Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Epidemiological Data Preparation
2.2. Identification of Spatio-Temporal Clusters
2.3. Identification of Environmental Factors Contributing to Spatio-Temporal Cluster Formation Based on GLLR Model
2.4. Estimation of Basic Reproduction Number (R0) in the Spatio-Temporal Cluster
3. Results
3.1. Identification of Spatio-Temporal Clusters
3.2. Identification of Environmental Factors Contributing to Spatio-Temporal Cluster Formation Based on a GLLR Model
3.3. Estimation of Basic Reproduction Number (R0) in the Spatio-Temporal Cluster
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Vizcaino, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, A.; Bosch, J.; Iglesias, I.; Munoz, M.J.; Mur, L.; Martinez-Lopez, B.; Martinez, M.; Sanchez-Vizcaino, J.M. Assessing the risk of African swine fever introduction into the European Union by wild boar. Transbound. Emerg. Dis. 2015, 62, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organisation of the United Nations Statistics [FAO]. African Swine Fever: Detection and Diagnostic. A Manual for Veterinarians. 2017. Available online: http://www.fao.org/3/a-i7228e.pdf (accessed on 10 October 2022).
- Chenais, E.; Depner, K.; Guberti, V.; Dietze, K.; Viltrop, A.; Stahl, K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 2019, 5, 6. [Google Scholar] [CrossRef]
- Guberti, V.; Khomenko, S.; Masiulis, M.; Kerba, S. African Swine Fever in Wild Boar Ecology and Biosecurity; Rome. FAO Animal Production and Health Manual; FAO: Rome, Italy; OIE: Paris, France; EC: Ispra, Italy, 2019; No. 22. [Google Scholar]
- Adkin, A.; Coburn, H.; England, T.; Hall, S.; Hartnett, E.; Marooney, C.; Wooldridge, M.; Watson, E.; Cooper, J.; Cox, T. Risk Assessment for the Illegal Import of Contaminated Meat and Meat Products into Great Britain and the Subsequent Exposure of GB Livestock (IIRA): Foot and Mouth Disease (FMD), Classical Swine Fever (CSF), African Swine Fever (ASF), Swine Vesicular Disease (SVD); Veterinary Laboratories Agency: New Haw, UK, 2004. [Google Scholar]
- De Carvalho Ferreira, H.C.; Weesendorp, E.; Quak, S.; Stegeman, J.A.; Loeffen, W.L. Suitability of faeces and tissue samples as a basis for non-invasive sampling for African swine fever in wild boar. Vet. Microbiol. 2014, 172, 449–454. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. African Swine Fever. 2022. Available online: https://www.woah.org/en/disease/african-swine-fever/ (accessed on 10 October 2022).
- Kedkovid, R.; Sirisereewan, C.; Thanawongnuwech, R. Major swine viral diseases: An Asian perspective after the African swine fever introduction. Porc. Health Manag. 2020, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- OIE-WAHIS: World Animal Health Information System. Animal Disease Events. 2022. Available online: https://wahis.oie.int/#/events?viewAll=true (accessed on 1 February 2022).
- Ministry of Agriculture, Food and Rural Affairs, South Korea. Release of Information on Outbreaks of Livestock Infectious Diseases (ASF). 2022. Available online: https://mafra.go.kr/FMD-AI2/2241/subview.do (accessed on 27 January 2022).
- Ministry of Agriculture, Food and Rural Affairs, South Korea. Press Release: African Swine Fever. 2022. Available online: http://www.me.go.kr/search/totalSearch/search.jsp (accessed on 27 January 2022).
- Jo, Y.S.; Gortázar, C. African swine fever in wild boar: Assessing interventions in South Korea. Transbound. Emerg. Dis. 2021, 68, 2878–2889. [Google Scholar] [CrossRef] [PubMed]
- Segye. Detecting Dogs Are Deployed to Search for Dead Wild Boar Bodies. 2022. Available online: https://www.segye.com/newsView/20221016506928 (accessed on 17 November 2022).
- Ministry of Environment, South Korea. Detecting the Dead Body of a Wild Boar. 2022. Available online: https://me.go.kr/niwdc/web/board/read.do?menuId=24&boardId=1555430&boardMasterId=794&condition.hideCate=1 (accessed on 17 November 2022).
- PIGPEOPLE. Real-Time Status Board of African Swine Fever (ASF). 2022. Available online: http://www.pigpeople.net/mobile/article.html?no=7260 (accessed on 1 February 2022).
- Ministry of Environment, South Korea. The Habitat Density of Wild Boars Is Mainly Determined by the Capacity of the Habitat Environment. 2019. Available online: https://me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1038690&menuId=286 (accessed on 17 November 2022).
- Handonnews. ASF-Mediated, the Habitat Density of Wild Boars is Lowered. 2021. Available online: http://handonnews.kr/mobile/article.html?no=23592 (accessed on 17 November 2022).
- PIGPEOPLE. Domestic Wild Boar Expert: “It Is Impossible to Estimate the Number of Wild Boars in the Country”. 2019. Available online: http://www.pigpeople.net/news/article.html?no=7626 (accessed on 17 November 2022).
- Dodram Pig Farmers Cooperative. General Information. 2022. Available online: http://home.dodram.com/ (accessed on 5 May 2021).
- FAO. African Swine Fever in the Russian Federation: Risk Factors for Europe and Beyond Empres Watch 2013. Available online: https://www.fao.org/3/aq240e/aq240e.pdf (accessed on 21 December 2021).
- FAO. EMPRES-i Epidemiology (Frequency of African Swine Fever in Republic of Korea). Available online: https://empres-i.apps.fao.org/ (accessed on 5 May 2021).
- Iglesias, I.; Rodriguez, A.; Feliziani, F.; Rolesu, S.; de la Torre, A. Spatio-temporal Analysis of African Swine Fever in Sardinia (2012–2014): Trends in Domestic Pigs and Wild Boar. Transbound. Emerg. Dis. 2017, 64, 656–662. [Google Scholar] [CrossRef]
- ESRI. How Multi-Distance Spatial Cluster Analysis (Ripley’s K-function) Works. 2022. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-multi-distance-spatial-cluster-analysis-ripl.htm (accessed on 12 January 2011).
- Kulldorff, M. SaTScan; Information Management Services Inc.: Boston, MA, USA, 2010. [Google Scholar]
- Bosch, J.; Barasona, J.A.; Cadenas-Fernandez, E.; Jurado, C.; Pintore, A.; Denurra, D.; Cherchi, M.; Vicente, J.; Sanchez-Vizcaino, J.M. Retrospective spatial analysis for African swine fever in endemic areas to assess interactions between susceptible host populations. PLoS ONE 2020, 15, e0233473. [Google Scholar] [CrossRef]
- CGIAR-CSI. SRTM 90m DEM Digital Elevation Database. 2004. Available online: https://srtm.csi.cgiar.org/ (accessed on 15 May 2021).
- South Korea National Spatial Data Infrastructure Portal. Data Catalog. 2022. Available online: http://www.nsdi.go.kr/lxportal/?menuno=2679 (accessed on 17 May 2022).
- Esri. Near (Analysis). Available online: https://pro.arcgis.com/ja/pro-app/latest/tool-reference/analysis/near.htm (accessed on 29 July 2022).
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Bosch, J.; Mardones, F.; Pérez, A.; De la Torre, A.; Muñoz, M.J. A maximum entropy model for predicting wild boar distribution in Spain. Span. J. Agric. Res. 2014, 12, 984–999. [Google Scholar] [CrossRef]
- Bosch, J.; Iglesias, I.; Munoz, M.J.; de la Torre, A. A Cartographic Tool for Managing African Swine Fever in Eurasia: Mapping Wild Boar Distribution Based on the Quality of Available Habitats. Transbound. Emerg. Dis. 2017, 64, 1720–1733. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-T.; Pak, S.-I. Species distribution modeling for wild boar (Sus scropa) in the Republic of Korea using MODIS data. J. Prev. Vet. Med. 2020, 44, 89–95. [Google Scholar] [CrossRef]
- IFORCE. Global Accessibility Map. 2022. Available online: https://forobs.jrc.ec.europa.eu/products/gam/ (accessed on 12 January 2018).
- Unninayar, S.; Olsen, L.M. Monitoring, Observations, and Remote Sensing—Global Dimensions. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Willmott, C.J.; Kenji, M. Terrestrial Water Budget Data Archive: Monthly Time Series (1950–1999). 2001. Available online: https://sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere/mapping-the-biosphere/ecosystems/soil-moisture/ (accessed on 29 September 2022).
- Bergmann, H.; Schulz, K.; Conraths, F.J.; Sauter-Louis, C. A review of environmental risk factors for African Swine Fever in European wild boar. Animals 2021, 11, 2692. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Hidano, A. Introduction to Regression Analysis for Epidemiological Data (1). J. Vet. Epidemiol. 2020, 24, 29–35. [Google Scholar] [CrossRef]
- Hothorn, T.; Zeileis, A.; Farebrother, R.W.; Cummins, C.; Millo, G.; Mitchell, D.; Zeileis, M.A. Package ‘Lmtest’. Testing Linear Regression Models. Available online: https://cran.r-project.org/web/packages/lmtest/lmtest.pdf (accessed on 2 October 2022).
- Bates, D.M. Lme4: Mixed-Effects Modeling with R; Springer: New York, NY, USA, 2010. [Google Scholar]
- Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baud-Bovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S. Package ‘Car’; R Foundation for Statistical Computing: Vienna, Austria, 2012; Volume 16. [Google Scholar]
- Cessie, L.; Houwelingen, J. A Goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 1991, 47, 1267–1282. [Google Scholar] [CrossRef]
- Le Cessie, S.; van Houwelingen, J. Goodness of fit tests for generalized linear models based on random effect models. Biometrics 1995, 51, 600–614. [Google Scholar] [CrossRef]
- Jennie Pearce, S.F. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef]
- Delamater, P.L.; Street, E.J.; Leslie, T.F.; Yang, Y.T.; Jacobsen, K.H. Complexity of the Basic Reproduction Number (R0). Emerg. Infect. Dis. 2019, 25, 1–4. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Iglesias, I.; Perez, A.; Sánchez-Vizcaíno, J.; Muñoz, M.; Martínez, M.; De La Torre, A. Reproductive ratio for the local spread of highly pathogenic avian influenza in wild bird populations of Europe, 2005–2008. Epidemiol. Infect. 2011, 139, 99–104. [Google Scholar] [CrossRef]
- Iglesias, I.; Munoz, M.J.; Montes, F.; Perez, A.; Gogin, A.; Kolbasov, D.; de la Torre, A. Reproductive Ratio for the Local Spread of African Swine Fever in Wild Boars in the Russian Federation. Transbound. Emerg. Dis. 2016, 63, e237–e245. [Google Scholar] [CrossRef] [PubMed]
- Marcon, A.; Linden, A.; Satran, P.; Gervasi, V.; Licoppe, A.; Guberti, V. R0 estimation for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Vet. Sci. 2019, 7, 2. [Google Scholar] [CrossRef]
- Lim, J.-S.; Kim, E.; Ryu, P.-D.; Pak, S.-I. Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea. J. Vet. Sci. 2021, 22, e71. [Google Scholar] [CrossRef]
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of wild boar–habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 2018, 24, 810. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, J.; Guinat, C.; Beer, M.; Pronin, V.; Tauscher, K.; Petrov, A.; Keil, G.; Blome, S. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch. Virol. 2015, 160, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Cho, K.-H.; Ryu, J.-H.; Jang, M.-K.; Chae, H.-G.; Choi, J.-D.; Nah, J.-J.; Kim, Y.-J.; Kang, H.-E. Isolation and Genetic Characterization of African Swine Fever Virus from Domestic Pig Farms in South Korea, 2019. Viruses 2020, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Oļševskis, E.; Thulke, H.H.; Viltrop, A.; Woźniakowski, G. Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016–September 2017). EFSA J. 2017, 15, e05068. [Google Scholar]
- Fischer, M.; Hühr, J.; Blome, S.; Conraths, F.J.; Probst, C. Stability of African swine fever virus in carcasses of domestic pigs and wild boar experimentally infected with the ASFV “Estonia 2014” isolate. Viruses 2020, 12, 1118. [Google Scholar] [CrossRef]
- Probst, C.; Gethmann, J.; Amendt, J.; Lutz, L.; Teifke, J.P.; Conraths, F.J. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 2020, 7, 6. [Google Scholar] [CrossRef]
- Lim, S.J.; Han, S.H.; Park, J.Y.; Kim, N.H.; Namgung, H.; Oh, Y.; Park, Y.C. Wildlife as Potential Vectors of African Swine Fever Virus. J. For. Environ. Sci. 2022, 38, 55–63. [Google Scholar]
- Amendolia, S.; Lombardini, M.; Pierucci, P.; Meriggi, A. Seasonal spatial ecology of the wild boar in a peri-urban area. Mammal Res. 2019, 64, 387–396. [Google Scholar] [CrossRef]
- Ibaraki Prefecture. The Ecology of Wild Boars. 2020. Available online: https://www.pref.ibaraki.jp/nourinsuisan/hokunourin/kikaku/kikaku/inoshishinoseitai.html (accessed on 29 July 2022).
- Cukor, J.; Linda, R.; Václavek, P.; Šatrán, P.; Mahlerová, K.; Vacek, Z.; Kunca, T.; Havránek, F. Wild boar deathbed choice in relation to ASF: Are there any differences between positive and negative carcasses? Prev. Vet. Med. 2020, 177, 104943. [Google Scholar] [CrossRef] [PubMed]
- Cukor, J.; Linda, R.; Václavek, P.; Mahlerová, K.; Šatrán, P.; Havránek, F. Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transbound. Emerg. Dis. 2020, 67, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Pittiglio, C.; Khomenko, S.; Beltran-Alcrudo, D. Wild boar mapping using population-density statistics: From polygons to high resolution raster maps. PLoS ONE 2018, 13, e0193295. [Google Scholar] [CrossRef]
- Thurfjell, H.; Spong, G.; Ericsson, G. Effects of weather, season, and daylight on female wild boar movement. Acta Theriol. 2014, 59, 467–472. [Google Scholar] [CrossRef]
- Hankyung.com. Yeoncheon-gun Damaged 4.5 km of Wild Boar Fences Due to Heavy Rain. 2020. Available online: https://www.hankyung.com/politics/article/202008100999Y (accessed on 18 November 2022).
- National Integrated Drought Information System. Soil Moisture. 2022. Available online: https://www.drought.gov/topics/soil-moisture (accessed on 29 September 2022).
- Ministry of Agriculture, Food and Rural Affairs, South Korea. The Government Actively Promotes Measures to Prevent the Spread of African Swine Fever in Wild Boar 2021. Available online: https://www.mafra.go.kr/FMD-AI2/2241/subview.do (accessed on 14 February 2022).
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef]
- Sun, E.; Zhang, Z.; Wang, Z.; He, X.; Zhang, X.; Wang, L.; Wang, W.; Huang, L.; Xi, F.; Huangfu, H.; et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci. 2021, 64, 752–765. [Google Scholar] [CrossRef]
- Ito, S.; Bosch, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. The Evolution of African Swine Fever in China: A Global Threat? Front. Vet. Sci. 2022, 9, 828498. [Google Scholar] [CrossRef]
Cluster No. | Number of Cases | Start Date | End Date | Season | Case Doubling Time (Day) | Adjusted R-Square | Scenario 1 R0 (Dmin, max = 2, 9) | Confidence Interval (95%) | Scenario 2 R0 | Confidence Interval (95%) | Scenario 2 D (min–max) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 165 | 2020/1/9 | 2020/4/1 | Winter | 37.5 | 0.95 | 1.10 | 1.04–1.16 | 1.66 | 1.27–2.09 | 13–60 |
2 | 159 | 2020/1/16 | 2020/4/8 | Winter | 35.7 | 0.93 | 1.11 | 1.04–1.17 | 1.72 | 1.28–2.14 | 13–60 |
3 | 43 | 2020/3/12 | 2020/5/13 | Spring | 63.6 | 0.93 | 1.06 | 1.02–1.1 | 1.28 | 1.13–1.43 | 11–40.5 |
4 | 32 | 2020/8/13 | 2020/11/4 | Autumn | 117.5 | 0.96 | 1.03 | 1.01–1.05 | 1.15 | 1.07–1.23 | 11–40.5 |
5 | 18 | 2020/12/3 | 2020/12/16 | Winter | 12.1 | 0.83 | 1.33 | 1.13–1.51 | 3.06 | 1.81–4.38 | 13–60 |
6 | 135 | 2021/1/7 | 2021/3/17 | Winter | 32.1 | 0.93 | 1.12 | 1.05–1.19 | 1.82 | 1.3–2.27 | 13–60 |
7 | 66 | 2021/1/21 | 2021/4/14 | Winter | 55.0 | 0.96 | 1.07 | 1.03–1.11 | 1.45 | 1.18–1.74 | 13–60 |
8 | 42 | 2021/2/11 | 2021/5/5 | Spring | 73.0 | 0.96 | 1.05 | 1.02–1.08 | 1.25 | 1.11–1.38 | 11–40.5 |
9 | 9 | 2021/6/17 | 2021/7/21 | Summer | 105.0 | 0.97 | 1.04 | 1.01–1.06 | 1.10 | 1.06–1.14 | 9–21 |
10 | 11 | 2021/7/8 | 2021/8/25 | Summer | 138.6 | 0.95 | 1.03 | 1.01–1.04 | 1.07 | 1.05–1.1 | 9–21 |
11 | 62 | 2021/7/22 | 2021/9/15 | Summer | 36.3 | 0.92 | 1.11 | 1.04–1.17 | 1.29 | 1.18–1.39 | 9–21 |
12 | 99 | 2021/11/18 | 2022/1/5 | Winter | 29.1 | 0.65 | 1.13 | 1.05–1.21 | 1.84 | 1.34–2.4 | 13–60 |
13 | 50 | 2021/12/23 | 2022/2/16 | Winter | 51.0 | 0.93 | 1.07 | 1.03–1.12 | 1.49 | 1.2–1.8 | 13–60 |
14 | 189 | 2022/1/6 | 2022/3/30 | Winter | 36.1 | 0.94 | 1.11 | 1.04–1.17 | 1.70 | 1.28–2.13 | 13–60 |
15 | 95 | 2022/2/3 | 2022/4/27 | Spring | 56.4 | 0.95 | 1.07 | 1.03–1.11 | 1.31 | 1.14–1.49 | 11–40.5 |
16 | 35 | 2022/2/17 | 2022/3/9 | Winter | 19.7 | 0.80 | 1.20 | 1.08–1.31 | 2.30 | 1.5–3.07 | 13–60 |
17 | 5 | 2022/6/9 | 2022/7/6 | Summer | 231.0 | 0.70 | 1.02 | 1.01–1.03 | 1.05 | 1.03–1.06 | 9–21 |
Variables | Grade (Threshold) | Total Samples (n = 2578) | Coefficients | Standard Errors | p-Value |
---|---|---|---|---|---|
Elevation | Grade I (232) | 648 | - | - | - |
Grade II (352) | 649 | −0.185 | 0.079 | 0.099 | |
Grade III (490) | 640 | 0.261 | 0.112 | 0.020 | |
Grade IV (1157) | 641 | 0.082 | 0.112 | 0.459 | |
Distance from road (roadway and sidewalk) | Grade I (276.2) | 645 | - | - | - |
Grade II (602) | 644 | −0.009 | 0.111 | 0.933 | |
Grade III (1171.5) | 644 | −0.072 | 0.112 | 0.521 | |
Grade IV (6887.1) | 645 | −0.295 | 0.112 | 0.009 | |
Wild boar distribution index | Grade I (0.415) | 516 | - | - | - |
Grade II (0.504) | 517 | 0.216 | 0.125 | 0.086 | |
Grade III (0.628) | 514 | −0.070 | 0.125 | 0.576 | |
Grade IV (0.761) | 517 | −0.675 | 0.127 | >0.001 | |
Grade V (1) | 514 | 0.794 | 0.128 | >0.001 | |
Travel time to major cities | Grade I (57) | 647 | - | - | - |
Grade II (107.5) | 642 | −0.048 | 0.112 | 0.670 | |
Grade III (213) | 645 | −0.252 | 0.112 | 0.025 | |
Grade IV (860) | 644 | 0.146 | 0.111 | 0.191 | |
Soil moisture | Grade I (137.6) | 775 | - | - | - |
Grade II (139.6) | 975 | −0.670 | 0.098 | >0.001 | |
Grade III (141.3) | 258 | −0.280 | 0.144 | 0.053 | |
Grade IV (143.2) | 570 | −0.965 | 0.114 | >0.001 | |
Temperature seasonality (bioclim 4) | Grade I (9726.3) | 645 | - | - | - |
Grade II (10,073) | 646 | −0.264 | 0.112 | 0.018 | |
Grade III (10,226.8) | 642 | −0.221 | 0.112 | 0.048 | |
Grade IV (10,435) | 645 | −0.311 | 0.112 | 0.005 | |
Temperature annual range (bioclim 7) | Grade I (381) | 656 | - | - | - |
Grade II (390) | 670 | −0.14 | 0.110 | 0.189 | |
Grade III (396) | 650 | −0.27 | 0.111 | 0.015 | |
Grade IV (411) | 602 | −0.36 | 0.114 | 0.002 | |
Precipitation seasonality (bioclim 15) | Grade I (81) | 660 | - | - | - |
Grade II (91) | 641 | 0.099 | 0.111 | 0.374 | |
Grade III (98) | 656 | −0.062 | 0.111 | 0.573 | |
Grade IV (105) | 621 | 0.039 | 0.112 | 0.728 | |
Precipitation of warmest quarter (bioclim 18) | Grade I (731) | 658 | - | - | - |
Grade II (792) | 634 | 0.190 | 0.112 | 0.089 | |
Grade III (849) | 651 | 0.161 | 0.111 | 0.145 | |
Grade IV (911) | 635 | −0.209 | 0.112 | 0.064 | |
Precipitation of coldest quarter (bioclim 19) | Grade I (72) | 693 | - | - | - |
Grade II (78) | 610 | −0.247 | 0.112 | 0.027 | |
Grade III (94) | 640 | −0.060 | 0.110 | 0.583 | |
Grade IV (163) | 635 | 0.093 | 0.110 | 0.397 |
Variables | Variable | Total Samples (n = 2578) | Coefficients | Standard Errors | Odds Ratio (95% CI) | p-Value | VIF |
---|---|---|---|---|---|---|---|
Elevation | Grade I | 648 | - | - | - | - | 1.38 |
Grade II | 649 | 0.530 | 0.164 | 1.70 (1.24–2.35) | 0.001 | ||
Grade III | 640 | 1.142 | 0.195 | 3.13 (2.14–4.60) | >0.001 | ||
Grade IV | 641 | 1.062 | 0.237 | 2.89 (1.82–4.61) | >0.001 | ||
Distance from road (roadway and sidewalk) | Grade I | 645 | - | - | - | - | 1.04 |
Grade II | 644 | −0.130 | 0.125 | 0.88 (0.69–1.12) | 0.300 | ||
Grade III | 644 | −0.210 | 0.127 | 0.81 (0.63–1.04) | 0.099 | ||
Grade IV | 645 | −0.519 | 0.132 | 0.60 (0.46–0.77) | >0.001 | ||
Wild boar distribution index | Grade I | 516 | - | - | - | - | 1.08 |
Grade II | 517 | 0.173 | 0.150 | 1.19 (0.89–1.60) | 0.248 | ||
Grade III | 514 | −0.071 | 0.154 | 0.93 (0.69–1.26) | 0.646 | ||
Grade IV | 517 | −0.378 | 0.190 | 0.69 (0.47–0.99) | 0.047 | ||
Grade V | 514 | 0.643 | 0.261 | 1.90 (1.15–3.21) | 0.014 | ||
Travel time to major cities | Grade I | 647 | - | - | - | - | 1.10 |
Grade II | 642 | 0.137 | 0.132 | 1.15 (0.89–1.49) | 0.299 | ||
Grade III | 645 | −0.004 | 0.144 | 1.00 (0.75–1.32) | 0.976 | ||
Grade IV | 644 | 0.465 | 0.154 | 1.59 (1.18–2.15) | 0.002 | ||
Soil moisture | Grade I | 775 | - | - | - | - | 1.31 |
Grade II | 975 | −1.341 | 0.158 | 0.26 (0.19–0.36) | >0.001 | ||
Grade III | 258 | −0.219 | 0.181 | 0.80 (0.56–1.15) | 0.226 | ||
Grade IV | 570 | −1.005 | 0.155 | 0.37 (0.27–0.50) | >0.001 | ||
Temperature annual range (bioclim 7) | Grade I | 656 | - | - | - | - | 1.36 |
Grade II | 670 | −0.817 | 0.182 | 0.44 (0.31–0.63) | >0.001 | ||
Grade III | 650 | −1.230 | 0.224 | 0.29 (0.19–0.45) | >0.001 | ||
Grade IV | 602 | −1.068 | 0.227 | 0.34 (0.22–0.54) | >0.001 | ||
Precipitation of warmest quarter (bioclim 18) | Grade I | 658 | - | - | - | - | 1.46 |
Grade II | 634 | 0.561 | 0.162 | 1.75 (1.28–2.41) | >0.001 | ||
Grade III | 651 | 0.420 | 0.207 | 1.52 (1.02–2.29) | 0.042 | ||
Grade IV | 635 | −0.107 | 0.260 | 0.90 (0.54–1.50) | 0.679 | ||
Precipitation of coldest quarter (bioclim 19) | Grade I | 693 | - | - | - | - | 1.78 |
Grade II | 610 | −0.748 | 0.207 | 0.47 (0.31–0.71) | >0.001 | ||
Grade III | 640 | −1.698 | 0.266 | 0.18 (0.11–0.31) | >0.001 | ||
Grade IV | 635 | −1.834 | 0.317 | 0.16 (0.09–0.30) | >0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Bosch, J.; Jeong, H.; Aguilar-Vega, C.; Park, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea. Viruses 2022, 14, 2779. https://doi.org/10.3390/v14122779
Ito S, Bosch J, Jeong H, Aguilar-Vega C, Park J, Martínez-Avilés M, Sánchez-Vizcaíno JM. Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea. Viruses. 2022; 14(12):2779. https://doi.org/10.3390/v14122779
Chicago/Turabian StyleIto, Satoshi, Jaime Bosch, Hyunkyu Jeong, Cecilia Aguilar-Vega, Jonghoon Park, Marta Martínez-Avilés, and Jose Manuel Sánchez-Vizcaíno. 2022. "Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea" Viruses 14, no. 12: 2779. https://doi.org/10.3390/v14122779
APA StyleIto, S., Bosch, J., Jeong, H., Aguilar-Vega, C., Park, J., Martínez-Avilés, M., & Sánchez-Vizcaíno, J. M. (2022). Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea. Viruses, 14(12), 2779. https://doi.org/10.3390/v14122779