Assessing the Pre-Vaccination Anti-SARS-CoV-2 IgG Seroprevalence among Residents and Staff in Nursing Home in Niigata, Japan, November 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurement of Quantitative Antibody Levels in Serum
2.3. Statistical Analysis
2.4. Ethical Consideration
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heymann, D.L.; Shindo, N. COVID-19: What is next for public health? Lancet 2020, 395, 542–545. [Google Scholar] [CrossRef] [Green Version]
- Furuse, Y.; Sando, E.; Tsuchiya, N.; Miyahara, R.; Yasuda, I.; Ko, Y.K.; Saito, M.; Morimoto, K.; Imamura, T.; Shobugawa, Y.; et al. Clusters of Coronavirus Disease in Communities, Japan, January-April 2020. Emerg. Infect. Dis. 2020, 26, 2176–2179. [Google Scholar] [CrossRef]
- Wagatsuma, K.; Sato, R.; Yamazaki, S.; Iwaya, M.; Takahashi, Y.; Nojima, A.; Oseki, M.; Abe, T.; Phyu, W.W.; Tamura, T.; et al. Genomic Epidemiology Reveals Multiple Introductions of Severe Acute Respiratory Syndrome Coronavirus 2 in Niigata City, Japan, Between February and May 2020. Front. Microbiol. 2021, 12, 749149. [Google Scholar] [CrossRef] [PubMed]
- Wagatsuma, K.; Phyu, W.W.; Osada, H.; Tang, J.W.; Saito, R. Geographic Correlation between the Number of COVID-19 Cases and the Number of Overseas Travelers in Japan, Jan-Feb, 2020. Jpn. J. Infect. Dis. 2021, 74, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Furuse, Y.; Tsuchiya, N.; Miyahara, R.; Yasuda, I.; Sando, E.; Ko, Y.K.; Imamura, T.; Morimoto, K.; Imamura, T.; Shobugawa, Y.; et al. COVID-19 case-clusters and transmission chains in the communities in Japan. J. Infect. 2022, 84, 248288. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 2000180. [Google Scholar] [CrossRef] [Green Version]
- Russell, T.W.; Hellewell, J.; Jarvis, C.I.; van Zandvoort, K.; Abbott, S.; Ratnayake, R.; Cmmid Covid-Working, G.; Flasche, S.; Eggo, R.M.; Edmunds, W.J.; et al. Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance 2020, 25, 2000256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munayco, C.; Chowell, G.; Tariq, A.; Undurraga, E.A.; Mizumoto, K. Risk of death by age and gender from CoVID-19 in Peru, March-May, 2020. Aging 2020, 12, 13869–13881. [Google Scholar] [CrossRef]
- Undurraga, E.A.; Chowell, G.; Mizumoto, K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March-August 2020. Infect. Dis. Poverty 2021, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Yanez, N.D.; Weiss, N.S.; Romand, J.A.; Treggiari, M.M. COVID-19 mortality risk for older men and women. BMC Public Health 2020, 20, 1742. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, D.C.; Mor, V. Nursing Home Care in Crisis in the Wake of COVID-19. JAMA 2020, 324, 23–24. [Google Scholar] [CrossRef]
- Speletas, M.; Kyritsi, M.A.; Vontas, A.; Theodoridou, A.; Chrysanthidis, T.; Hatzianastasiou, S.; Petinaki, E.; Hadjichristodoulou, C. Evaluation of Two Chemiluminescent and Three ELISA Immunoassays for the Detection of SARS-CoV-2 IgG Antibodies: Implications for Disease Diagnosis and Patients’ Management. Front. Immunol. 2020, 11, 609242. [Google Scholar] [CrossRef] [PubMed]
- Manthei, D.M.; Whalen, J.F.; Schroeder, L.F.; Sinay, A.M.; Li, S.H.; Valdez, R.; Giacherio, D.A.; Gherasim, C. Differences in Performance Characteristics Among Four High-Throughput Assays for the Detection of Antibodies Against SARS-CoV-2 Using a Common Set of Patient Samples. Am. J. Clin. Pathol. 2021, 155, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.; Pepper, G.; Wener, M.H.; Fink, S.L.; Morishima, C.; Chaudhary, A.; Jerome, K.R.; Mathias, P.C.; Greninger, A.L. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J. Clin. Microbiol. 2020, 58, e00941-20. [Google Scholar] [CrossRef] [PubMed]
- Maine, G.N.; Lao, K.M.; Krishnan, S.M.; Afolayan-Oloye, O.; Fatemi, S.; Kumar, S.; VanHorn, L.; Hurand, A.; Sykes, E.; Sun, Q. Longitudinal characterization of the IgM and IgG humoral response in symptomatic COVID-19 patients using the Abbott Architect. J. Clin. Virol. 2020, 133, 104663. [Google Scholar] [CrossRef]
- Kozawa, K.; Miura, H.; Kawamura, Y.; Higashimoto, Y.; Ihira, M.; Yoshikawa, T. Unremarkable antibody responses against various infectious agents after inoculation with the BNT162b2 COVID-19 vaccine. J. Med. Virol. 2022, 94, 4583–4585. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO/BS.2020.2403 Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 Antibody. Available online: https://www.who.int/publications/m/item/WHO-BS-2020.2403 (accessed on 15 August 2022).
- Kristiansen, P.A.; Page, M.; Bernasconi, V.; Mattiuzzo, G.; Dull, P.; Makar, K.; Plotkin, S.; Knezevic, I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021, 397, 1347–1348. [Google Scholar] [CrossRef]
- Kučinskaitė-Kodzė, I.; Simanavičius, M.; Šimaitis, A.; Žvirblienė, A. Persistence of SARS-CoV-2-Specific Antibodies for 13 Months after Infection. Viruses 2021, 13, 2313. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Iritani, O.; Okuno, T.; Hama, D.; Kane, A.; Kodera, K.; Morigaki, K.; Terai, T.; Maeno, N.; Morimoto, S. Clusters of COVID-19 in long-term care hospitals and facilities in Japan from 16 January to 9 May 2020. Geriatr. Gerontol. Int. 2020, 20, 715–719. [Google Scholar] [CrossRef]
- Shimizu, K.; Maeda, H.; Sando, E.; Fujita, A.; Tashiro, M.; Tanaka, T.; Izumikawa, K.; Motomura, K.; Morimoto, K. Epidemiology of SARS-CoV-2 infection in nursing facilities and the impact of their clusters in a Japanese core city. J. Infect. Chemother. 2022, 28, 955–961. [Google Scholar] [CrossRef]
- Krutikov, M.; Palmer, T.; Tut, G.; Fuller, C.; Azmi, B.; Giddings, R.; Shrotri, M.; Kaur, N.; Sylla, P.; Lancaster, T.; et al. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the pandemic (VIVALDI study): Prospective cohort study in England. Lancet Healthy Longev. 2022, 3, e13–e21. [Google Scholar] [CrossRef]
- Bernadou, A.; Bouges, S.; Catroux, M.; Rigaux, J.C.; Laland, C.; Levêque, N.; Noury, U.; Larrieu, S.; Acef, S.; Habold, D.; et al. High impact of COVID-19 outbreak in a nursing home in the Nouvelle-Aquitaine region, France, March to April 2020. BMC Infect. Dis. 2021, 21, 198. [Google Scholar] [CrossRef]
- Akinbami, L.J.; Chan, P.A.; Vuong, N.; Sami, S.; Lewis, D.; Sheridan, P.E.; Lukacs, S.L.; Mackey, L.; Grohskopf, L.A.; Patel, A.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity among Healthcare Personnel in Hospitals and Nursing Homes, Rhode Island, USA, July-August 2020. Emerg. Infect. Dis. 2021, 27, 823–834. [Google Scholar] [CrossRef]
- Focosi, D.; Maggi, F.; Mazzetti, P.; Pistello, M. Viral infection neutralization tests: A focus on severe acute respiratory syndrome-coronavirus-2 with implications for convalescent plasma therapy. Rev. Med. Virol. 2021, 31, e2170. [Google Scholar] [CrossRef]
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [Google Scholar] [CrossRef]
- Ripperger, T.J.; Uhrlaub, J.L.; Watanabe, M.; Wong, R.; Castaneda, Y.; Pizzato, H.A.; Thompson, M.R.; Bradshaw, C.; Weinkauf, C.C.; Bime, C.; et al. Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity 2020, 53, 925–933.e924. [Google Scholar] [CrossRef]
- El-Khoury, J.M.; Schulz, W.L.; Durant, T.J.S. Longitudinal Assessment of SARS-CoV-2 Antinucleocapsid and Antispike-1-RBD Antibody Testing Following PCR-Detected SARS-CoV-2 Infection. J. Appl. Lab. Med. 2021, 6, 1005–1011. [Google Scholar] [CrossRef]
- Nakano, Y.; Kurano, M.; Morita, Y.; Shimura, T.; Yokoyama, R.; Qian, C.; Xia, F.; He, F.; Kishi, Y.; Okada, J.; et al. Time course of the sensitivity and specificity of anti-SARS-CoV-2 IgM and IgG antibodies for symptomatic COVID-19 in Japan. Sci. Rep. 2021, 11, 2776. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.W.; Benton, M.G.; Akerley, W.; Mayhew, G.F.; Moehlenkamp, C.; Raterman, D.; Burgess, D.L.; Rowell, W.J.; Lambert, C.; Eng, K.; et al. Structural variation and its potential impact on genome instability: Novel discoveries in the EGFR landscape by long-read sequencing. PLoS ONE 2020, 15, e0226340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyerowitz, E.A.; Richterman, A.; Bogoch, I.I.; Low, N.; Cevik, M. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e163–e169. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; Dun-Campbell, K.; Janarthanan, R.; Fok, J.; Crawley-Boevey, E.; Vusirikala, A.; Fernandez Ruiz De Olano, E.; Sanchez Perez, M.; Tang, S.; Rowland, T.A.; et al. Infection and transmission of SARS-CoV-2 in London care homes reporting no cases or outbreaks of COVID-19: Prospective observational cohort study, England 2020. Lancet Reg. Health Eur. 2021, 3, 100038. [Google Scholar] [CrossRef]
- Aggarwal, D.; Myers, R.; Hamilton, W.L.; Bharucha, T.; Tumelty, N.M.; Brown, C.S.; Meader, E.J.; Connor, T.; Smith, D.L.; Bradley, D.T.; et al. The role of viral genomics in understanding COVID-19 outbreaks in long-term care facilities. Lancet Microbe 2022, 3, e151–e158. [Google Scholar] [CrossRef]
- McMichael, T.M.; Currie, D.W.; Clark, S.; Pogosjans, S.; Kay, M.; Schwartz, N.G.; Lewis, J.; Baer, A.; Kawakami, V.; Lukoff, M.D.; et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N. Engl. J. Med. 2020, 382, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- White, E.M.; Kosar, C.M.; Feifer, R.A.; Blackman, C.; Gravenstein, S.; Ouslander, J.; Mor, V. Variation in SARS-CoV-2 Prevalence in U.S. Skilled Nursing Facilities. J. Am. Geriatr. Soc. 2020, 68, 2167–2173. [Google Scholar] [CrossRef]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef]
- Patel, M.C.; Chaisson, L.H.; Borgetti, S.; Burdsall, D.; Chugh, R.K.; Hoff, C.R.; Murphy, E.B.; Murskyj, E.A.; Wilson, S.; Ramos, J.; et al. Asymptomatic SARS-CoV-2 Infection and COVID-19 Mortality During an Outbreak Investigation in a Skilled Nursing Facility. Clin. Infect. Dis. 2020, 71, 2920–2926. [Google Scholar] [CrossRef]
- Janssens, H.; Heytens, S.; Meyers, E.; De Schepper, E.; De Sutter, A.; Devleesschauwer, B.; Formukong, A.; Keirse, S.; Padalko, E.; Geens, T.; et al. Pre-vaccination SARS-CoV-2 seroprevalence among staff and residents of nursing homes in Flanders (Belgium) in fall 2020. Epidemiol. Infect. 2022, 150, 1–25. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.N.; Jeffery-Smith, A.; Patel, M.; Janarthanan, R.; Fok, J.; Crawley-Boevey, E.; Vusirikala, A.; Fernandez Ruiz De Olano, E.; Perez, M.S.; Tang, S.; et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England. EClinicalMedicine 2020, 28, 100597. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Staff (n = 62, 60.1%) | Resident (n = 41, 39.9%) | ||
---|---|---|---|---|
RT-PCR Test Result | Positive (n = 6, 9.7%) | Negative (n = 56, 90.3%) | Positive (n = 24, 58.5%) | Negative (n = 17, 41.5%) |
Age (years), median (IQR) | 34.0 (30.0–44.0) | 50.0 (38.8–56.0) | 90.0 (86.0–93.0) | 93.0 (86.0–97.0) |
Sex, n (%) | ||||
Male | 2 (33.3) | 8 (14.3) | 0 (0.0) | 4 (23.5) |
Female | 4 (66.7) | 48 (85.7) | 24 (100.0) | 13 (76.5) |
Occupation, n (%) | ||||
Doctor | 0 (0.0) | 4 (7.1) | NA | NA |
Nurse | 0 (0.0) | 14 (25.0) | NA | NA |
Caregiver | 6 (100.0) | 31 (55.4) | NA | NA |
Clerk | 0 (0.0) | 7 (12.5) | NA | NA |
DENKA (Tokyo, Japan) | Anti-N IgG Antibody | Anti-S IgG Antibody |
Seropositivity (%) | 66.7 (20/30) | 90.0 (27/30) |
Seronegativity (%) | 93.0 (66/71) | 97.2 (69/71) |
Abbott (Chicago, IL, USA) | Anti-N IgG Antibody | Anti-S IgG Antibody |
Seropositivity (%) | 66.7 (20/30) | 90.0 (27/30) |
Seronegativity (%) | 97.2 (69/71) | 95.8 (68/71) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagatsuma, K.; Yoshioka, S.; Yamazaki, S.; Sato, R.; Phyu, W.W.; Chon, I.; Takahashi, Y.; Watanabe, H.; Saito, R. Assessing the Pre-Vaccination Anti-SARS-CoV-2 IgG Seroprevalence among Residents and Staff in Nursing Home in Niigata, Japan, November 2020. Viruses 2022, 14, 2581. https://doi.org/10.3390/v14112581
Wagatsuma K, Yoshioka S, Yamazaki S, Sato R, Phyu WW, Chon I, Takahashi Y, Watanabe H, Saito R. Assessing the Pre-Vaccination Anti-SARS-CoV-2 IgG Seroprevalence among Residents and Staff in Nursing Home in Niigata, Japan, November 2020. Viruses. 2022; 14(11):2581. https://doi.org/10.3390/v14112581
Chicago/Turabian StyleWagatsuma, Keita, Sayaka Yoshioka, Satoru Yamazaki, Ryosuke Sato, Wint Wint Phyu, Irina Chon, Yoshiki Takahashi, Hisami Watanabe, and Reiko Saito. 2022. "Assessing the Pre-Vaccination Anti-SARS-CoV-2 IgG Seroprevalence among Residents and Staff in Nursing Home in Niigata, Japan, November 2020" Viruses 14, no. 11: 2581. https://doi.org/10.3390/v14112581
APA StyleWagatsuma, K., Yoshioka, S., Yamazaki, S., Sato, R., Phyu, W. W., Chon, I., Takahashi, Y., Watanabe, H., & Saito, R. (2022). Assessing the Pre-Vaccination Anti-SARS-CoV-2 IgG Seroprevalence among Residents and Staff in Nursing Home in Niigata, Japan, November 2020. Viruses, 14(11), 2581. https://doi.org/10.3390/v14112581