Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Assessment of Blood Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.-F.; Leclerc, M.; Chochois, C.; Monsallier, J.-M.; Ramakers, M.; Auvray, M.; Merouani, K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 2020, 18, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Cheallaigh, C.N.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; et al. COVID19 coagulopathy in Caucasian patients. Br. J. Haematol. 2020, 189, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Giovini, M.; Leone, M.; Pizzilli, G.; Kortgen, A.; Bauer, M.; Tonetti, T.; Duclos, G.; Zieleskiewicz, L.; Buschbeck, S.; et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: A narrative review. Ann. Intensiv. Care 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Qu, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Liu, Y.; Zayac, A.S.; Olszewski, A.J.; Reagan, J.L. Intensity of anticoagulation and survival in patients hospitalized with COVID-19 pneumonia. Thromb. Res. 2020, 196, 375–378. [Google Scholar] [CrossRef]
- Vidali, S.; Morosetti, D.; Cossu, E.; Luisi, M.L.E.; Pancani, S.; Semeraro, V.; Consales, G. D-dimer as an indicator of prognosis in SARS- CoV- 2 infection: A systematic review. ERJ Open Res. 2020, 6, 00260–2020. [Google Scholar] [CrossRef]
- Cao, W.; Li, T. COVID-19: Towards understanding of pathogenesis. Cell Res. 2020, 30, 367–369. [Google Scholar] [CrossRef]
- Gupta, N.; Zhao, Y.-Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019, 181, 77–83. [Google Scholar] [CrossRef]
- Ingraham, E.N.; Lotfi-Emran, S.; Thielen, B.; Techar, K.; Morris, R.S.; Holtan, S.G.; Dudley, R.A.; Tignanelli, C. Immunomodulation in COVID-19. Lancet Respir. Med. 2020, 8, 544–546. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J. Psychosom Res. 2003, 54, 345–352. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wan, J.Q.; Zhu, S.K.; Wang, M.; Wang, X.A.; Tong, X.H.; Ding, J.W. Analysis of cardiovascular disease factors on SARS-CoV-2 infection severity. Med. Clin. 2022, 159, 171–176. [Google Scholar] [CrossRef]
- Berger, J.S.; Kunichoff, D.; Adhikari, S.; Ahuja, T.; Amoroso, N.; Aphinyanaphongs, Y.; Cao, M.; Goldenberg, R.; Hindenburg, A.; Horowitz, J.; et al. Prevalence and Outcomes of D-Dimer Elevation in Hospitalized Patients With COVID-19. Arter. Thromb. Vasc. Biol. 2020, 40, 2539–2547. [Google Scholar] [CrossRef]
- Shah, S.; Shah, K.; Patel, S.B.; Patel, F.S.; Osman, M.; Velagapudi, P.; Turagam, M.K.; Lakkireddy, D.; Garg, J. Elevated d-dimer levels are associated with increased risk of mortality in coronavirus disease 2019: A sysematic review and meta-analysis. Cardiol Rev. 2020, 28, 295–302. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Lobbes, H.; Mainbourg, S.; Mai, V.; Douplat, M.; Provencher, S.; Lega, J.-C. Risk Factors for Venous Thromboembolism in Severe COVID-19: A Study-Level Meta-Analysis of 21 Studies. Int. J. Environ. Res. Public Health 2021, 18, 12944. [Google Scholar] [CrossRef]
- Kwee, R.M.; Adams, H.J.A.; Kwee, T.C. Pulmonary embolism in patients with COVID-19 and value of D-dimer assessment: A meta-analysis. Eur. Radiol. 2021, 31, 8168–8186. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; Farrelly, C.O.; Conlon, N.; Bourke, N.M.; et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R. Derksen RHWM, De Groot PG, Koike T, Meroni PL, Reber G, Shoenfeld Y, Tincani A, Vlachoyiannopoulos PG, Krilis SA. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with COVID-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Talathi, S.; Lopez-Olivo, M.A.; Suarez-Almazor, M.E. Risk of developing antiphospholipid antibodies fol-lowing viral infection: A systematic review and meta-analysis. Lupus 2018, 27, 572–583. [Google Scholar] [CrossRef]
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Prim. 2018, 4, 17103. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, metaanaly-sis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. Creactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef]
- Goncalves, F.A.R.; Besen, B.A.M.P.; de Lima, C.A.; Cora, A.P.; Pereira, A.J.R.; Perazzio, S.F.; Gouvea, C.P.; Fonseca, L.A.M.; Trindade, E.M.; Sumita, N.M.; et al. HCFMUSP COVID-19 Study Group. Use and misuse of biomarkers and the role of D-dimer and Creactive protein in the management of COVID-19: A post-hoc analysis of a prospective cohort study. Clinics 2021, 76, e3547. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, X.; Jiang, C.; Mi, S.; Yang, L.; Zhao, Z.; Zhang, Y.; Zhang, L. Correlation between white blood cell count at admission and mortality in COVID-19 patients: A retrospective study. BMC Infect. Dis. 2021, 21, 574. [Google Scholar] [CrossRef]
- Emert, R.; Shah, P.; Zampella, J.G. COVID-19 and hypercoagulability in the outpatients setting. Thromb. Res. 2020, 192, 122–123. [Google Scholar] [CrossRef]
- Gameil, M.A.; Marzouk, R.E.; Elsebaie, A.H.; Rozaik, S.E. Long-term clinical and biochemical residue after COVID-19 recovery. Egypt Liver J. 2021, 11, 74. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.-S. Tranexamic Acid and Plasminogen/Plasmin Glaring Paradox in COVID-19. Endocr. Metab. Immune Disord. Drug Targets 2022. [Google Scholar] [CrossRef]
- Kalaivani, M.K.; Dinakar, S. Association between D-dimer levels and post-acute sequelae of SARS-CoV-2 in patients from a tertiary care center. Biomark Med. 2022, 16, 833–838. [Google Scholar] [CrossRef]
- National Institutes of Health. Antithrombotic Therapy in Patients with COVID-19. 2020. Available online: https://www.covid19 (accessed on 20 October 2022).
D-Dimer within Normal Range | D-Dimer Elevated | p-Value * | |
---|---|---|---|
Clinical characteristics | n = 350 | n = 61 | |
Sex (males) | 155 (44.3) | 23 (37.7) | 0.4013 |
Age (years) | 46 (33;56) | 61 (50; 70) | <0.0001 |
School education (high) | 238 (68.0) | 40 (65.6) | 0.7671 |
Marital status (yes) | 213 (60.9) | 47 (77.1) | 0.0149 |
Body mass index (kg/m2) a | 24.9 (22.1; 28.4) | 25.7 (22.5; 28.0) | 0.6988 |
Hypertension (yes) | 57 (16.3) | 19 (31.2) | 0.0112 |
Diabetes mellitus (yes) | 11 (3.1) | 4 (6.6) | 0.2548 |
Depression (yes) | 31 (8.9) | 5 (8.2) | 1.0000 |
Cardiovascular disease (yes) | 15 (4.3) | 8 (13.1) | 0.0118 |
Venous thromboembolism before infection (yes) | 8 (2.3) | 6 (9.8) | 0.0096 |
Chronic venous insufficiency (yes) | 37 (10.6) | 14 (23.0) | 0.0110 |
Current smoker (yes) | 123 (35.1) | 28 (45.9) | 0.1151 |
Post COVID-19 fatigue (yes) b | 137 (39.7) | 22 (36.1) | 0.6701 |
Time since acute infection (days) | 222 (119; 322) | 255 (137;335) | 0.4980 |
Anticoagulation therapy (yes) | 18 (5.1) | 7 (11.5) | 0.0760 |
Laboratory parameters | |||
White blood cell count (/nL) c | 6.40 (5.50; 7.31) | 7.17 (5.92; 7.83) | 0.0045 |
Hemoglobin (g/L) c | 140 (131; 150) | 140 (131; 145) | 0.3828 |
Platelets (/nL) c | 236 (206; 267) | 223 (205; 269) | 0.7692 |
Glucose (mg/dL) a | 87 (80; 99) | 89 (79; 110) | 0.1725 |
aPTT (s) | 29 (28; 31) | 28 (26; 31) | 0.0028 |
C-reactive protein (mg/dL) a | 0.08 (0.06; 0.17) | 0.12 (0.07; 0.32) | 0.0010 |
IL-6 (pg/mL) e | 3.50 (2.50; 3.50) | 3.50 (2.50; 3.89) | 0.0005 |
D-dimer (µg/L) | 199.5 (190.0; 285.0) | 726.0 (617.0; 1094.0) | <0.0001 |
Anti-β2-glycoprotein IgG antibodies (U/mL) d | 2.2 (2.0; 2.9) | 2.4 (2.0; 3.7) | 0.0683 |
Anti-β2-glycoprotein IgM antibodies (U/mL) d | 4.4 (2.0; 9.9) | 5.4 (2.0; 11.7) | 0.2751 |
Anticardiolipin IgG antibodies (U/mL) d | 2.0 (2.0; 2.4) | 2.0 (2.0; 2.3) | 0.3675 |
Anticardiolipin IgM antibodies (U/mL) d | 2.0 (2.0; 2.8) | 2.0 (2.0; 3.0) | 0.3232 |
SARS-CoV-2 IgG antibodies (U/mL) f | 89.8 (25.8; 246) | 169 (51.2; 349) | 0.0156 |
D-Dimer within Normal Range | D-Dimer Elevated | p-Value * | |
---|---|---|---|
n = 350 | n = 61 | ||
During acute infection | |||
Calf pain a | 56 (16.1) | 12 (19.7) | 0.4612 |
Leg swelling a | 15 (4.3) | 5 (8.2) | 0.1985 |
Venous thromboembolism | 3 (0.9) | 0 | |
Shortness of breath at rest b | 109 (31.4) | 25 (41.0) | 0.1828 |
Dyspnea on exertion b | 198 (57.1) | 37 (60.7) | 0.6741 |
Cough a | 201 (57.8) | 37 (60.7) | 0.7786 |
Chest pain a | 131 (37.6) | 23 (37.7) | 1.0000 |
Restricted activity during acute infection | 182 (52.0) | 28 (45.9) | 0.4071 |
Within two weeks before study examinations | |||
Shortness of breath at rest b | 25 (7.2) | 8 (13.1) | 0.1276 |
Dyspnea on exertion b | 84 (24.2) | 20 (32.8) | 0.1557 |
Cough a | 38 (10.9) | 8 (13.1) | 0.6598 |
Chest pain b | 38 (10.9) | 5 (8.2) | 0.6538 |
Main Analysis | Sensitivity Analyses | |||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | p-Value Adj. | OR (95% CI) | p-Value | p-Value Adj. | |
CRP | 5.58 (1.77–17.60) | 0.0034 | 0.017 | 5.07 (1.74–14.78) | 0.0029 | 0.017 |
IL-6 | 1.13 (1.02–1.26) | 0.0219 | 0.0657 | 1.07 (0.93–1.23) | 0.3358 | 0.6668 |
White blood cell count | 1.48 (1.19–1.83) | 0.0003 | 0.0045 | 1.29 (1.04–1.58) | 0.0191 | 0.0657 |
During Acute Infection | Within Two Weeks before Study Examinations | |||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | p-Value Adj. | OR (95% CI) | p-Value | p-Value Adj. | |
Shortness of breath at rest | 1.36 (0.72–2.56) | 0.3463 | 0.6668 | 1.05 (0.36–3.07) | 0.9243 | 0.9243 |
Dyspnea on exertion | 0.97 (0.51–1.83) | 0.9187 | 0.9243 | 1.07 (0.54–2.14) | 0.8416 | 0.9243 |
Cough | 1.31 (0.70–2.48) | 0.4001 | 0.6668 | 1.14 (0.42–3.11) | 0.7950 | 0.9243 |
Leg swelling | 1.49 (0.39–5.72) | 0.5623 | 0.8435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meisinger, C.; Kirchberger, I.; Warm, T.D.; Hyhlik-Dürr, A.; Goßlau, Y.; Linseisen, J. Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection. Viruses 2022, 14, 2441. https://doi.org/10.3390/v14112441
Meisinger C, Kirchberger I, Warm TD, Hyhlik-Dürr A, Goßlau Y, Linseisen J. Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection. Viruses. 2022; 14(11):2441. https://doi.org/10.3390/v14112441
Chicago/Turabian StyleMeisinger, Christa, Inge Kirchberger, Tobias D. Warm, Alexander Hyhlik-Dürr, Yvonne Goßlau, and Jakob Linseisen. 2022. "Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection" Viruses 14, no. 11: 2441. https://doi.org/10.3390/v14112441
APA StyleMeisinger, C., Kirchberger, I., Warm, T. D., Hyhlik-Dürr, A., Goßlau, Y., & Linseisen, J. (2022). Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection. Viruses, 14(11), 2441. https://doi.org/10.3390/v14112441