Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viral Isolation and Identification
2.2. Viral RNA Extraction
2.3. Sequence Analysis of CVA16
2.4. Site-Specific Selection Pressure and Estimation of Evolutionary Pathway
2.5. Recombination Analysis
2.6. Production of Reverse Genetics Viruses
2.7. TCID50 Assay
2.8. Preparation of Mouse Antisera
2.9. Neutralization Test
2.10. Accession Numbers of the Nucleotide Sequences
3. Results
3.1. Epidemiology of CVA16 Infection in Southern Taiwan from 1998 to 2021
3.2. Phylogenetic Analysis of the VP1 Coding Region
3.3. Inference of Natural Selection among CV16 Strains
3.4. Whole Genome Analysis of CVA16 Isolated from Southern Taiwan from 1998–2016
3.5. Neutralizing Antibody Titers of rgCVA16-Induced Antisera against Various CVA16 and EVA71 Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Z.; Song, Y.; Xiao, J.; Jiang, L.; Huang, W.; Wei, H.; Li, J.; Zeng, H.; Yu, Q.; Li, J.; et al. Genomic epidemiology of coxsackievirus A16 in mainland of China, 2000–18. Virus Evol. 2020, 6, veaa084. [Google Scholar] [CrossRef] [PubMed]
- Hoa-Tran, T.N.; Dao, A.; Nguyen, A.T.; Kataoka, C.; Takemura, T.; Pham, C.H.; Vu, H.M.; Hong, T.; Ha, N.; Duong, T.N.; et al. Coxsackieviruses A6 and A16 associated with hand, foot, and mouth disease in Vietnam, 2008–2017: Essential information for rational vaccine design. Vaccine 2020, 38, 8273–8285. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Yoon, Y.; Lee, Y.P.; Kim, H.J.; Lee, D.Y.; Lee, J.W.; Hyeon, J.Y.; Yoo, J.S.; Lee, S.; Kang, C.; et al. A Different Epidemiology of Enterovirus A and Enterovirus B Co-circulating in Korea, 2012–2019. J. Pediatr. Infect. Dis. Soc. 2021, 10, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.P.; Chong, Y.M.; Tay, C.G.; Koh, M.T.; Chem, Y.K.; Noordin, N.; Jahis, R.; Sam, I.C.; Chan, Y.F. Detection of enteroviruses during a 2018 hand, foot and mouth disease outbreak in Malaysia. Trop. Biomed. 2021, 38, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Min, N.; Ong, Y.; Han, A.X.; Ho, S.X.; Yen, E.; Ban, K.; Maurer-Stroh, S.; Chong, C.Y.; Chu, J. An epidemiological surveillance of hand foot and mouth disease in paediatric patients and in community: A Singapore retrospective cohort study, 2013–2018. PLOS Negl. Trop. Dis. 2021, 15, e0008885. [Google Scholar] [CrossRef]
- Noisumdaeng, P.; Korkusol, A.; Prasertsopon, J.; Sangsiriwut, K.; Chokephaibulkit, K.; Mungaomklang, A.; Thitithanyanont, A.; Buathong, R.; Guntapong, R.; Puthavathana, P. Longitudinal study on enterovirus A71 and coxsackievirus A16 genotype/subgenotype replacements in hand, foot and mouth disease patients in Thailand, 2000–2017. Int. J. Infect. Dis. 2019, 80, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Metcalf, C.J.E.; Arima, Y.; Fujimoto, T.; Shimizu, H.; Rogier Van Doorn, H.; Le Van, T.; Chan, Y.-F.; Farrar, J.J.; Oishi, K.; et al. Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan. J. R. Soc. Interface 2018, 15, 20180507. [Google Scholar] [CrossRef] [Green Version]
- Legay, F.; Lévêque, N.; Gacouin, A.; Tattevin, P.; Bouet, J.; Thomas, R.; Chomel, J.-J. Fatal Coxsackievirus A-16 Pneumonitis in Adult. Emerg. Infect. Dis. J. 2007, 13, 1084. [Google Scholar] [CrossRef]
- Park, B.; Kwon, H.; Lee, K.; Kang, M. Acute pancreatitis in hand, foot and mouth disease caused by Coxsackievirus A16: Case report. Korean J. Pediatr. 2017, 60, 333. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Lu, F.L.; Wu, M.-H.; Lee, C.-Y.; Huang, L.-M. Fatal coxsackievirus A16 infection. Pediatr. Infect. Dis. J. 2004, 23, 275–276. [Google Scholar] [CrossRef]
- Tseng, F.-C.; Huang, H.-C.; Chi, C.-Y.; Lin, T.-L.; Liu, C.-C.; Jian, J.-W.; Hsu, L.-C.; Wu, H.-S.; Yang, J.-Y.; Chang, Y.-W.; et al. Epidemiological survey of enterovirus infections occurring in Taiwan between 2000 and 2005: Analysis of sentinel physician surveillance data. J. Med. Virol. 2007, 79, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-R.; Tuan, Y.-C.; Tsai, H.-P.; Yan, J.-J.; Liu, C.-C.; Su, I.-J. Change of Major Genotype of Enterovirus 71 in Outbreaks of Hand-Foot-and-Mouth Disease in Taiwan between 1998 and 2000. J. Clin. Microbiol. 2002, 40, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.-T.; Chang, H.-L.; Wang, S.-T.; Cheng, Y.-T.; Yang, J.-Y. Epidemiologic Features of Hand-Foot-Mouth Disease and Herpangina Caused by Enterovirus 71 in Taiwan, 1998–2005. Pediatrics 2007, 120, e244–e252. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Lu, C.-Y.; Shao, P.-L.; Lee, P.-I.; Kao, C.-L.; Chung, M.-Y.; Chang, L.-Y.; Huang, L.-M. Epidemiologic and clinical features of non-polio enteroviral infections in northern Taiwan in 2008. J. Microbiol. Immunol. Infection 2011, 44, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.-C.; Huang, L.-M.; Kao, C.-L.; Fan, T.-Y.; Cheng, A.-L.; Chang, L.-Y. An Outbreak of Coxsackievirus A16 Infection: Comparison With Other Enteroviruses in a Preschool in Taipei. J. Microbiol. Immunol. Infect. 2010, 43, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.O.; Huang, K.-Y.A.; Chen, M.-H.; Chen, P.-C.; Huang, W.-T. Comparison of Nonpolio Enteroviruses in Children With Herpangina and Hand, Foot and Mouth Disease in Taiwan. Pediatr. Infect. Dis. J. 2019, 38, 887–893. [Google Scholar] [CrossRef]
- Palmenberg, A.C. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 1990, 44, 603–623. [Google Scholar] [CrossRef]
- Mateu, M.G. Antibody recognition of picornaviruses and escape from neutralization: A structural view. Virus Res. 1995, 38, 1–24. [Google Scholar] [CrossRef]
- McPhee, F.; Zell, R.; Reimann, B.-Y.; Hofschneider, P.H.; Kandolf, R. Characterization of the N-terminal part of the neutralizing antigenic site I of coxsackievirus B4 by mutation analysis of antigen chimeras. Virus Res. 1994, 34, 139–151. [Google Scholar] [CrossRef]
- Oberste, M.S.; Maher, K.; David, R.K.; Mark, A.P. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application to Picornavirus Classification. J. Virol. 1999, 73, 1941–1948. [Google Scholar] [CrossRef]
- Wu, T.-C.; Wang, Y.-F.; Lee, Y.-P.; Wang, J.-R.; Liu, C.-C.; Wang, S.-M.; Lei, H.-Y.; Su, I.-J.; Yu, C.-K. Immunity to Avirulent Enterovirus 71 and Coxsackie A16 Virus Protects against Enterovirus 71 Infection in Mice. J. Virol. 2007, 81, 10310–10315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Zhang, X.; Wang, C.; Wang, G.; Li, F. Characterization of VP1 sequence of Coxsackievirus A16 isolates by Bayesian evolutionary method. Virol. J. 2016, 13, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, D.; Yan, D.; Zhu, S.; Liu, J.; Wang, H.; Zhao, S.; Yu, D.; Nan, L.; An, J.; et al. Molecular Evidence of Persistent Epidemic and Evolution of Subgenotype B1 Coxsackievirus A16-Associated Hand, Foot, and Mouth Disease in China. J. Clin. Microbiol. 2010, 48, 619–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, W.; He, Y.; Yu, S.; Yang, H.; Xian, H.; Liao, Y.; Hu, G. Molecular Phylogeny of Coxsackievirus A16 in Shenzhen, China, from 2005 to 2009. J. Clin. Microbiol. 2011, 49, 1659–1661. [Google Scholar] [CrossRef] [Green Version]
- Amona, I.; Medkour, H.; Akiana, J.; Davoust, B.; Tall, M.L.; Grimaldier, C.; Gazin, C.; Zandotti, C.; Levasseur, A.; Scola, B.L.; et al. Enteroviruses from Humans and Great Apes in the Republic of Congo: Recombination within Enterovirus C Serotypes. Microorganisms 2020, 8, 1779. [Google Scholar] [CrossRef]
- Brown, B.; Oberste, M.S.; Maher, K.; Mark, A.P. Complete Genomic Sequencing Shows that Polioviruses and Members of Human Enterovirus Species C Are Closely Related in the Noncapsid Coding Region. J. Virol. 2003, 77, 8973–8984. [Google Scholar] [CrossRef] [Green Version]
- Alexander, N.L.; Vasilii, A.L.; Olga, E.I.; Galina, A.K.; Ari, E.H.; Ilonen, J. Recombination in Circulating Enteroviruses. J. Virol. 2003, 77, 10423–10431. [Google Scholar] [CrossRef] [Green Version]
- Oberste, M.S.; Maher, K.; Mark, A.P. Evidence for Frequent Recombination within Species Human Enterovirus B Based on Complete Genomic Sequences of All Thirty-Seven Serotypes. J. Virol. 2004, 78, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Oberste, M.S.; Peñaranda, S.; Maher, K.; Pallansch, M.A. Complete genome sequences of all members of the species Human enterovirus A. J. Gen. Virol. 2004, 85, 1597–1607. [Google Scholar] [CrossRef]
- Santti, J.; Hyypiä, T.; Kinnunen, L.; Salminen, M. Evidence of Recombination among Enteroviruses. J. Virol. 1999, 73, 8741–8749. [Google Scholar] [CrossRef]
- Xu, L.; Qi, M.; Ma, C.; Yang, M.; Huang, P.; Sun, J.; Shi, J.; Hu, Y. Natural intertypic and intratypic recombinants of enterovirus 71 from mainland China during 2009–2018: A complete genome analysis. Virus Genes 2021, 57, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shi, Y.; Miao, L.; Zhang, C.; Liu, Y. Molecular epidemiology and recombination of Enterovirus A71 in mainland China from 1987 to 2017. Int. Microbiol. 2021, 24, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Guillot, S.; Caro, V.; Cuervo, N.; Korotkova, E.; Combiescu, M.; Persu, A.; Aubert-Combiescu, A.; Delpeyroux, F.; Crainic, R. Natural Genetic Exchanges between Vaccine and Wild Poliovirus Strains in Humans. J. Virol. 2000, 74, 8434–8443. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, L.B.; Yoneyama, T.; Yoshida, H.; Shimizu, H.; Yoshii, K.; Hara, M.; Nomura, T.; Yoshikura, H.; Miyamura, T.; et al. Genetic basis of the neurovirulence of type 1 polioviruses isolated from vaccine-associated paralytic patients. Arch. Virol. 1996, 141, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Macadam, A.J.; Arnold, C.; Howlett, J.; John, A.; Marsden, S.; Taffs, F.; Reeve, P.; Hamada, N.; Wareham, K.; Almond, J.; et al. Reversion of the attenuated and temperature-sensitive phenotypes of the sabin type 3 strain of poliovirus in vaccinees. Virology 1989, 172, 408–414. [Google Scholar] [CrossRef]
- Chan, Y.-F.; AbuBakar, S. Recombinant Human Enterovirus 71 in Hand, Foot and Mouth Disease Patients. Emerg. Infect. Dis. J. 2004, 10, 1468. [Google Scholar] [CrossRef]
- Yoke-Fun, C.; Abubakar, S. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol. 2006, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Yip, C.C.Y.; Lau, S.K.P.; Zhou, B.; Zhang, M.-X.; Tsoi, H.-W.; Chan, K.-H.; Chen, X.-C.; Woo, P.C.Y.; Yuen, K.-Y. Emergence of enterovirus 71 “double-recombinant” strains belonging to a novel genotype D originating from southern China: First evidence for combination of intratypic and intertypic recombination events in EV71. Arch. Virol. 2010, 155, 1413–1424. [Google Scholar] [CrossRef]
- Huang, S.-C.; Hsu, Y.-W.; Wang, H.-C.; Huang, S.-W.; Kiang, D.; Tsai, H.-P.; Wang, S.-M.; Liu, C.-C.; Lin, K.-H.; Su, I.-J.; et al. Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Res. 2008, 131, 250–259. [Google Scholar] [CrossRef]
- Huang, S.-W.; Hsu, Y.-W.; Smith Derek, J.; Kiang, D.; Tsai, H.-P.; Lin, K.-H.; Wang, S.-M.; Liu, C.-C.; Su, I.-J.; Wang, J.-R. Reemergence of Enterovirus 71 in 2008 in Taiwan: Dynamics of Genetic and Antigenic Evolution from 1998 to 2008. J. Clin. Microbiol. 2009, 47, 3653–3662. [Google Scholar] [CrossRef]
- Hall, T.A. Bioedit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kryazhimskiy, S.; Plotkin, J.B. The Population Genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pond, S.L.K.; Frost, S.D.W. Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pond, S.L.K.; Frost, S.D.W.; Muse, S.V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics 2005, 21, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10; Sinauer Associates: Sunderland, UK, 2002. [Google Scholar]
- Page, R.D. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 1996, 12, 357–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.H.; Tai, C.H.; Cheng, D.; Wang, Y.F.; Wang, J.R. Investigation of Avian Influenza H5N6 Virus-like Particles as a Broad-Spectrum Vaccine Candidate against H5Nx Viruses. Viruses 2022, 14, 925. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.H.; Huang, S.W.; Hsieh, W.S.; Cheng, C.K.; Chang, C.F.; Wang, Y.F.; Wang, J.R. Enterovirus A71 Containing Codon-Deoptimized VP1 and High-Fidelity Polymerase as Next-Generation Vaccine Candidate. J. Virol. 2019, 93, e02308-18. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Kong, F.; Wang, B.; McPhie, K.; Gilbert, G.L.; Dwyer, D.E. Molecular characterization of enterovirus 71 and coxsackievirus A16 using the 5′ untranslated region and VP1 region. J. Med. Microbiol. 2011, 60, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Han, X.; Wang, G.; Hu, W.; Zhang, W.; Yu, X.F. Circulating coxsackievirus A16 identified as recombinant type A human enterovirus, China. Emerg. Infect. Dis. 2011, 17, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Han, J.F.; Yu, N.; Pan, Y.X.; He, S.J.; Xu, L.J.; Cao, R.Y.; Li, Y.X.; Zhu, S.Y.; Zhang, Y.; Qin, E.D.; et al. Phenotypic and genomic characterization of human coxsackievirus A16 strains with distinct virulence in mice. Virus Res. 2014, 179, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Wang, Y.B.; Chen, S.H.; Hsiung, C.A.; Lin, C.Y. Precise genotyping and recombination detection of Enterovirus. BMC Genom. 2015, 16, S8. [Google Scholar] [CrossRef] [PubMed]
- Henquell, C.; Mirand, A.; Richter, J.; Schuffenecker, I.; Böttiger, B.; Diedrich, S.; Terletskaia-Ladwig, E.; Christodoulou, C.; Peigue-Lafeuille, H.; Bailly, J.-L. Phylogenetic Patterns of Human Coxsackievirus B5 Arise from Population Dynamics between Two Genogroups and Reveal Evolutionary Factors of Molecular Adaptation and Transmission. J. Virol. 2013, 87, 12249–12259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenfell, B.T.; Pybus, O.G.; Gog, J.R.; Wood, J.L.N.; Daly, J.M.; Mumford, J.A.; Holmes, E.C. Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science 2004, 303, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, M.; Kawasaki, Y.; Sato, M.; Honzumi, K.; Hayashi, A.; Hiroshima, T.; Ishiko, H.; Kato, K.; Suzuki, H. Genetic Diversity of Coxsackievirus A16 Associated with Hand, Foot, and Mouth Disease Epidemics in Japan from 1983 to 2003. J. Clin. Microbiol. 2007, 45, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Podin, Y.; Gias, E.L.; Ong, F.; Leong, Y.-W.; Yee, S.-F.; Yusof, M.A.; Perera, D.; Teo, B.; Wee, T.-Y.; Yao, S.-C.; et al. Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: Lessons from the first 7 years. BMC Public Health 2006, 6, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovi, T.; Stenvik, M.; Rosenlew, M. Relative abundance of enterovirus serotypes in sewage differs from that in patients: Clinical and epidemiological implications. Epidemiol. Infect. 1996, 116, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Nairn, C.; Clements, G.B. A study of enterovirus isolations in Glasgow from 1977 to 1997. J. Med. Virol. 1999, 58, 304–312. [Google Scholar] [CrossRef]
- Druyts-Voets, E. Epidemiological features of entero non-poliovirus isolations in Belgium 1980–94. Epidemiol. Infect. 1997, 119, 71–77. [Google Scholar] [CrossRef]
- Jean, J.S.; Guo, H.R.; Chen, S.H.; Liu, C.C.; Chang, W.T.; Yang, Y.J.; Huang, M.C. The association between rainfall rate and occurrence of an enterovirus epidemic due to a contaminated well. J. Appl. Microbiol. 2006, 101, 1224–1231. [Google Scholar] [CrossRef]
- Chan, Y.F.; Wee, K.L.; Chiam, C.W.; Khor, C.S.; Chan, S.Y.; Amalina W, M.Z.; Sam, I.C. Comparative genetic analysis of VP4, VP1 and 3D gene regions of enterovirus 71 and coxsackievirus A16 circulating in Malaysia between 1997–2008. Trop. Biomed. 2012, 29, 451–466. [Google Scholar]
- Li, L.; He, Y.; Yang, H.; Zhu, J.; Xu, X.; Dong, J.; Zhu, Y.; Jin, Q. Genetic Characteristics of Human Enterovirus 71 and Coxsackievirus A16 Circulating from 1999 to 2004 in Shenzhen, People’s Republic of China. J. Clin. Microbiol. 2005, 43, 3835–3839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuta, K.; Abiko, C.; Aoki, Y.; Ikeda, T.; Matsuzaki, Y.; Hongo, S.; Itagaki, T.; Katsushima, N.; Ohmi, A.; Nishimura, H.; et al. Molecular epidemiology of Coxsackievirus A16 strains isolated from children in Yamagata, Japan between 1988 and 2011. Microbiol. Immunol. 2013, 57, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Yusof, M.A.; Podin, Y.; Ooi, M.H.; Thao, N.T.T.; Wong, K.K.; Zaki, A.; Chua, K.B.; Malik, Y.A.; Tu, P.V.; et al. Molecular phylogeny of modern coxsackievirus A16. Arch. Virol. 2007, 152, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Puenpa, J.; Theamboonlers, A.; Korkong, S.; Linsuwanon, P.; Thongmee, C.; Chatproedprai, S.; Poovorawan, Y. Molecular characterization and complete genome analysis of human enterovirus 71 and coxsackievirus A16 from children with hand, foot and mouth disease in Thailand during 2008–2011. Arch. Virol. 2011, 156, 2007–2013. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Yang, W.; Ren, J.; Tan, X.; Wang, Y.; Mao, N.; Xu, S.; Zhu, S.; Cui, A.; et al. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of Hand Foot and Mouth Disease in Fuyang city of China. Virol. J. 2010, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Tee Kok, K.; Lam Tommy, T.-Y.; Chan Yoke, F.; Bible Jon, M.; Kamarulzaman, A.; Tong, C.Y.W.; Takebe, Y.; Pybus Oliver, G. Evolutionary Genetics of Human Enterovirus 71: Origin, Population Dynamics, Natural Selection, and Seasonal Periodicity of the VP1 Gene. J. Virol. 2010, 84, 3339–3350. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Peng, W.; Ren, J.; Hu, Z.; Xu, J.; Lou, Z.; Li, X.; Yin, W.; Shen, X.; Porta, C.; et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 2012, 19, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Arita, M.; Ami, Y.; Wakita, T.; Shimizu, H. Cooperative Effect of the Attenuation Determinants Derived from Poliovirus Sabin 1 Strain Is Essential for Attenuation of Enterovirus 71 in the NOD/SCID Mouse Infection Model. J. Virol. 2008, 82, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Chua, B.H.; Phuektes, P.; Sanders, S.A.; Nicholls, P.K.; McMinn, P.C. The molecular basis of mouse adaptation by human enterovirus 71. J. Gen. Virol. 2008, 89, 1622–1632. [Google Scholar] [CrossRef]
- Huang, S.-W.; Wang, Y.-F.; Yu, C.-K.; Su, I.-J.; Wang, J.-R. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012, 422, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Lee, H.; Hafenstein, S.; Kataoka, C.; Wakita, T.; Bergelson, J.M.; Shimizu, H. Enterovirus 71 Binding to PSGL-1 on Leukocytes: VP1-145 Acts as a Molecular Switch to Control Receptor Interaction. PLoS Pathog. 2013, 9, e1003511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, S.K.; Kumar, P.; Yeo, W.M.; Kar-Roy, A.; Chow, V.T.K. The VP1 protein of human enterovirus 71 self-associates via an interaction domain spanning amino acids 66–297. J. Med. Virol. 2006, 78, 582–590. [Google Scholar] [CrossRef]
- Chang, S.-C.; Li, W.-C.; Chen, G.-W.; Tsao, K.-C.; Huang, C.-G.; Huang, Y.-C.; Chiu, C.-H.; Kuo, C.-Y.; Tsai, K.-N.; Shih, S.-R.; et al. Genetic characterization of enterovirus 71 isolated from patients with severe disease by comparative analysis of complete genomes. J. Med. Virol. 2012, 84, 931–939. [Google Scholar] [CrossRef]
- Li, R.; Zou, Q.; Chen, L.; Zhang, H.; Wang, Y. Molecular Analysis of Virulent Determinants of Enterovirus. PLoS ONE 2011, 6, e26237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, M.; Masaki, A.; Hasegawa, S.; Obara, M.; Horimoto, E.; Nakamura, K.; Tanaka, Y.; Endo, K.; Tanaka, K.; Ueda, J.; et al. Genetic Changes of Coxsackievirus A16 and Enterovirus 71 Isolated from Hand, Foot, and Mouth Disease Patients in Toyama, Japan between 1981 and 2007. Jpn. J. Infect. Dis. 2009, 62, 254–259. [Google Scholar] [PubMed]
- Ranganathan, S.; Singh, S.; Poh, C.; Chow, V. The hand, foot and mouth disease virus capsid: Sequence analysis and prediction of antigenic sites from homology modelling. Appl. Bioinform. 2002, 1, 43–52. [Google Scholar]
- Shin, S.-Y.; Kim, K.-S.; Lee, Y.-S.; Chung, Y.-S.; Park, K.-S.; Cheon, D.-S.; Na, B.-K.; Kang, Y.; Cheong, H.-M.; Moon, Y.; et al. Identification of Enteroviruses by Using Monoclonal Antibodies against a Putative Common Epitope. J. Clin. Microbiol. 2003, 41, 3028–3034. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Utama, A.; Yoshii, K.; Yoshida, H.; Yoneyama, T.; Sinniah, M.; Yusof, M.A.B.; Okuno, Y.; Okabe, N.; Shih, S.-R. Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997–1998. Jpn. J. Infect. Dis. 1999, 52, 12–15. [Google Scholar] [CrossRef]
- Lee, K.M.; Gong, Y.N.; Hsieh, T.H.; Woodman, A.; Dekker, N.H.; Cameron, C.E.; Shih, S.R. Discovery of Enterovirus A71-like nonstructural genomes in recent circulating viruses of the Enterovirus A species. Emerg. Microbes Infect. 2018, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Ang, P.Y.; Chong, C.W.H.; Alonso, S. Viral determinants that drive Enterovirus-A71 fitness and virulence. Emerg. Microbes Infect. 2021, 10, 713–724. [Google Scholar] [CrossRef]
- Noisumdaeng, P.; Sangsiriwut, K.; Prasertsopon, J.; Klinmalai, C.; Payungporn, S.; Mungaomklang, A.; Chokephaibulkit, K.; Buathong, R.; Thitithanyanont, A.; Puthavathana, P. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg. Microbes Infect. 2018, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Li, H.-Y.; Han, J.-F.; Deng, Y.-Q.; Zhu, S.-Y.; Li, X.-F.; Yang, H.-Q.; Li, Y.-X.; Zhang, Y.; Qin, E.D.; et al. Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Sci. Rep. 2015, 5, 7878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Wen, K.; Pan, Y.; Wang, Y.; Che, X.; Wang, B. Cross-reactivity of anti-EV71 IgM and neutralizing antibody in series sera of patients infected with Enterovirus 71 and Coxsackievirus A 16. J. Immunoass. Immunochem. 2011, 32, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xie, T.; Song, X.; Shen, D.; Li, H.; Yue, L.; Jiang, Q.; Zhu, F.; Meng, H.; Long, R.; et al. Safety and immunogenicity of an experimental live combination vaccine against enterovirus 71 and coxsackievirus A16 in rhesus monkeys. Hum. Vaccines Immunother. 2020, 16, 1586–1594. [Google Scholar] [CrossRef]
Virus Genotype and Isolates | VP1 a | VP2 | VP3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
17 b | 145 | 164 | 218 | 251 | 289 | 217 | 226 | 33 | 183 | |
Subgenotype B1 | ||||||||||
H0041TW98 | N | V | T | N | V | T | V | A | P | A |
5079TW98 c | N | E | T | N | V | T | V | A | P | A |
N1764TW99 | N | E | T | N | V | T | I | A | P | A |
N2367TW00 | N | V | T | N | V | T | I | T | P | A |
N1771TW01 d | N | E | T | N | V | T | I | A | P | A |
N1508TW02 e | N | E | T | N | V | T | I | A | P | A |
N1679TW02 f | N | V | T | N | V | T | I | A | P | A |
N1660TW03 g | N | E | T | N | V | T | I | A | P | A |
N0584TW04 | N | V | T | N | V | T | I | A | P | A |
N2208TW05 | N | V | T | N | V | T | I | T | P | A |
N3276TW06 | N | V | T | N | V | T | I | T | S | A |
N2910TW07 h | N | E | T | D | V | T | I | T | P | A |
N0640TW08 | N | V | T | D | V | T | I | T | P | A |
M0645TW09 i | N | E | T | N | V | T | V | T | P | A |
M0317TW10 | N | E | T | N | V | T | I | T | P | A |
M0664TW10 j | N | E | T | N | V | T | I | T | S | A |
M0964TW10 | N | L | T | N | V | T | I | T | S | A |
M1401TW11 | N | E | T | N | V | T | V | A | P | A |
N12878TW11 | N | V | T | N | V | T | V | A | P | A |
M1551TW12 | N | Q | K | N | I | I | V | T | P | A |
M1651TW12 | N | V | K | N | I | I | V | T | P | A |
M0934TW13 | N | V | K | N | I | T | V | T | P | A |
M1165TW13 | N | E | K | N | I | T | V | T | P | A |
M0888TW14 | S | E | K | N | I | T | V | T | P | A |
M0998TW14 | S | E | K | N | I | T | V | T | P | A |
M0578TW15 | N | E | T | N | I | T | I | T | P | A |
M0589TW15 | N | E | T | N | V | T | I | T | P | A |
M1005TW16 | N | E | T | N | V | T | I | T | P | A |
M0657TW16 | N | Q | K | N | I | T | V | T | P | A |
X024848TW17 | N | A | K | N | I | T | V | T | L | A |
M50922TW18 | N | E | K | N | I | T | V | T | P | A |
M50867TW18 | N | E | K | N | I | T | V | T | P | A |
M50944TW19 | N | G | K | N | I | T | V | T | P | A |
M50066TW19 | N | E | K | N | I | T | V | T | P | A |
Subgenotype B2 | ||||||||||
S0969TW99 | N | V | T | N | V | T | V | A | P | T |
N1370TW00 k | N | E | T | N | V | T | V | A | P | T |
N3649TW00 | N | Q | T | N | V | T | V | A | P | T |
Virus Tested | Neutralizing Antibody Titer of Antiserum | |||
---|---|---|---|---|
rgH0041TW98 (B1a) | rgM1136TW10 (B1a) | rgN1771TW01 (B1b) | rgN1370TW00 (B2) | |
N5212TW98 (B1a) | 4096 | 4096 | 32,768 | 16,384 |
N5944TW98 (B1a) | 512 | 1024 | 16,384 | 16,384 |
H0041TW98 (B1a) | 4096 | 2048 | 131,072 | 32,768 |
M965TW10 (B1a) | 4096 | 4096 | 32,768 | 16,384 |
M0664TW10 (B1a) | 512 | 512 | 16,384 | 32,768 |
M738TW10 (B1a) | 512 | 512 | 8192 | 32,768 |
N3377TW01 (B1b) | 8192 | 4096 | 32,768 | 16,384 |
N3927TW01 (B1b) | 512 | 512 | 8192 | 16,384 |
N1923TW00 (B2) | 512 | 512 | 4096 | 8192 |
N3771TW00 (B2) | 256 | 512 | 4096 | 65,536 |
N3649TW00 (B2) | 1024 | 4096 | 65,536 | 16,384 |
N1370TW00 (B2) | 512 | 2048 | 65,536 | 8192 |
EVA71 (C2) | <4 | <4 | <4 | 8192 |
EVA71 (C4) | <4 | <4 | <4 | 16,384 |
1984–1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Japan | A, B1, B2a | B1, B2 | B1, B2 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | ||||||||
China | B1, B2 | B1, B2 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | ||||||||||
Malaysia | B1 | B1, B2 | B1 | B1, B2 | B1 | B1 | B1 | B1 | B1 | B1 | ||||||||||||||
Vietnam | B1 | |||||||||||||||||||||||
Thailand | B1 | B1 | B1 | B1 | ||||||||||||||||||||
Australia | B1 | |||||||||||||||||||||||
Saudi Arabia | B1 | B1 | ||||||||||||||||||||||
Taiwan | B1 | B1, B2 | B1, B2 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 | B1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, D.; Chiu, Y.-W.; Huang, S.-W.; Lien, Y.-Y.; Chang, C.-L.; Tsai, H.-P.; Wang, Y.-F.; Wang, J.-R. Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate. Viruses 2022, 14, 2306. https://doi.org/10.3390/v14102306
Cheng D, Chiu Y-W, Huang S-W, Lien Y-Y, Chang C-L, Tsai H-P, Wang Y-F, Wang J-R. Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate. Viruses. 2022; 14(10):2306. https://doi.org/10.3390/v14102306
Chicago/Turabian StyleCheng, Dayna, Yo-Wei Chiu, Sheng-Wen Huang, Yun-Yin Lien, Chia-Lun Chang, Huey-Pin Tsai, Ya-Fang Wang, and Jen-Ren Wang. 2022. "Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate" Viruses 14, no. 10: 2306. https://doi.org/10.3390/v14102306
APA StyleCheng, D., Chiu, Y. -W., Huang, S. -W., Lien, Y. -Y., Chang, C. -L., Tsai, H. -P., Wang, Y. -F., & Wang, J. -R. (2022). Genetic and Cross Neutralization Analyses of Coxsackievirus A16 Circulating in Taiwan from 1998 to 2021 Suggest Dominant Genotype B1 can Serve as Vaccine Candidate. Viruses, 14(10), 2306. https://doi.org/10.3390/v14102306