Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums
Abstract
:1. Introduction
2. Material and Methods
2.1. Viral and Fungal Strains
2.2. Preservation of Virus-Infected Fungal Strains and Assessment of Their Viral Load
2.3. Inoculation of Sweet Chestnut Seedlings and Branch Segments, and Fungal Re-Isolation
2.4. Direct One-Step Reverse Transcription PCR and Comparison with Other Endpoint and Real-Time Virus Detection Methods
2.5. Statistical Analyses
3. Results
3.1. Transmissions
3.2. Preservations
3.3. Assay I, Pathogenicity Test
3.4. Assay II, Biocontrol Potential
3.5. New Real-Time PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.-C.; Dynek, J.N.; Hillman, B.I.; Milgroom, M.G. Diversity of viruses in Cryphonectria parasitica and C. nitschkei in Japan and China, and partial characterization of a new chrysovirus species. Mycol. Res. 2007, 111, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakis, S.L. Chestnut blight: The classical problem of an introduced pathogen. Mycologia 1987, 79, 23–37. [Google Scholar] [CrossRef]
- Robin, C.; Heiniger, U. Chestnut blight in Europe: Diversity of Cryphonectria parasitica, hypovirulence and biocontrol. For. Snow Land. Res. 2001, 76, 361–367. [Google Scholar]
- Hunter, G.; Wylder, B.; Jones, B.; Webber, J.F. First finding of Cryphonectria parasitica causing chestnut blight on Castanea sativa trees in England. New Dis. Rep. 2013, 27, 1. [Google Scholar] [CrossRef] [Green Version]
- Forestry Commission. Sweet Chestnut Blight (Cryphonectria parasitica). 2018. Available online: https://www.forestresearch.gov.uk/tools-and-resources/fthr/pest-and-disease-resources/sweet-chestnut-blight-cryphonectria-parasitica/ (accessed on 29 June 2022).
- Pérez-Sierra, A.; Romon-Ochoa, P.; Gorton, C.; Lewis, A.; Rees, H.; van der Linde, S.; Webber, J. High vegetative compatibility diversity of Cryphonectria parasitica infecting sweet chestnut (Castanea sativa) in Britain indicates multiple pathogen introductions. Plant Pathol. 2019, 68, 727–737. [Google Scholar] [CrossRef]
- Romon-Ochoa, P.; Kranjec Orlovic, J.; Gorton, C.; Lewis, A.; van der Linde, S.; Pérez-Sierra, A. New detections of chestnut blight in Great Britain during 2019–2020 reveal high Cryphonectria parasitica diversity and limited spread of the disease. Plant Pathol. 2021, 71, 793–804. [Google Scholar] [CrossRef]
- Hillman, B.I.; Suzuki, N. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 2004, 63, 423–472. [Google Scholar]
- Fahima, T.; Kazmierczak, P.; Hansen, D.R.; Pfeiffer, P.; van Alfen, N.K. Membrane-associated replication of an un-encapsidated double-strand RNA of the fungus, Cryphonectria parasitica. Virology 1993, 195, 81–89. [Google Scholar] [CrossRef]
- Mlinarec, J.; Jezic, M.; Cosic, J.; Curkovic-Perica, M. Multilocus PCR assay reveals high diversity of vegetative compatibility types in populations of Cryphonectria parasitica in Croatia. Plant Pathol. 2018, 67, 741–749. [Google Scholar] [CrossRef]
- Cortesi, P.; McCulloch, C.E.; Song, H.Y.; Lin, H.Q.; Milgroom, M.G. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics 2001, 159, 107–118. [Google Scholar] [CrossRef]
- Rigling, D.; Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romon-Ochoa, P.; Gorton, C.; Lewis, A.; van der Linde, S.; Webber, J.; Pérez-Sierra, A. Hypovirulent effect of the Cryphonectria Hypovirus 1 in British isolates of Cryphonectria parasitica. Pest Manag. Sci. 2020, 76, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Gobbin, D.; Hoegger, P.J.; Heiniger, U.; Rigling, D. Sequence variation and evolution of Cryphonectria hypovirus 1 (CHV-1) in Europe. Virus Res. 2003, 97, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Andika, I.B.; Jamal, A.; Kondo, H.; Suzuki, N. SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing. Proc. Natl. Acad. Sci. USA 2017, 114, 3499–3506. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Cornejo, C.; Aulia, A.; Shahi, S.; Hillman, B.I.; Rigling, D. In-tree behavior of diverse viruses harbored in the chestnut blight fungus, Cryphonectria parasitica. J. Virol. 2021, 95, e01962-20. [Google Scholar] [CrossRef] [PubMed]
- Urayama, S.; Katoh, Y.; Fukuhara, T.; Arie, T.; Moriyama, H.; Teraoka, T. Rapid detection of Magnaporthe oryzae chrysovirus 1-A from fungal colonies on agar plates and lesions of rice blast. J. Gen. Plant Pathol. 2015, 81, 97–102. [Google Scholar] [CrossRef]
- Aulia, A.; Andika, I.B.; Kondo, H.; Hillman, B.I.; Suzuki, N. A symptomless hypovirus, CHV4, facilitates stable infection of the chestnut blight fungus by a coinfecting reovirus likely through suppression of antiviral RNA silencing. Virology 2019, 533, 99–107. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 25 July 2022).
- Length, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.7.2. 2022. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 25 July 2022).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using ime4. J. Statis. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Statis. Soft. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 25 July 2022).
- Peever, T.L.; Liu, Y.-C.; Wang, K.; Hillman, B.I.; Foglia, R.; Milgroom, M.G. Incidence and diversity of double-stranded RNAs occurring in the chestnut blight fungus, Cryphonectria parasitica, in China and Japan. Phytopathology 1998, 88, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-M.; Kim, J.-M.; Chung, H.-J.; Lim, J.-Y.; Kwon, B.-R.; Lim, J.-G.; Kim, J.-A.; Kim, M.-J.; Cha, B.-J.; Lee, S.-H.; et al. Occurrence of diverse dsRNA in a Korean population of the chestnut blight fungus Cryphonectria parasitica. Phytopathology 2008, 112, 1220–1226. [Google Scholar]
- Rigling, D.; Borst, N.; Cornejo, C.; Supatashvili, A.; Prospero, S. Genetic and phenotypic characterization of Cryphonectria hypovirus 1 from Eurasian Georgia. Viruses 2018, 10, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allemann, C.; Hoegger, P.; Heiniger, U.; Rigling, D. Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe, assessed using restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 1999, 8, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Bryner, S.F.; Rigling, D. Hypovirus virulence and vegetative incompatibility in populations of the chestnut blight fungus. Phytopathology 2012, 102, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Krajacic, M.; Curkovic-Perica, M. Chestnut blight fungus in Croatia: Diversity of vegetative compatibility types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathol. 2008, 57, 1086–1096. [Google Scholar] [CrossRef]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Curkovic-Perica, M. Diversity of vegetative compatibility types and mating types of Cryphonectria parasitica in Slovenia and occurrence of associated Cryphonectria hypovirus 1. Plant Pathol. 2011, 60, 752–761. [Google Scholar] [CrossRef]
- Sotiroski, K.; Milgroom, M.G.; Rigling, D.; Heiniger, U. Occurrence of Cryphonectria hypovirus 1 in the chestnut blight fungus in Macedonia. For. Pathol. 2006, 36, 136–143. [Google Scholar] [CrossRef]
- Akilli, S.; Serce, C.U.; Katircioglu, Y.Z.; Maden, S.; Rigling, D. Characterization of hypovirulent isolates of the chestnut blight fungus, Cryphonectria parasitica from the Marmara and Black Sea regions of Turkey. Eur. J. Plant Pathol. 2013, 135, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Hoegger, P.J.; Heiniger, U.; Holdenrieder, O.; Rigling, D. Differential transfer and dissemination of hypovirus and nuclear and mitochondrial genomes of a hypovirus-infected Cryphonectria parasitica strain after introduction into a natural population. Appl. Environ. Microb. 2003, 69, 3767–3771. [Google Scholar] [CrossRef] [Green Version]
- Feau, N.; Dutech, C.; Brusini, J.; Rigling, D.; Robin, C. Multiple introductions and recombination in Cryphonectria hypovirus 1: Perspective of a sustainable biological control of chestnut blight. Evol. Appl. 2014, 9, 580–596. [Google Scholar] [CrossRef]
- Zamora, P.; Martin, A.B.; Rigling, D.; Diez, J.J. Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus-infected isolates. For. Pathol. 2012, 42, 412–419. [Google Scholar] [CrossRef]
- Peters, F.S.; Busskamp, J.; Prospero, S.; Rigling, D.; Metzler, B. Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Fungal Biol. 2014, 118, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Hogan, E.P.; Griffin, G.J. Spread of Cryphonectria hypovirus 1 into 45 vegetative compatibility types of Cryphonectria parasitica on grafted American chestnut trees. For. Pathol. 2002, 32, 73–85. [Google Scholar] [CrossRef]
- Double, M.L.; Nuss, D.L.; Rittenour, W.R.; Holásková, I.; Short, D.P.G.; Kasson, M.T.; MacDonald, W.L. Long-term field study of transgenic hypovirulent strains of Cryphonectria parasitica in a forest setting. For. Pathol. 2017, 47, e12367. [Google Scholar] [CrossRef]
- Double, M.L.; Jarosz, A.M.; Fulbright, D.W.; Davelos-Baines, A.; MacDonald, W.L. Evaluation of two decades of Cryphonectria parasitica hypovirus introduction in an American chestnut stand in Wisconsin. Phytopathology 2018, 108, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauder, C.M.; Nuss, D.L.; Zhang, D.-X.; Double, M.L.; MacDonald, W.L.; Metheny, A.M.; Kasson, M.T. Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes. Virology 2019, 528, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bryner, S.F.; Rigling, D.; Brunner, P.C. Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus. Ecol. Evol. 2012, 2, 3227–3241. [Google Scholar] [CrossRef]
- Zamora, P.; Martin, A.B.; San Martin, R.; Martinez-Alvarez, P.; Diez, J.J. Control of chestnut blight by the use of hypovirulent strains of the fungus Cryphonectria parasitica in northwestern Spain. Biol. Conserv. 2014, 79, 58–66. [Google Scholar] [CrossRef]
- Krstin, L.; Katanić, Z.; Ježić, M.; Poljak, I.; Nuskern, L.; Matković, I.; Idžojtić, M.; Ćurković-Perica, M. Biological control of chestnut blight in Croatia: An interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. Pest Manag. Sci. 2016, 73, 582–589. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Milgroom, M.G. Correlation between hypovirus transmission and the number of vegetative incompatibility (Vic) genes different among isolates from a natural population of Cryphonectria parasitica. Phytopathology 1996, 86, 79–86. [Google Scholar] [CrossRef]
- Brusini, J.; Robin, C. Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. J. Virol. Methods 2013, 187, 435–442. [Google Scholar] [CrossRef] [PubMed]
Treatment Number | Fungal Strain | Description | VCG | Mating Type | Virus Strain |
---|---|---|---|---|---|
1 | FTC687 | Virus-infected strain, transmitted from SDA540 M2273 | EU10 (2122-11) | MAT-2 | E-5 |
2 | WAR706 | Virus-infected strain, transmitted from WAP125 M2273 | EU9 (2111-11) | MAT-2 | E-5 |
3 | POWP709 | Virus-infected strain, transmitted from WAP125 M2273 | EU9 (2111-11) | MAT-2 | E-5 |
4 | FTC687 | Virus-infected strain, transmitted from SDA540 M2357 | EU10 (2122-11) | MAT-2 | L-18 |
5 | WAR706 | Virus-infected strain, transmitted from WAP125 M2357 | EU9 (2111-11) | MAT-2 | L-18 |
6 | POWP709 | Virus-infected strain, transmitted from WAP125 M2357 | EU9 (2111-11) | MAT-2 | L-18 |
7 | PDA CONTROL | Not Applicable (N/A) | N/A | N/A | N/A |
8 | LAP731 | Standard virus-free strain | EU10 (2122-11) | MAT-2 | N/A |
9 | FTC687 VIRUS-FREE | Standard virus-free strain | EU10 (2122-11) | MAT-2 | N/A |
10 | WAR706 VIRUS-FREE | Standard virus-free strain | EU9 (2111-11) | MAT-2 | N/A |
11 | DIG460 | Standard virus-free strain | EU9 (2111-11) | MAT-2 | N/A |
PROBE SPECIFIC FOR CHV-1 | Tm * °C | GC % | ΔG Kcal/mol |
---|---|---|---|
CHV1-F: 5′-TGAGGAACGTCAACTTCG-3′ | 53.8 | 50.0 | 23.2 |
CHV1-R: 5′-TTGTGACGACGGAAATAATC-3′ | 54.3 | 40.0 | 24.10 |
HVEP1 Fluo: 5′-56-FAM/TGACACGGAAGCTGAGTGTC/3BHQ1/-3′ | 60.5 | 55.0 | 26.70 |
PROBE FOR INTERNAL CONTROL TARGETING ACTIN mRNA & DNA | |||
CpActinCF1: 5′-CCATGGTATCATGATTGGTATG-3′ | 58.4 | 41 | 25.0 |
CpActinCR1: 5′-TACCGCAGAGTCAGGATA-3′ | 53.8 | 50 | 22.4 |
CpActinCP1: 5′-56-JOE/TCATCACCAACATACGAGTCCTTCTG/3BHQ1/-3′ | 66.2 | 46 | 33.6 |
Treatment Number | Strain | Before Preservation | After Glycerol Preservation | After Disks Preservation |
---|---|---|---|---|
1 | FTC687 | 234.37 | 293.60 (±6.30) a | 240.30 (±140.96) a |
2 | WAR706 | 407.09 | 371.84 (±47.94) a | 240.98 (±295.33) a |
3 | POWP709 | 371.42 | 364.70 (±44.69) a | 230.96 (±314.99) a |
4 | FTC687 | 612.83 | 382.92 (±47.33) a | 236.83 (±199.30) a |
5 | WAR706 | 458.04 | 425.86 (±99.05) a | 137.64 (±185.07) a |
6 | POWP709 | 343.02 | 412,37 (±75.27) a | 144.00 (±195.52) a |
Mean total | 404.46 | 375.21 (±62.98) a | 199.12 (±175.95) a |
ASSAY II USING SEEDLINGS | End-Point PCRs | Real-Time PCRs | Virus Copy Number | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Donor Number | Virus Strain (0 None, 1 E-5, 2 L-18) | Lesion Area (mm2) | Original Virus Concentration (ng/µL) | VCG Compatibility (0 None, 1 Yes) | Qiagen Extract (ng/µL) | Takara Dye Toothpick (ng/µL) | Takara III Extract (ng/µL) | Takara III Toothpick (ng/µL) | |||
Donor number | Pearson Correlation | 1 | |||||||||
Sig. (2-tailed) | |||||||||||
Virus strain (0 None, 1 E-5, 2 L-18) | Pearson Correlation | −0.255 | 1 | ||||||||
Sig. (2-tailed) | 0.042 | ||||||||||
Lesion area (mm2) | Pearson Correlation | 0.579 | −0.635 | 1 | |||||||
Sig. (2-tailed) | 5.277E-7 | 1.785E-8 | |||||||||
Original virus concentration (ng/µL) | Pearson Correlation | −0.768 | 0.701 | −0.779 | 1 | ||||||
Sig. (2-tailed) | 1.238E-13 | 1.081E-10 | 3.427E-14 | ||||||||
VCG compatibility (0 None, 1 Yes) | Pearson Correlation | −0.716 | 0.832 | −0.793 | 0.963 | 1 | |||||
Sig. (2-tailed) | 3.010E-11 | 1.631E-17 | 5.926E-15 | 6.315E-37 | |||||||
Qiagen Extract (ng/µL) | Pearson Correlation | −0.633 | 0.690 | −0.766 | 0.829 | 0.852 | 1 | ||||
Sig. (2-tailed) | 1.936E-8 | 2.796E-10 | 1.706E-13 | 2.564E-17 | 4.482E-19 | ||||||
Takara Dye Toothpick (ng/µL) | Pearson Correlation | −0.634 | 0.690 | −0.766 | 0.829 | 0.852 | 1.000 | 1 | |||
Sig. (2-tailed) | 1.925E-8 | 2.817E-10 | 1.700E-13 | 2.535E-17 | 4.447E-19 | 1.64E-159 | |||||
Takara III Extract (ng/µL) | Pearson Correlation | −0.635 | 0.689 | −0.765 | 0.830 | 0.852 | 1.000 | 1.000 | 1 | ||
Sig. (2-tailed) | 1.721E-8 | 3.192E-10 | 1.773E-13 | 2.469E-17 | 4.779E-19 | 4.645E-129 | 3.422E-127 | ||||
Takara III Toothpick (ng/µL) | Pearson Correlation | −0.633 | 0.690 | −0.766 | 0.829 | 0.852 | 1.000 | 1.000 | 1.000 | 1 | |
Sig. (2-tailed) | 1.957E-8 | 2.800E-10 | 1.707E-13 | 2.589E-17 | 4.488E-19 | 3.336E-154 | 1.198E-167 | 8.542E-125 | |||
Virus copy number | Pearson Correlation | −0.271 | 0.575 | −0.543 | 0.535 | 0.583 | 0.775 | 0.774 | 0.773 | 0.775 | 1 |
Sig. (2-tailed) | 0.030 | 6.540E-7 | 3.644E-6 | 5.281E-6 | 4.220E-7 | 5.990E-14 | 6.310E-14 | 7.26E-14 | 6.015E-14 | ||
Negative correlation is significant at the 0.05 level (2-tailed). | |||||||||||
Positive correlation is significant at the 0.05 level (2-tailed). | |||||||||||
N | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
ASSAY II USINGBRANCHES | End-Point PCRs | Real-Time PCRs | Virus Copy Number | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Donor Number | Virus Strain (0 None, 1 E-5, 2 L-18) | Lesion Area (mm2) | Original Virus Concentration (ng/µL) | VCG Compatibility (0 None, 1 Yes, 2 No) | Qiagen Extract (ng/µL) | Takara Dye Toothpick (ng/µL) | Takara III Extract (ng/µL) | Takara III Toothpick (ng/µL) | |||
Donor number | Pearson Correlation | 1 | |||||||||
Sig. (2-tailed) | 1 | ||||||||||
Virus strain (0 None, 1 E-5, 2 L-18) | Pearson Correlation | 6.74337E-18 | 1 | ||||||||
Sig. (2-tailed) | 1 | ||||||||||
Lesion area (mm2) | Pearson Correlation | 0.203 | −0.032 | 1 | |||||||
Sig. (2-tailed) | 1.562E-2 | 0.706 | |||||||||
Original virus concentration (ng/µL) | Pearson Correlation | −0.238 | 0.897 | −0.096 | 1 | ||||||
Sig. (2-tailed) | 5E-3 | 1E-4 | 0.257 | ||||||||
VCG compatibility (0 None, 1 Yes, 2 No) | Pearson Correlation | −0.459 | 0.562 | 0.156 | 0.675 | 1 | |||||
Sig. (2-tailed) | 1.14525E-08 | 4.73908E-13 | 6.539E-2 | 1E-4 | |||||||
Qiagen Extract (ng/µL) | Pearson Correlation | −0.199 | −0.018 | −0.871 | 0.072 | −0.134 | 1 | ||||
Sig. (2-tailed) | 1.789E-2 | 0.828 | 1.65686E-44 | 0.395 | 0.113 | ||||||
Takara Dye Toothpick (ng/µL) | Pearson Correlation | −0.199 | −0.018 | −0.871 | 0.072 | −0.134 | 0.999 | 1 | |||
Sig. (2-tailed) | 1.788E-2 | 0.828 | 1.64435E-44 | 0.395 | 0.113 | 1E-4 | |||||
Takara III Extract (ng/µL) | Pearson Correlation | −0.199 | −0.018 | −0.871 | 0.072 | −0.134 | 0.999 | 0.999 | 1 | ||
Sig. (2-tailed) | 1.788E-2 | 0.828 | 1.73168E-44 | 0.395 | 0.113 | 1E-4 | 1E-4 | ||||
Takara III Toothpick (ng/µL) | Pearson Correlation | −0.199 | −0.018 | −0.871 | 0.072 | −0.134 | 0.999 | 0.999 | 0.999 | 1 | |
Sig. (2-tailed) | 1.788E-2 | 0.827 | 1.74169E-44 | 0.395 | 0.113 | 1E-4 | 1E-4 | 1E-4 | |||
Virus copy number | Pearson Correlation | −0.129 | −0.051 | −0.383 | 0.004 | −0.056 | 0.659 | 0.659 | 0.659 | 0.659 | 1 |
Sig. (2-tailed) | 0.128 | 0.549 | 1E-4 | 0.964 | 0.510 | 8.397E-19 | 8.639E-19 | 8.326E-19 | 8.519E-19 | ||
Negative correlation is significant at the 0.05 level (2-tailed). | |||||||||||
Positive correlation is significant at the 0.05 level (2-tailed). | |||||||||||
N | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romon-Ochoa, P.; Forster, J.; Chitty, R.; Gorton, C.; Lewis, A.; Eacock, A.; Kupper, Q.; Rigling, D.; Pérez-Sierra, A. Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums. Viruses 2022, 14, 2678. https://doi.org/10.3390/v14122678
Romon-Ochoa P, Forster J, Chitty R, Gorton C, Lewis A, Eacock A, Kupper Q, Rigling D, Pérez-Sierra A. Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums. Viruses. 2022; 14(12):2678. https://doi.org/10.3390/v14122678
Chicago/Turabian StyleRomon-Ochoa, Pedro, Jack Forster, Ruth Chitty, Caroline Gorton, Alex Lewis, Amy Eacock, Quirin Kupper, Daniel Rigling, and Ana Pérez-Sierra. 2022. "Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums" Viruses 14, no. 12: 2678. https://doi.org/10.3390/v14122678
APA StyleRomon-Ochoa, P., Forster, J., Chitty, R., Gorton, C., Lewis, A., Eacock, A., Kupper, Q., Rigling, D., & Pérez-Sierra, A. (2022). Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums. Viruses, 14(12), 2678. https://doi.org/10.3390/v14122678