Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture
2.2. Preparation of Stock Viruses and Titration
2.3. UV Treatment
2.4. Incubation at Different Temperatures
2.5. pH Treatment
2.6. Drying Treatment
2.7. Virus Infection of BHK-21 Cells
2.8. Detection of Virus Gene Expression by RT-qPCR and RT-PCR
3. Results
3.1. Effect of UV Radiation Treatment
3.2. Effect of Incubation at Different Temperatures
3.3. Effect of pH Stress
3.4. Effect of Drying Stress
3.5. Sensitivity of the Five Viruses to BHK-21 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.F.; Zhou, L.; Zhang, X.J. Research advances and prospects for fish genetic breeding. Bull. Chin. Acad. Sci. 2018, 33, 932–939. [Google Scholar]
- Kibenge, F.S. Emerging viruses in aquaculture. Curr. Opin. Virol. 2019, 34, 97–103. [Google Scholar] [CrossRef]
- Gui, L.; Zhang, Q.Y. Disease prevention and control. In Aquaculture in China: Success Stories and Modern Trends; Gui, J.F., Tang, Q.S., Li, Z.J., Liu, J.S., Sena, S.S.D., Eds.; Wiley-Blackwell: Chichester, UK, 2018; pp. 577–598. [Google Scholar]
- Gregory, A.C.; Zayed, A.A.; Conceição-Neto, N.; Temperton, B.; Bolduc, B.; Alberti, A.; Ardyna, M.; Arkhipova, K.; Carmichael, M.; Cruaud, C.; et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 2019, 177, 1109–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mordecai, G.J.; Miller, K.M.; Bass, A.L.; Bateman, A.W.; Teffer, A.K.; Caleta, J.M.; Di Cicco, E.; Schulze, A.D.; Kaukinen, K.H.; Li, S.; et al. Aquaculture mediates global transmission of a viral pathogen to wild salmon. Sci. Adv. 2021, 7, eabe2592. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, Q.Y. Characterization of Carassius auratus herpesvirus ORF31R (CaHV-31R) and the encoded protein colocalize with cellular organs. J. Fish. China 2019, 43, 1263–1270. [Google Scholar]
- Zhang, Q.Y.; Ke, F.; Gui, L.; Zhao, Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. Water Biol. Secur. 2022, 1, 100062. [Google Scholar] [CrossRef]
- Zhang, Q.Y. An overview on several large DNA viruses in freshwater ecosystems. Acta Hydrobiol. Sin. 2020, 5, 28–42. [Google Scholar]
- Gui, L.; Zhang, Q.Y. A brief review on aquatic animal virology researches in China. J. Fish. China 2019, 43, 168–187. [Google Scholar]
- Lei, X.Y.; Ou, T.; Zhu, R.L.; Zhang, Q.Y. Sequencing and analysis of the complete genome of Rana grylio virus (RGV). Arch. Virol. 2012, 157, 1559–1564. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xiao, F.; Li, Z.Q.; Gui, J.F.; Mao, J.; Chinchar, V.G. Characterization of an iridovirus from the cultured pig frog Rana grylio with lethal syndrome. Dis. Aquat. Org. 2001, 48, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Gui, J.F.; Gao, X.C.; Pei, C.; Hong, Y.J.; Zhang, Q.Y. Genome architecture changes and major gene variations of Andrias. davidianus ranavirus (ADRV). Vet. Res. 2013, 44, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, F.; Wang, Z.H.; Ming, C.Y.; Zhang, Q.Y. Ranaviruses bind cells from different species through interaction with heparan sulfate. Viruses 2019, 11, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, F.; Gui, J.F.; Chen, Z.Y.; Li, T.; Lei, C.K.; Wang, Z.H.; Zhang, Q.Y. Divergent transcriptomic responses underlying the ranaviruses-amphibian interaction processes on interspecies infection of Chinese giant salamander. BMC Genom. 2018, 19, 211. [Google Scholar] [CrossRef]
- Chinchar, V.G.; Waltzek, T.B. Ranaviruses: Not just for frogs. PLoS Pathog. 2014, 10, e1003850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zeng, W.; Liu, C.; Zhang, C.; Wang, Y.; Shi, C.; Wu, S. Complete genome sequence of a reovirus isolated from grass carp, indicating different genotypes of GCRV in China. J. Virol. 2012, 86, 12466. [Google Scholar] [CrossRef] [Green Version]
- Pei, C.; Ke, F.; Chen, Z.Y.; Zhang, Q.Y. Complete genome sequence and comparative analysis of grass carp reovirus strain 109 (GCReV-109) with other grass carp reovirus strains reveals no significant correlation with regional distribution. Arch. Virol. 2014, 159, 2435–2440. [Google Scholar] [CrossRef]
- Zhu, R.L.; Zhang, Q.Y. Determination and analysis of the complete genome sequence of Paralichthys olivaceus rhabdovirus (PORV). Arch Virol. 2014, 159, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.L.; Lei, X.Y.; Ke, F.; Yuan, X.P.; Zhang, Q.Y. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell. Virus Res. 2011, 155, 495–505. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Gui, J.F. Virus genomes and virus-host interactions in aquaculture animals. Sci. China Life Sci. 2015, 58, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Yan, C.; Zhou, W.; Li, J.; Wu, H.; Chen, T.; Feng, H. CARD and TM of MAVS of black carp play the key role in its self-association and antiviral ability. Fish Shellfish Immunol. 2017, 63, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Tao, J.J.; Gui, L.; Zhou, G.Z.; Ruan, H.M.; Li, Z.Q.; Gui, J.F. Isolation and characterization of Scophthalmus maximus rhabdovirus. Dis. Aquat. Org. 2007, 74, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Vaqué, D.; Boras, J.A.; Arrieta, J.M.; Agustí, S.; Duarte, C.M.; Sala, M.M. Enhanced viral activity in the surface microlayer of the Arctic and Antarctic oceans. Microorganisms 2021, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shin, H.; Jung, S.; Yeo, D.; Park, H.; Shin, S.; Seo, D.J.; Park, K.H.; Choi, C. Effects of weather and environmental factors on the seasonal prevalence of foodborne viruses in irrigation waters in Gyeonggi Province, Korea. Microorganisms 2020, 8, 1224. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, J.; Christian, J.; Bergmann, S.M.; Oberle, M.; Becker, A.M. Stability of viral haemorrhagic septicaemia virus, infectious hematopoietic necrosis virus and cyprinid herpesvirus 3 in various water samples. J. Fish Dis. 2021, 44, 379–390. [Google Scholar] [CrossRef]
- Millard, R.S.; Ellis, R.P.; Bateman, K.S.; Bickley, L.K.; Tyler, C.R.; van Aerle, R.; Santos, E.M. How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. J. Invertebr. Pathol. 2021, 186, 107369. [Google Scholar] [CrossRef]
- Brunner, J.L.; Yarber, C.M. Evaluating the importance of environmental persistence for ranavirus transmission and epidemiology. Adv. Virus Res. 2018, 101, 129–148. [Google Scholar]
- Xie, S.Z.; Liu, M.Q.; Jiang, R.D.; Lin, H.F.; Zhang, W.; Li, B.; Su, J.; Ke, F.; Zhang, Q.Y.; Shi, Z.L.; et al. Fish ACE2 is not susceptible to SARS-CoV-2. Virol. Sin. 2022, 37, 142–144. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ke, F.; Zhang, Q.Y.; Gui, J.F. Structural and functional diversity among five RING finger proteins from Carassius auratus herpesvirus (CaHV). Viruses 2021, 13, 254. [Google Scholar] [CrossRef]
- Meng, X.Y.; Wang, Z.H.; Yu, X.D.; Zhang, Q.Y.; Ke, F. Development and characterization of a skin cell line from Chinese perch (Siniperca chuatsi) and its application in aquatic animal viruses. J. Fish Dis. 2022, 45, 1439–1449. [Google Scholar] [CrossRef]
- Ke, F.; Yu, X.D.; Wang, Z.H.; Gui, J.F.; Zhang, Q.Y. Replication and transcription machinery for ranaviruses: Components, correlation, and functional architecture. Cell Biosci. 2022, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- He, L.B.; Ke, F.; Zhang, Q.Y. Rana grylio virus as a vector for foreign gene expression in fish cells. Virus Res. 2012, 163, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ke, F.; Gui, J.; Zhang, Q. Characterization of an early gene encoding for dUTPase in Rana grylio virus. Virus Res. 2007, 123, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, D.S.; Kim, K.H. Generation and characterization of NV gene-knockout recombinant viral hemorrhagic septicemia virus (VHSV) genotype IVa. Dis. Aquat. Org. 2011, 97, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoulouze, M.I.; Bouguyon, E.; Carpentier, C.; Brémont, M. Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. J. Virol. 2004, 78, 4098–4107. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Celma, C.C.; Kerviel, A.; Roy, P. Mapping the pH sensors critical for host cell entry by a complex nonenveloped virus. J. Virol. 2019, 93, e01897-18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Patel, A.; Celma, C.C.; Yu, X.; Roy, P.; Zhou, Z.H. Atomic model of a nonenveloped virus reveals pH sensors for a coordinated process of cell entry. Nat. Struct. Mol. Biol. 2016, 23, 74–80. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, W.; Li, Y.; Zhou, Y.; Meng, Y.; Zeng, L.; Vakharia, V.N.; Fan, Y. Isolation, identification, and genomic analysis of a novel Reovirus from healthy grass carp and its dynamic proliferation in vitro and in vivo. Viruses 2021, 13, 690. [Google Scholar] [CrossRef]
- Ye, Y.; Chang, P.H.; Hartert, J.; Wigginton, K.R. Reactivity of enveloped virus genome, proteins, and lipids with free chlorine and UV254. Environ. Sci. Technol. 2018, 52, 7698–7708. [Google Scholar] [CrossRef] [PubMed]
- Price, S.J.; Leung, W.T.M.; Owen, C.J.; Puschendorf, R.; Sergeant, C.; Cunningham, A.A.; Balloux, F.; Garner, T.W.J.; Nichols, R.A. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Glob. Chang. Biol. 2019, 25, 2648–2660. [Google Scholar] [CrossRef]
- Gray, M.J.; Miller, D.L.; Hoverman, J.T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 2009, 87, 243–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, J.; Spengler, M.; Marschang, R.E. Environmental persistence of amphibian and reptilian ranaviruses. Dis. Aquat. Org. 2012, 98, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, J.; Bayley, A.E.; McPherson, N.J.; Feist, S.W. Survival of frog virus 3 in freshwater and sediment from an English lake. J. Wildl. Dis. 2016, 52, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Price, S.J.; Ariel, E.; Maclaine, A.; Rosa, G.M.; Gray, M.J.; Brunner, J.L.; Garner, T.W.J. From fish to frogs and beyond: Impact and host range of emergent ranaviruses. Virology 2017, 511, 272–279. [Google Scholar] [CrossRef]
- Saucedo, B.; Serrano, J.M.; Jacinto-Maldonado, M.; Leuven, R.S.E.W.; Rocha García, A.A.; Méndez Bernal, A.; Gröne, A.; van Beurden, S.J.; Escobedo-Bonilla, C.M. Pathogen risk analysis for wild amphibian populations following the first report of a Ranavirus outbreak in farmed American Bullfrogs (Lithobates catesbeianus) from northern Mexico. Viruses 2019, 11, 26. [Google Scholar] [CrossRef]
Viruses | RGV | ADRV | GCRV | PORV | SMRV | |
---|---|---|---|---|---|---|
Family | Iridoviridae | Iridoviridae | Reoviridae | Rhabdoviridae | Rhabdoviridae | |
Genome | dsDNA | dsDNA | dsRNA | ssRNA | ssRNA | |
Genome size | 105.8 kb | 106.7 kb | 25 kb | 11.2 kt | 11.5 kt | |
ORFs | 106 | 101 | 11 | 6 | 5 | |
Diameter (nm) | 150 | 150~160 | 55~80 | 60 × 200 | 40~60 × 110~150 | |
Enveloped | yes | yes | no | yes | yes | |
Cell type | Environmental factor | TCID50 (decay rate compared to primary TCID50) | ||||
Fish cell (SCSC) | UV dose: 1.5 J | 102.5 (54%) | 102.5 (61%) | 103.4 (37%) | 102.5 (65%) | 101.5 (80%) |
UV dose: 18 J | 101.5 (78%) | 101.5 (76%) | 101.5 (73%) | 101.5 (79%) | 101.5 (80%) | |
25 °C, 7 d | 106.7 (7%) | 106.7 (4%) | 102.7 (44%) | 107.0 (5%) | 106.0 (23%) | |
37 °C, 7 d | 104.6 (36%) | 105.4 (22%) | 101.1 (77%) | 105.9 (20%) | 101.5 (81%) | |
pH = 3, 1 d | 103.9 (46%) | 104.2 (40%) | 102.8 (47%) | 103.6 (52%) | 102.8 (62%) | |
pH = 3, 7 d | 102.6 (64%) | 102.5 (64%) | 101.5 (71%) | 102.5 (66%) | 101.5 (80%) | |
Evaporation, 1.5 d | 103.4 (52%) | 103.6 (45%) | 102.0 (62%) | 105.6 (25%) | 100.1 (99%) | |
Dryness, 7 d | 102.0 (71%) | 102.4 (63%) | 100 (100%) | 102.5 (66%) | 100.0 (100%) | |
Mammalian cell (BHK-21) | Infect at 28 °C | + | + | - | − | + |
Infect at 34 °C | − | − | − | − | ||
Infect at 37 °C | − | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-H.; Ke, F.; Gui, J.-F.; Zhang, Q.-Y. Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells. Viruses 2022, 14, 2546. https://doi.org/10.3390/v14112546
Wang Z-H, Ke F, Gui J-F, Zhang Q-Y. Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells. Viruses. 2022; 14(11):2546. https://doi.org/10.3390/v14112546
Chicago/Turabian StyleWang, Zi-Hao, Fei Ke, Jian-Fang Gui, and Qi-Ya Zhang. 2022. "Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells" Viruses 14, no. 11: 2546. https://doi.org/10.3390/v14112546
APA StyleWang, Z. -H., Ke, F., Gui, J. -F., & Zhang, Q. -Y. (2022). Environmental Factors and Their Threshold Affecting the Survival of Five Aquatic Animal Viruses in Different Animal Cells. Viruses, 14(11), 2546. https://doi.org/10.3390/v14112546