2.67 (0.79–9.02) | |||||
Dominant | G/G | 28 (44.4%) | 7 (24.1%) | 1.00 | 0.057 | 115.1 | ||
G/A-A/A | 35 (55.6%) | 22 (75.9%) | 2.51 (0.94–6.73) | |||||
Recessive | G/G-G/A | 51 (81%) | 21 (72.4%) | 1.00 | 0.36 | 117.8 | ||
A/A | 12 (19.1%) | 8 (27.6%) | 1.62 (0.58–4.53) | |||||
Overdominant | G/G-A/A | 40 (63.5%) | 15 (51.7%) | 1.00 | 0.29 | 117.5 | ||
G/A | 23 (36.5%) | 14 (48.3%) | 1.62 (0.67–3.96) | |||||
Log-additive | --- | --- | --- | 1.66 (0.92–3.00) | 0.089 | 115.8 | ||
TLR2 | rs5743708 (G/A) | --- | G/G | 57 (90.5%) | 25 (86.2%) | 1.00 | 0.55 | 118.3 |
G/A | 6 (9.5%) | 4 (13.8%) | 1.52 (0.39–5.86) | |||||
TLR4 | rs4986791 (C/T) | --- | C/C | 58 (92.1%) | 25 (86.2%) | 1.00 | 0.39 | 117.9 |
C/T | 5 (7.9%) | 4 (13.8%) | 1.86 (0.46–7.50) | |||||
TLR9 | rs352140 (C/T) | Codominant | T/T | 19 (30.2%) | 11 (37.9%) | 1.00 | 0.2 | 117.5 |
C/T | 31 (49.2%) | 16 (55.2%) | 0.89 (0.34–2.32) | |||||
C/C | 13 (20.6%) | 2 (6.9%) | 0.27 (0.05–1.40) | |||||
Dominant | T/T | 19 (30.2%) | 11 (37.9%) | 1.00 | 0.46 | 118.1 | ||
C/T-C/C | 44 (69.8%) | 18 (62.1%) | 0.71 (0.28–1.78) | |||||
Recessive | T/T-C/T | 50 (79.4%) | 27 (93.1%) | 1.00 | 0.077 | 115.5 | ||
C/C | 13 (20.6%) | 2 (6.9%) | 0.28 (0.06–1.36) | |||||
Overdominant | T/T-C/C | 32 (50.8%) | 13 (44.8%) | 1.00 | 0.59 | 118.4 | ||
C/T | 31 (49.2%) | 16 (55.2%) | 1.27 (0.53–3.07) | |||||
Log-additive | --- | --- | --- | 0.62 (0.32–1.21) | 0.16 | 116.6 |
Gene | dbSNPID Number a | Genetic Model | Genotype | Without Ventricular Dilatation n = 44 | Ventricular Dilatation n = 43 | OR (95% CI) | p-Value b | AIC |
---|---|---|---|---|---|---|---|---|
IL1B | rs16944 (G/A) | Codominant | G/G | 13 (29.6%) | 22 (51.2%) | 1.00 | 0.093 | 121.8 |
G/A | 26 (59.1%) | 19 (44.2%) | 0.43 (0.17–1.07) | |||||
A/A | 5 (11.4%) | 2 (4.7%) | 0.24 (0.04–1.40) | |||||
Dominant | G/G | 13 (29.6%) | 22 (51.2%) | 1.00 | 0.039 | 120.3 | ||
G/A-A/A | 31 (70.5%) | 21 (48.8%) | 0.40 (0.17–0.97) | |||||
Recessive | G/G-G/A | 39 (88.6%) | 41 (95.3%) | 1.00 | 0.24 | 123.2 | ||
A/A | 5 (11.4%) | 2 (4.7%) | 0.38 (0.07–2.08) | |||||
Overdominant | G/G-A/A | 18 (40.9%) | 24 (55.8%) | 1.00 | 0.16 | 122.7 | ||
G/A | 26 (59.1%) | 19 (44.2%) | 0.55 (0.23–1.28) | |||||
Log-additive | --- | --- | --- | 0.46 (0.22–0.95) | 0.03 c | 119.9 | ||
IL12B | rs3212227 (T/G) | Codominant | T/T | 27 (61.4%) | 26 (60.5%) | 1.00 | 0.43 | 124.9 |
T/G | 12 (27.3%) | 15 (34.9%) | 1.30 (0.51–3.29) | |||||
G/G | 5 (11.4%) | 2 (4.7%) | 0.42 (0.07–2.33) | |||||
Dominant | T/T | 27 (61.4%) | 26 (60.5%) | 1.00 | 0.93 | 124.6 | ||
T/G-G/G | 17 (38.6%) | 17 (39.5%) | 1.04 (0.44–2.46) | |||||
Recessive | T/T-T/G | 39 (88.6%) | 41 (95.3%) | 1.00 | 0.24 | 123.2 | ||
G/G | 5 (11.4%) | 2 (4.7%) | 0.38 (0.07–2.08) | |||||
Overdominant | T/T-G/G | 32 (72.7%) | 28 (65.1%) | 1.00 | 0.44 | 124 | ||
T/G | 12 (27.3%) | 15 (34.9%) | 1.43 (0.57–3.56) | |||||
Log-additive | --- | --- | --- | 0.87 (0.45–1.68) | 0.67 | 124.4 | ||
IL28B | rs12979860 (C/T) | Codominant | C/C | 23 (52.3%) | 14 (32.6%) | 1.00 | 0.11 | 122.1 |
C/T | 14 (31.8%) | 23 (53.5%) | 2.70 (1.05–6.91) | |||||
T/T | 7 (15.9%) | 6 (13.9%) | 1.41 (0.39–5.05) | |||||
Dominant | C/C | 23 (52.3%) | 14 (32.6%) | 1.00 | 0.062 | 121.1 | ||
C/T-T/T | 21 (47.7%) | 29 (67.4%) | 2.27 (0.95–5.41) | |||||
Recessive | C/C-C/T | 37 (84.1%) | 37 (86.1%) | 1.00 | 0.8 | 124.5 | ||
T/T | 7 (15.9%) | 6 (13.9%) | 0.86 (0.26–2.79) | |||||
Overdominant | C/C-T/T | 30 (68.2%) | 20 (46.5%) | 1.00 | 0.04 c | 120.4 | ||
C/T | 14 (31.8%) | 23 (53.5%) | 2.46 (1.03–5.90) | |||||
Log-additive | --- | --- | --- | 1.43 (0.78–2.62) | 0.24 | 123.2 | ||
CCL2 | rs1024611 (A/G) | Codominant | A/A | 21 (47.7%) | 24 (55.8%) | 1.00 | 0.56 | 125.4 |
G/A | 22 (50%) | 17 (39.5%) | 0.68 (0.29–1.60) | |||||
G/G | 1 (2.3%) | 2 (4.7%) | 1.75 (0.15–20.71) | |||||
Dominant | A/A | 21 (47.7%) | 24 (55.8%) | 1.00 | 0.45 | 124 | ||
A/G-G/G | 23 (52.3%) | 19 (44.2%) | 0.72 (0.31–1.68) | |||||
Recessive | A/A-A/G | 43 (97.7%) | 41 (95.3%) | 1.00 | 0.54 | 124.2 | ||
G/G | 1 (2.3%) | 2 (4.7%) | 2.10 (0.18–24.03) | |||||
Overdominant | A/A-G/G | 22 (50%) | 26 (60.5%) | 1.00 | 0.33 | 123.6 | ||
A/G | 22 (50%) | 17 (39.5%) | 0.65 (0.28–1.53) | |||||
Log-additive | --- | --- | --- | 0.84 (0.40–1.76) | 0.64 | 124.4 | ||
DC-SIGN | rs735240 (G/A) | Codominant | G/G | 15 (34.1%) | 16 (37.2%) | 1.00 | 0.72 | 125.9 |
G/A | 20 (45.5%) | 16 (37.2%) | 0.75 (0.29–1.97) | |||||
A/A | 9 (20.4%) | 11 (25.6%) | 1.15 (0.37–3.54) | |||||
Dominant | G/G | 15 (34.1%) | 16 (37.2%) | 1.00 | 0.76 | 124.5 | ||
G/A-A/A | 29 (65.9%) | 27 (62.8%) | 0.87 (0.36–2.10) | |||||
Recessive | G/G-G/A | 35 (79.5%) | 32 (74.4%) | 1.00 | 0.57 | 124.3 | ||
A/A | 9 (20.4%) | 11 (25.6%) | 1.34 (0.49–3.64) | |||||
Overdominant | G/G-A/A | 24 (54.5%) | 27 (62.8%) | 1.00 | 0.43 | 124 | ||
G/A | 20 (45.5%) | 16 (37.2%) | 0.71 (0.30–1.68) | |||||
Log-additive | --- | --- | --- | 1.04 (0.59–1.81) | 0.9 | 124.6 | ||
TLR2 | rs5743708 (G/A) | --- | G/G | 40 (90.9%) | 38 (88.4%) | 1.00 | 0.7 | 124.4 |
G/A | 4 (9.1%) | 5 (11.6%) | 1.32 (0.33–5.27) | |||||
TLR4 | rs4986791 (C/T) | --- | C/C | 42 (95.5%) | 37 (86%) | 1.00 | 0.12 | 122.2 |
C/T | 2 (4.5%) | 6 (13.9%) | 3.41 (0.65–17.91) | |||||
TLR9 | rs352140 (C/T) | Codominant | T/T | 13 (29.6%) | 15 (34.9%) | 1.00 | 0.38 | 124.7 |
C/T | 21 (47.7%) | 23 (53.5%) | 0.95 (0.37–2.45) | |||||
C/C | 10 (22.7%) | 5 (11.6%) | 0.43 (0.12–1.60) | |||||
Dominant | T/T | 13 (29.6%) | 15 (34.9%) | 1.00 | 0.59 | 124.3 | ||
C/T-C/C | 31 (70.5%) | 28 (65.1%) | 0.78 (0.32–1.93) | |||||
Recessive | T/T-C/T | 34 (77.3%) | 38 (88.4%) | 1.00 | 0.17 | 122.7 | ||
C/C | 10 (22.7%) | 5 (11.6%) | 0.45 (0.14–1.44) | |||||
Overdominant | T/T-C/C | 23 (52.3%) | 20 (46.5%) | 1.00 | 0.59 | 124.3 | ||
C/T | 21 (47.7%) | 23 (53.5%) | 1.26 (0.54–2.92) | |||||
Log-additive | --- | --- | --- | 0.70 (0.38–1.31) | 0.26 | 123.3 |
Gene | dbSNPID Number a | Genetic Model | Genotype | Without Cystic Lesions n = 61 | Cystic Lesions n = 26 | OR (95% CI) | p-Value b | AIC |
---|---|---|---|---|---|---|---|---|
IL1B | rs16944 (G/A) | Codominant | G/G | 24 (39.3%) | 11 (42.3%) | 1.00 | 0.97 | 112.1 |
G/A | 32 (52.5%) | 13 (50%) | 0.89 (0.34–2.32) | |||||
A/A | 5 (8.2%) | 2 (7.7%) | 0.87 (0.15–5.22) | |||||
Dominant | G/G | 24 (39.3%) | 11 (42.3%) | 1.00 | 0.8 | 110.1 | ||
G/A-A/A | 37 (60.7%) | 15 (57.7%) | 0.88 (0.35–2.25) | |||||
Recessive | G/G-G/A | 56 (91.8%) | 24 (92.3%) | 1.00 | 0.94 | 110.1 | ||
A/A | 5 (8.2%) | 2 (7.7%) | 0.93 (0.17–5.15) | |||||
Overdominant | G/G-A/A | 29 (47.5%) | 13 (50%) | 1.00 | 0.83 | 110.1 | ||
G/A | 32 (52.5%) | 13 (50%) | 0.91 (0.36–2.27) | |||||
Log-additive | --- | --- | --- | 0.91 (0.43–1.93) | 0.81 | 110.1 | ||
IL12B | rs3212227 (T/G) | Codominant | T/T | 34 (55.7%) | 19 (73.1%) | 1.00 | 0.26 | 109.4 |
T/G | 22 (36.1%) | 5 (19.2%) | 0.41 (0.13–1.25) | |||||
G/G | 5 (8.2%) | 2 (7.7%) | 0.72 (0.13–4.05) | |||||
Dominant | T/T | 34 (55.7%) | 19 (73.1%) | 1.00 | 0.12 | 107.7 | ||
T/G-G/G | 27 (44.3%) | 7 (26.9%) | 0.46 (0.17–1.27) | |||||
Recessive | T/T-T/G | 56 (91.8%) | 24 (92.3%) | 1.00 | 0.94 | 110.1 | ||
G/G | 5 (8.2%) | 2 (7.7%) | 0.93 (0.17–5.15) | |||||
Overdominant | T/T-G/G | 39 (63.9%) | 21 (80.8%) | 1.00 | 0.11 | 107.6 | ||
T/G | 22 (36.1%) | 5 (19.2%) | 0.42 (0.14–1.28) | |||||
Log-additive | --- | --- | --- | 0.62 (0.28–1.37) | 0.22 | 108.6 | ||
IL28B | rs12979860 (C/T) | Codominant | C/C | 31 (50.8%) | 6 (23.1%) | 1.00 | 0.0043 | 101.2 |
C/T | 19 (31.1%) | 18 (69.2%) | 4.89 (1.65–14.50) | |||||
T/T | 11 (18%) | 2 (7.7%) | 0.94 (0.16–5.36) | |||||
Dominant | C/C | 31 (50.8%) | 6 (23.1%) | 1.00 | 0.014 | 104.1 | ||
C/T-T/T | 30 (49.2%) | 20 (76.9%) | 3.44 (1.22–9.76) | |||||
Recessive | C/C-C/T | 50 (82%) | 24 (92.3%) | 1.00 | 0.19 | 108.4 | ||
T/T | 11 (18%) | 2 (7.7%) | 0.38 (0.08–1.85) | |||||
Overdominant | C/C-T/T | 42 (68.8%) | 8 (30.8%) | 1.00 | 0.001 c | 99.2 | ||
C/T | 19 (31.1%) | 18 (69.2%) | 4.97 (1.84–13.43) | |||||
Log-additive | --- | --- | --- | 1.41 (1.84–13.43) | 0.3 | 109.0 | ||
CCL2 | rs1024611 (A/G) | Codominant | A/A | 30 (49.2%) | 15 (57.7%) | 1.00 | 0.0098 d | 102.9 |
A/G | 31 (50.8%) | 8 (30.8%) | 0.52 (0.19–1.39) | |||||
G/G | 0 (0%) | 3 (11.5%) | NA (0.00-NA) | |||||
Dominant | A/A | 30 (49.2%) | 15 (57.7%) | 1.00 | 0.47 | 109.6 | ||
A/G-G/G | 31 (50.8%) | 11 (42.3%) | 0.71 (0.28–1.79) | |||||
Recessive | A/A-A/G | 61 (100%) | 23 (88.5%) | 1.00 | 0.0062 | 102.6 | ||
G/G | 0 (0%) | 3 (11.5%) | NA (0.00-NA) | |||||
Overdominant | A/A-G/G | 30 (49.2%) | 18 (69.2%) | 1.00 | 0.082 | 107.1 | ||
A/G | 31 (50.8%) | 8 (30.8%) | 0.43 (0.16–1.14) | |||||
Log-additive | --- | --- | --- | 1.10 (0.49–2.47) | 0.82 | 110.1 | ||
DC-SIGN | rs735240 (G/A) | Codominant | A/A | 30 (49.2%) | 15 (57.7%) | 1.00 | 0.0098 d | 102.9 |
G/A | 31 (50.8%) | 8 (30.8%) | 0.52 (0.19–1.39) | |||||
G/G | 0 (0%) | 3 (11.5%) | NA (0.00-NA) | |||||
Dominant | A/A | 30 (49.2%) | 15 (57.7%) | 1.00 | 0.47 | 109.6 | ||
G/A-G/G | 31 (50.8%) | 11 (42.3%) | 0.71 (0.28–1.79) | |||||
Recessive | A/A-G/A | 61 (100%) | 23 (88.5%) | 1.00 | 0.0062 | 102.6 | ||
G/G | 0 (0%) | 3 (11.5%) | NA (0.00-NA) | |||||
Overdominant | A/A-G/G | 30 (49.2%) | 18 (69.2%) | 1.00 | 0.082 | 107.1 | ||
G/A | 31 (50.8%) | 8 (30.8%) | 0.43 (0.16–1.14) | |||||
Log-additive | --- | --- | --- | 1.10 (0.49–2.47) | 0.82 | 110.1 | ||
TLR2 | rs5743708 (G/A) | --- | G/G | 55 (90.2%) | 23 (88.5%) | 1.00 | 0.81 | 110.1 |
G/A | 6 (9.8%) | 3 (11.5%) | 1.20 (0.28–5.19) | |||||
TLR4 | rs4986791 (C/T) | --- | C/C | 56 (91.8%) | 23 (88.5%) | 1.00 | 0.63 | 109.9 |
C/T | 5 (8.2%) | 3 (11.5%) | 1.46 (0.32–6.62) | |||||
TLR9 | rs352140 (C/T) | Codominant | T/T | 17 (27.9%) | 11 (42.3%) | 1.00 | 0.36 | 110.1 |
C/T | 32 (52.5%) | 12 (46.1%) | 0.58 (0.21–1.59) | |||||
C/C | 12 (19.7%) | 3 (11.5%) | 0.39 (0.09–1.69) | |||||
Dominant | T/T | 17 (27.9%) | 11 (42.3%) | 1.00 | 0.19 | 108.4 | ||
C/T-C/C | 44 (72.1%) | 15 (57.7%) | 0.53 (0.20–1.37) | |||||
Recessive | T/T-C/T | 49 (80.3%) | 23 (88.5%) | 1.00 | 0.34 | 109.2 | ||
C/C | 12 (19.7%) | 3 (11.5%) | 0.53 (0.14–2.07) | |||||
Overdominant | T/T-C/C | 29 (47.5%) | 14 (53.9%) | 1.00 | 0.59 | 109.8 | ||
C/T | 32 (52.5%) | 12 (46.1%) | 0.78 (0.31–1.95) | |||||
Log-additive | --- | --- | --- | 0.61 (0.30–1.22) | 0.16 | 108.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czech-Kowalska, J.; Jedlińska-Pijanowska, D.; Pleskaczyńska, A.K.; Niezgoda, A.; Gradowska, K.; Pietrzyk, A.; Jurkiewicz, E.; Jaworski, M.; Kasztelewicz, B. Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection. Viruses 2021, 13, 1783. https://doi.org/10.3390/v13091783
Czech-Kowalska J, Jedlińska-Pijanowska D, Pleskaczyńska AK, Niezgoda A, Gradowska K, Pietrzyk A, Jurkiewicz E, Jaworski M, Kasztelewicz B. Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection. Viruses. 2021; 13(9):1783. https://doi.org/10.3390/v13091783
Chicago/Turabian StyleCzech-Kowalska, Justyna, Dominika Jedlińska-Pijanowska, Agata K. Pleskaczyńska, Anna Niezgoda, Kinga Gradowska, Aleksandra Pietrzyk, Elżbieta Jurkiewicz, Maciej Jaworski, and Beata Kasztelewicz. 2021. "Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection" Viruses 13, no. 9: 1783. https://doi.org/10.3390/v13091783
APA StyleCzech-Kowalska, J., Jedlińska-Pijanowska, D., Pleskaczyńska, A. K., Niezgoda, A., Gradowska, K., Pietrzyk, A., Jurkiewicz, E., Jaworski, M., & Kasztelewicz, B. (2021). Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection. Viruses, 13(9), 1783. https://doi.org/10.3390/v13091783