Phages Shape Microbial Dynamics and Metabolism of a Model Community Mimicking Cider, a Fermented Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteriophages, Bacterial Strains and Growth Conditions
2.2. Experimental Design
2.3. Microbial Enumeration
2.4. Organic Acids and Ethanol Quantification by High Performance Liquid Chromatography (HPLC)
2.5. Volatile Compounds Identification and Quantification Level by Gas-Chromatography Mass Spectrometry Analyses (GC-MS)
2.6. Statistical Analysis
3. Results
3.1. Phages Have a Different Impact on the Microbial Dynamics Depending on the Temperature
3.1.1. Disturbance Occurred in the Model Microbial Community after a Heat Shock
3.1.2. Phages Contributed to Restoring Microbial Equilibria at 25 °C
3.1.3. Phages Enhanced Disturbance at 15 °C
3.2. The Metabolic Signatures Followed the Same Patterns as Microbial Enumerations
3.2.1. Phages Partly Restored the Metabolic Signature of the Community after Disturbance at 25 °C
3.2.2. The Metabolic Signature of Condition P Was Different from Conditions C and D at 15 °C
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented Foods in a Global Age: East Meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gänzle, M.G. Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Wang, J.-T.; Egidi, E.; Li, J.; Singh, B.K. Linking Microbial Diversity with Ecosystem Functioning through a Trait Framework. J. Biosci. 2019, 5, 109. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Dutton, R.J. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belizário, J.E.; Faintuch, J. Microbiome and Gut Dysbiosis. Exp. Suppl. 2018, 109, 459–476. [Google Scholar] [CrossRef]
- Tomasello, G.; Mazzola, M.; Leone, A.; Sinagra, E.; Zummo, G.; Farina, F.; Damiani, P.; Cappello, F.; Gerges Geagea, A.; Jurjus, A.; et al. Nutrition, Oxidative Stress and Intestinal Dysbiosis: Influence of Diet on Gut Microbiota in Inflammatory Bowel Diseases. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 2016, 160, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Chevallereau, A.; Pons, B.J.; van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. Microbiol. 2021, 20, 49–62. [Google Scholar] [CrossRef]
- Mills, S.; Shanahan, F.; Stanton, C.; Hill, C.; Coffey, A.; Ross, R.P. Movers and Shakers: Influence of Bacteriophages in Shaping the Mammalian Gut Microbiota. Gut Microbes 2013, 4, 4–16. [Google Scholar] [CrossRef]
- Draper, L.A.; Ryan, F.J.; Dalmasso, M.; Casey, P.G.; McCann, A.; Velayudhan, V.; Ross, R.P.; Hill, C. Autochthonous Faecal Virome Transplantation (FVT) Reshapes the Murine Microbiome after Antibiotic Perturbation. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Deasy, T.; Mahony, J.; Neve, H.; Heller, K.J.; Van Sinderen, D. Isolation of a Virulent Lactobacillus Brevis Phage and Its Application in the Control of Beer Spoilage. J. Food Prot. 2011, 74, 2157–2161. [Google Scholar] [CrossRef]
- LeLièvre, V.; Besnard, A.; Schlusselhuber, M.; Desmasures, N.; Dalmasso, M. Phages for Biocontrol in Foods: What Opportunities for Salmonella Sp. Control along the Dairy Food Chain? Food Microbiol. 2019, 78, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Mahony, J.; Van Sinderen, D. Current Taxonomy of Phages Infecting Lactic Acid Bacteria. Front. Microbiol. 2014, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippe, C.; Krupovic, M.; Jaomanjaka, F.; Claisse, O.; Petrel, M.; Le Marrec, C. Bacteriophage GC1, a Novel Tectivirus Infecting Gluconobacter Cerinus, an Acetic Acid Bacterium Associated with Wine-Making. Viruses 2018, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Pietrysiak, E.; Smith, S.; Ganjyal, G.M. Food Safety Interventions to Control Listeria Monocytogenes in the Fresh Apple Packing Industry: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1705–1726. [Google Scholar] [CrossRef] [Green Version]
- Özcan, E.; Seven, M.; Şirin, B.; Çakır, T.; Nikerel, E.; Teusink, B.; Toksoy Öner, E. Dynamic Co-Culture Metabolic Models Reveal the Fermentation Dynamics, Metabolic Capacities and Interplays of Cheese Starter Cultures. Biotechnol. Bioeng. 2021, 118, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Bonaïti, C.; Irlinger, F.; Spinnler, H.E.; Engel, E. An Iterative Sensory Procedure to Select Odor-Active Associations in Complex Consortia of Microorganisms: Application to the Construction of a Cheese Model. J. Dairy Sci. 2005, 88, 1671–1684. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Desmasures, N.; Vernoux, J.-P. From Undefined Red Smear Cheese Consortia to Minimal Model Communities Both Exhibiting Similar Anti-Listerial Activity on a Cheese-like Matrix. Food Microbiol. 2010, 27, 1095–1103. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; Debevere, J. Co-Culture Experiments Demonstrate the Usefulness of Lactobacillus Sakei 10A to Prolong the Shelf-Life of a Model Cooked Ham. Int. J. Food Microbiol. 2006, 108, 68–77. [Google Scholar] [CrossRef]
- Det-Udom, R.; Gilbert, C.; Liu, L.; Prakitchaiwattana, C.; Ellis, T.; Ledesma-Amaro, R. Towards Semi-Synthetic Microbial Communities: Enhancing Soy Sauce Fermentation Properties in B. Subtilis Co-Cultures. Microb. Cell Fact. 2019, 18, 101. [Google Scholar] [CrossRef]
- Ma, Q.; Zhou, J.; Zhang, W.; Meng, X.; Sun, J.; Yuan, Y.-J. Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C. PLoS ONE 2011, 6, e26108. [Google Scholar] [CrossRef]
- Zou, W.; Liu, L.; Chen, J. Structure, Mechanism and Regulation of an Artificial Microbial Ecosystem for Vitamin C Production. Crit. Rev. Microbiol. 2013, 39, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.-J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast-Yeast Interactions Revealed by Aromatic Profile Analysis of Sauvignon Blanc Wine Fermented by Single or Co-Culture of Non-Saccharomyces and Saccharomyces Yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Tontul, S.; Erbas, M. Co-Culture Probiotic Fermentation of Protein-Enriched Cereal Medium (Boza). J. Am. Coll. Nutr. 2020, 39, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Cousin, F.J.; Le Guellec, R.; Schlusselhuber, M.; Dalmasso, M.; Laplace, J.-M.; Cretenet, M. Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms 2017, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misery, B.; Legendre, P.; Rue, O.; Bouchart, V.; Guichard, H.; Laplace, J.M.; Cretenet, M. Diversity and Dynamics of Bacterial and Fungal Communities in Cider for Distillation. Int. J. Food Microbiol. 2021, 339, 108987. [Google Scholar] [CrossRef] [PubMed]
- Ledormand, P.; Desmasures, N.; Midoux, C.; Rué, O.; Dalmasso, M. Investigation of the Phageome and Prophages in French Cider, a Fermented Beverage. Microorganisms 2022, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Ledormand, P.; Desmasures, N.; Bernay, B.; Goux, D.; Rué, O.; Midoux, C.; Monnet, C.; Dalmasso, M. Molecular Approaches to Uncover Phage-Lactic Acid Bacteria Interactions in a Model Community Simulating Fermented Beverages. Food Microbiol. 2022, 107, 104069. [Google Scholar] [CrossRef]
- Haider, W.; Barillier, D.; Hayat, A.; Gaillard, J.-L.; Ledauphin, J. Rapid Quantification and Comparison of Major Volatile Compounds of Ciders from France (Normandy and Brittany) Using Microextraction by Packed Sorbent (MEPS). Anal. Methods 2014, 6, 1364–1376. [Google Scholar] [CrossRef]
- Ledauphin, J.; Le Milbeau, C.; Barillier, D.; Hennequin, D. Differences in the Volatile Compositions of French Labeled Brandies (Armagnac, Calvados, Cognac, and Mirabelle) Using GC-MS and PLS-DA. J. Agric. Food Chem. 2010, 58, 7782–7793. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- D’Amore, T.; Di Taranto, A.; Berardi, G.; Vita, V.; Marchesani, G.; Chiaravalle, A.E.; Iammarino, M. Sulfites in Meat: Occurrence, Activity, Toxicity, Regulation, and Detection. A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2701–2720. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Jin, C.; Wu, Y. Synthetic Biology-Powered Microbial Co-Culture Strategy and Application of Bacterial Cellulose-Based Composite Materials. Carbohydr. Polym. 2022, 283, 119171. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Jiang, Y.; Lu, J.; Gao, H.; Dong, W.; Zhou, J.; Zhang, W.; Xin, F.; Jiang, M. Comprehensive Evaluation for the One-Pot Biosynthesis of Butyl Acetate by Using Microbial Mono- and Co-Cultures. Biotechnol. Biofuels 2021, 14, 203. [Google Scholar] [CrossRef]
- Che, S.; Men, Y. Synthetic Microbial Consortia for Biosynthesis and Biodegradation: Promises and Challenges. J. Ind. Microbiol. Biotechnol. 2019, 46, 1343–1358. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.B.; Gibson, T.E.; Yeliseyev, V.; Liu, Q.; Lyon, L.; Bry, L.; Silver, P.A.; Gerber, G.K. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe 2019, 25, 803–814.e5. [Google Scholar] [CrossRef] [Green Version]
- Ledormand, P.; Desmasures, N.; Dalmasso, M. Phage Community Involvement in Fermented Beverages: An Open Door to Technological Advances? Crit. Rev. Food Sci. Nutr. 2020, 61, 2911–2920. [Google Scholar] [CrossRef]
- Paillet, T.; Dugat-Bony, E. Bacteriophage Ecology of Fermented Foods: Anything New under the Sun? Curr. Opin. Food Sci. 2021, 40, 102–111. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.-H. Characteristics on Host Specificity, Infection, and Temperature Stability of Weissella Phages from Watery Kimchi. Food Sci. Biotechnol. 2021, 30, 843–851. [Google Scholar] [CrossRef]
- Kong, S.; Park, J.-H. Effect of Bacteriophages on Viability and Growth of Co-Cultivated Weissella and Leuconostoc in Kimchi Fermentation. J. Microbiol. Biotechnol. 2019, 29, 558–561. [Google Scholar] [CrossRef] [Green Version]
- Somerville, V.; Berthoud, H.; Schmidt, R.S.; Bachmann, H.-P.; Meng, Y.H.; Fuchsmann, P.; von Ah, U.; Engel, P. Functional Strain Redundancy and Persistent Phage Infection in Swiss Hard Cheese Starter Cultures. ISME J. 2021, 16, 388–399. [Google Scholar] [CrossRef]
- Picinelli Lobo, A.; Antón-Díaz, M.J.; Mangas Alonso, J.J.; Suárez Valles, B. Characterization of Spanish Ciders by Means of Chemical and Olfactometric Profiles and Chemometrics. Food Chem. 2016, 213, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The Soul of Beer’s Aroma—A Review of Flavour-Active Esters and Higher Alcohols Produced by the Brewing Yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marty-Teysset, C.; Lolkema, J.S.; Schmitt, P.; Diviès, C.; Konings, W.N. The Citrate Metabolic Pathway in Leuconostoc Mesenteroides: Expression, Amino Acid Synthesis, and Alpha-Ketocarboxylate Transport. J. Bacteriol. 1996, 178, 6209–6215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duru, I.C.; Laine, P.; Andreevskaya, M.; Paulin, L.; Kananen, S.; Tynkkynen, S.; Auvinen, P.; Smolander, O.-P. Metagenomic and Metatranscriptomic Analysis of the Microbial Community in Swiss-Type Maasdam Cheese during Ripening. Int. J. Food Microbiol. 2018, 281, 10–22. [Google Scholar] [CrossRef]
- Cavallini, N.; Savorani, F.; Bro, R.; Cocchi, M. A Metabolomic Approach to Beer Characterization. Molecules 2021, 26, 1472. [Google Scholar] [CrossRef]
- Li, S.N.; Tang, S.H.; Ren, R.; Gong, J.X.; Chen, Y.M. Metabolomic Profile of Milk Fermented with Streptococcus Thermophilus Cocultured with Bifidobacterium Animalis Ssp. Lactis, Lactiplantibacillus Plantarum, or Both during Storage. J. Dairy Sci. 2021, 104, 8493–8505. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Li, Y.; Liu, M.; Ni, K.; Yi, X.; Shi, Y.; Ma, L.; Willmitzer, L.; Ruan, J. Characterization of Three Different Classes of Non-Fermented Teas Using Untargeted Metabolomics. Food Res. Int. 2019, 121, 697–704. [Google Scholar] [CrossRef]
- Simonin, S.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Quintanilla-Casas, B.; Vichi, S.; Peyron, D.; Alexandre, H.; Tourdot-Maréchal, R. Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines. Front. Microbiol. 2020, 11, 1308. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledormand, P.; Desmasures, N.; Schlusselhuber, M.; Sesboüé, A.; Ledauphin, J.; Dalmasso, M. Phages Shape Microbial Dynamics and Metabolism of a Model Community Mimicking Cider, a Fermented Beverage. Viruses 2022, 14, 2283. https://doi.org/10.3390/v14102283
Ledormand P, Desmasures N, Schlusselhuber M, Sesboüé A, Ledauphin J, Dalmasso M. Phages Shape Microbial Dynamics and Metabolism of a Model Community Mimicking Cider, a Fermented Beverage. Viruses. 2022; 14(10):2283. https://doi.org/10.3390/v14102283
Chicago/Turabian StyleLedormand, Pierre, Nathalie Desmasures, Margot Schlusselhuber, André Sesboüé, Jérôme Ledauphin, and Marion Dalmasso. 2022. "Phages Shape Microbial Dynamics and Metabolism of a Model Community Mimicking Cider, a Fermented Beverage" Viruses 14, no. 10: 2283. https://doi.org/10.3390/v14102283
APA StyleLedormand, P., Desmasures, N., Schlusselhuber, M., Sesboüé, A., Ledauphin, J., & Dalmasso, M. (2022). Phages Shape Microbial Dynamics and Metabolism of a Model Community Mimicking Cider, a Fermented Beverage. Viruses, 14(10), 2283. https://doi.org/10.3390/v14102283