Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Virus
2.3. Infection
2.4. Protein Extraction and Quantification
2.5. Immunoblotting
2.6. Tandem Mass Tags (TMT) Mass Spectrometry Analyses and Protein Quantification
2.7. Statistical and Bioinformatics Analyses
3. Results
3.1. Infectivity of ZIKV and Its Cytopathic Effect in Primary HSerC
3.2. The Impact of ZIKV Infection on the HSerC Cellular Proteome
3.3. Impact of ZIKV Infection on Cellular Signaling Pathways and Function in HSerC
3.4. HSerC Activates Immune Response against ZIKV Infection
3.5. ZIKV Infection Impacts Carbohydrate Metabolism in Sertoli Cells
3.6. ZIKV Infection Significantly Affects Proteins That May Increase Cardiovascular Disease
3.7. Validation of Mass Spec Data by Western Blot
4. Discussion
4.1. HSerC Activates Immune Response against ZIKV Infection
4.2. ZIKV Affects Proteins Involved in Carbohydrate Metabolism
4.3. ZIKV Infection Affects Proteins Associated with an Increase in Cardiovascular Disease
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Shuaib, W.; Stanazai, H.; Abazid, A.G.; Mattar, A.A. Re-Emergence of Zika Virus: A Review on Pathogenesis, Clinical Manifestations, Diagnosis, Treatment, and Prevention. Am. J. Med. 2016, 129, 879.e7–879.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Eng. J. Med. 2016, 374, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, P.; Yssel, H.; Missé, D. Zika virus infection: An update. Microbes Infect. 2019, 21, 353–360. [Google Scholar] [CrossRef]
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M.; et al. Assessing the global threat from Zika virus. Science 2016, 353, 6300. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.S.; Marques, R.E.; de Jesus, A.M.R.; de Almeida, R.P.; Teixeira, M.M. Zika crisis in Brazil: Challenges in research and development. Curr. Opin. Virol. 2016, 18, 76–81. [Google Scholar] [CrossRef]
- Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet 2017, 390, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
- WHO. Zika Epidemiology Update. 2019. Available online: https://www.who.int/emergencies/diseases/zika/zika-epidemiology-update-july-2019.pdf (accessed on 24 December 2021).
- Faizan, M.I.; Abdullah, M.; Ali, S.; Naqvi, I.H.; Ahmed, A.; Parveen, S. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology 2016, 59, 152–158. [Google Scholar] [CrossRef]
- Shang, P.; Zhu, M.; Wang, Y.; Zheng, X.; Wu, X.; Zhu, J.; Feng, J.; Zhang, H.L. Axonal variants of Guillain-Barré syndrome: An update. J. Neurol. 2021, 268, 2402–2419. [Google Scholar] [CrossRef]
- Brasil, P.; Sequeira, P.C.; Freitas, A.D.A.; Zogbi, H.E.; Calvet, G.A.; de Souza, R.V.; Siqueira, A.M.; de Mendonca, M.C.L.; Nogueira, R.M.R.; de Filippis, A.M.B.; et al. Guillain-Barré syndrome associated with Zika virus infection. Lancet 2016, 387, 1482. [Google Scholar] [CrossRef] [Green Version]
- WHO. Zika Situation Report. 2016. Available online: http://www.who.int/emergencies/zika-virus/situation-report/25-august-2016/en (accessed on 25 August 2017).
- Faye, O.; Freire, C.C.; Iamarino, A.; Faye, O.; de Oliveira, J.V.C.; Diallo, M.; Zanotto, P.M.; Sall, A.A. Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLoS Negl. Trop. Dis. 2014, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Turmel, J.M.; Abgueguen, P.; Hubert, B.; Vandamme, Y.M.; Maquart, M.; Le Guillou-Guillemette, H.; Leparc-Goffart, I. Late sexual transmission of Zika virus related to persistence in the semen. Lancet 2016, 387, 2501. [Google Scholar] [CrossRef] [Green Version]
- Hastings, A.K.; Fikrig, E. Focus: Infectious Diseases: Zika Virus and Sexual Transmission: A New Route of Transmission for Mosquito-borne Flaviviruses. Yale J. Biol. Med. 2017, 90, 325. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482308/ (accessed on 1 January 2022).
- Moreira, J.; Peixoto, T.M.; Siqueira, A.M.; Lamas, C.C. Sexually acquired Zika virus: A systematic review. Clin. Microbiol. Infect. 2017, 23, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Bujan, L.; Mansuy, J.M.; Hamdi, S.; Pasquier, C.; Joguet, G. 1 year after acute Zika virus infection in men. Lancet Infect. Dis. 2020, 20, 25–26. [Google Scholar] [CrossRef] [Green Version]
- Arsuaga, M.; Bujalance, S.G.; Díaz-Menéndez, M.; Vázquez, A.; Arribas, J.R. Probable sexual transmission of Zika virus from a vasectomised man. Lancet Infect. Dis. 2016, 16, 1107. [Google Scholar] [CrossRef] [Green Version]
- Le Tortorec, A.; Matusali, G.; Mahé, D.; Aubry, F.; Mazaud-Guittot, S.; Houzet, L.; Dejucq-Rainsford, N. From ancient to emerging infections: The odyssey of viruses in the male genital tract. Physiol. Rev. 2020, 100, 1349–1414. [Google Scholar] [CrossRef]
- Govero, J.; Esakky, P.; Scheaffer, S.M.; Fernandez, E.; Drury, A.; Platt, D.J.; Gorman, M.J.; Richner, J.M.; Caine, E.A.; Salazar, V.; et al. Zika virus infection damages the testes in mice. Nature 2016, 540, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Zhang, J.; Wong, G.; Zhang, S.; Lu, X.; et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016, 167, 1511–1524.e10. [Google Scholar] [CrossRef] [Green Version]
- Osuna, C.E.; Lim, S.Y.; Deleage, C.; Griffin, B.D.; Stein, D.; Schroeder, L.T.; Omange, R.; Best, K.; Luo, M.; Hraber, P.T.; et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat. Med. 2016, 22, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.J.; Smith, J.L.; Haese, N.N.; Broeckel, R.M.; Parkins, C.J.; Kreklywich, C.; DeFilippis, V.R.; Denton, M.; Smith, P.P.; Messer, W.B.; et al. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 2017, 13, e1006219. [Google Scholar] [CrossRef]
- Mansuy, J.M.; Suberbielle, E.; Chapuy-Regaud, S.; Mengelle, C.; Bujan, L.; Marchou, B.; Delobel, P.; Gonzalez-Dunia, D.; Malnou, C.E.; Izopet, J.; et al. Zika virus in semen and spermatozoa. Lancet Infect. Dis. 2016, 16, 1106–1107. [Google Scholar] [CrossRef] [Green Version]
- Joguet, G.; Mansuy, J.M.; Matusali, G.; Hamdi, S.; Walschaerts, M.; Pavili, L.; Guyomard, S.; Prisant, N.; Lamarre, P.; Dejucq-Rainsford, N.; et al. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: A prospective observational study. Lancet Infect. Dis. 2017, 17, 1200–1208. [Google Scholar] [CrossRef] [Green Version]
- Paz-Bailey, G.; Rosenberg, E.S.; Doyle, K. Persistence of Zika Virus in Body Fluids—Preliminary Report. N. Engl. J. Med. 2018, 379, 1234. [Google Scholar] [CrossRef]
- Salam, A.P.; Horby, P.W. The Breadth of Viruses in Human Semen. Emerg. Infect. Dis. 2017, 23, 1922–1924. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, W.; Xue, S.; Han, D. Testicular defense systems: Immune privilege and innate immunity. Cell. Mol. Immunol. 2014, 11, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Griswold, M.D. The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 1998, 9, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Griswold, M.D. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol. Reprod. 2018, 99, 87–100. [Google Scholar] [CrossRef]
- França, L.R.; Hess, R.A.; Dufour, J.M.; Hofmann, M.C.; Griswold, M.D. The Sertoli cell: One hundred fifty years of beauty and plasticity. Andrology 2016, 4, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Thompson, L.A.; Dufour, J.M. Sertoli cells—Immunological sentinels of spermatogenesis. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MS, USA, 2014; p. 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ge, R.S.; Zirkin, B.R. Leydig cells: From stem cells to aging. Mol. Cell. Endocrinol. 2009, 306, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.Y.; Gao, N.; Wang, Z.Y.; Cui, X.Y.; Zhou, D.S.; Fan, D.Y.; Chen, H.; Wang, P.G.; An, J. Sertoli cells are susceptible to ZIKV infection in mouse testis. Front. Cell. Infect. Microbiol. 2017, 7, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strange, D.P.; Green, R.; Siemann, D.N.; Gale, M.; Verma, S. Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.U.; Zahedi-Amiri, A.; Glover, K.K.; Gao, A.; Nickol, M.E.; Kindrachuk, J.; Wilkins, J.A.; Coombs, K.M. Zika virus dysregulates human sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Negl. Trop. Dis. 2020, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jovel, J.; Lopez-Orozco, J.; Limonta, D.; Airo, A.M.; Hou, S.; Stryapunina, I.; Fibke, C.; Moore, R.B.; Hobman, T.C. Human sertoli cells support high levels of zika virus replication and persistence. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sielaff, M.; Kuharev, J.; Bohn, T.; Hahlbrock, J.; Bopp, T.; Tenzer, S.; Distler, U. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. J. Proteome Res. 2017, 16, 4060–4072. [Google Scholar] [CrossRef] [PubMed]
- Glover, K.K.M.; Zahedi-Amiri, A.; Lao, Y.; Spicer, V.; Klonisch, T.; Coombs, K.M. Zika Infection Disrupts Proteins Involved in the Neurosensory System. Front. Cell Dev. Biol. 2020, 8, 571. [Google Scholar] [CrossRef] [PubMed]
- Kelstrup, C.D.; Bekker-Jensen, D.B.; Arrey, T.N.; Hogrebe, A.; Harder, A.; Olsen, J.V. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J. Proteome Res. 2018, 17, 727–738. [Google Scholar] [CrossRef]
- Coombs, K.M.; Berard, A.; Xu, W.; Krokhin, O.; Meng, X.; Cortens, J.P.; Kobasa, D.; Wilkins, J.; Brown, E.G. Quantitative Proteomic Analyses of Influenza virus-Infected Cultured Human Lung Cells. J. Virol. 2010, 84, 10888–10906. [Google Scholar] [CrossRef] [Green Version]
- Candia, J.; Cheung, F.; Kotliarov, Y.; Fantoni, G.; Sellers, B.; Griesman, T.; Huang, J.; Stuccio, S.; Zingone, A.; Ryan, B.M.; et al. Assessment of Variability in the SOMAscan Assay. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Siemann, D.N.; Strange, D.P.; Maharaj, P.N.; Shi, P.-Y.; Verma, S. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the In Vitro Blood-Testis Barrier Model. J. Virol. 2017, 91, 22. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; van der Werf, I.M.; Innes, A.M.; Afenjar, A.; Agrawal, P.B.; Anderson, I.J.; Atwal, P.S.; van Binsbergen, E.; van den Boogaard, M.J.; Castiglia, L.; et al. De novo variants in FBXO11 cause a syndromic form of intellectual disability with behavioral problems and dysmorphisms. Eur. J. Hum. Genet. 2019, 27, 20. [Google Scholar] [CrossRef]
- Gregor, A.; Sadleir, L.G.; Asadollahi, R.; Azzarello-Burri, S.; Battaglia, A.; Ousager, L.B.; Boonsawat, P.; Bruel, A.L.; Buchert, R.; Calpena, E.; et al. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Am. J. Hum. Genet. 2018, 103, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Nemani, T.; Steel, D.; Kaliakatsos, M.; DeVile, C.; Ververi, A.; Scott, R.; Getov, S.; Sudhakar, S.; Male, A.; Mankad, K.; et al. KIF1A-related disorders in children: A wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 2020, 25, 117–124. [Google Scholar] [CrossRef]
- Mori, T.; Ikeda, D.D.; Yamaguchi, Y.; Unoki, M. NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. FEBS Lett. 2012, 586, 1570–1583. [Google Scholar] [CrossRef] [Green Version]
- Wilde, S.; Timpson, A.; Kirsanow, K.; Kaiser, E.; Kayser, M.; Unterländer, M.; Hollfelder, N.; Potekhina, I.D.; Schier, W.; Thomas, M.G.; et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5000 y. Proc. Natl. Acad. Sci. USA 2014, 111, 4832–4837. [Google Scholar] [CrossRef] [Green Version]
- Ghodsinejad Kalahroudi, V.; Kamalidehghan, B.; Arasteh Kani, A.; Aryani, O.; Tondar, M.; Ahmadipour, F.; Chung, L.Y.; Houshmand, M. Two Novel Tyrosinase (TYR) Gene Mutations with Pathogenic Impact on Oculocutaneous Albinism Type 1 (OCA1). PLoS ONE 2014, 9, 106656. [Google Scholar] [CrossRef] [Green Version]
- Spritz, R.A.; Oh, J.; Fukai, K.; Holmes, S.A.; Ho, L.; Chitayat, D.; France, T.D.; Musarella, M.A.; Orlow, S.J.; Schnur, R.E.; et al. Novel Mutations of the Tyrosinase (TYR) Gene in Type I Oculocutaneous Albinism (OCA1). Hum. Mutat. 1997, 10, 171–174. Available online: https://www.proquest.com/openview/0754b19d664ffd0592b6b7b688100ca7/1?pq-origsite=gscholar&cbl=30498 (accessed on 1 January 2022). [CrossRef]
- Kaneda, H.; Arao, T.; Tanaka, K.; Tamura, D.; Aomatsu, K.; Kudo, K.; Sakai, K.; De Velasco, M.A.; Matsumoto, K.; Fujita, Y.; et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res. 2010, 70, 2053–2063. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Shih, I.M.; Wang, T.L. The role of forkhead box Q1 transcription factor in ovarian epithelial carcinomas. Int. J. Mol. Sci. 2012, 13, 13881–13893. [Google Scholar] [CrossRef]
- Sun, H.T.; Cheng, S.X.; Tu, Y.; Li, X.H.; Zhang, S. FoxQ1 Promotes Glioma Cells Proliferation and Migration by Regulating NRXN3 Expression. PLoS ONE 2013, 8, e55693. [Google Scholar] [CrossRef]
- Xia, L.; Huang, W.; Tian, D.; Zhang, L.; Qi, X.; Chen, Z.; Shang, X.; Nie, Y.; Wu, K. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology 2014, 59, 958–973. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zheng, J.; Bai, X.; Yue, K.L.; Liang, J.H.; Li, D.Y.; Wang, L.P.; Wang, J.L.; Guo, Q. Forkhead Box Q1 Is Critical to Angiogenesis and Macrophage Recruitment of Colorectal Cancer. Front. Oncol. 2020, 10, 2561. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Bentz, S.; Sengstag, T.; Shastri, V.P.; Anderle, P. FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors. PLoS ONE 2013, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mruk, D.D.; Cheng, C.Y. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr. Rev. 2015, 36, 564–591. [Google Scholar] [CrossRef] [PubMed]
- Vastag, L.; Koyuncu, E.; Grady, S.L.; Shenk, T.E.; Rabinowitz, J.D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 2011, 7, e1002124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol. 2019, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.N.; Ginsberg, H.S. Accumulation of organic acids by HeLa cells infected with type 4 adenovirus. Proc. Soc. Exp. Biol. Med. 1957, 95, 47–51. [Google Scholar] [CrossRef]
- Lewis, V.J.; Scott, L.V. Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells. J. Bacteriol. 1962, 83, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, K.A.; Sanchez, E.L.; Camarda, R.; Lagunoff, M. Dengue virus induces and requires glycolysis for optimal replication. J. Virol. 2015, 89, 2358–2366. [Google Scholar] [CrossRef] [Green Version]
- Reslan, A.; Haddad, J.G.; Koundi, L.M.; Desprès, P.; Bascands, J.L.; Gadea, G. Zika Virus Growth in Human Kidney Cells Is Restricted by an Elevated Glucose Level. Int. J. Mol. Sci. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Thaker, S.K.; Chapa, T.; Garcia, G., Jr.; Gong, D.; Schmid, E.W.; Arumugaswami, V.; Sun, R.; Christofk, H.R. Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells. Cell Metab. 2019, 29, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Jutte, N.H.P.M.; Eikvar, L.; Levy, F.O.; Hansson, V. Metabolism of palmitate in cultured rat Sertoli cells. Reproduction 1985, 73, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; He, C.; Feng, J.; Zhang, Y.; Tang, Q.; Bian, Z.; Bai, X.; Zhou, H.; Jiang, H.; Heximer, S.P.; et al. Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proc. Natl. Acad. Sci. USA 2010, 107, 13818–13823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletti, M.; Lecoules, S.; Kanczuga, V.; Soler, C.; Maquart, M.; Simon, F.; Leparc-Goffart, I. Transient myocarditis associated with acute Zika virus infection. Clin. Infect. Dis. 2017, 64, 678–679. [Google Scholar] [CrossRef] [PubMed]
- Minhas, A.M.; Nayab, A.; Iyer, S.; Narmeen, M.; Fatima, K.; Khan, M.S.; Constantin, J. Association of Zika Virus with Myocarditis, Heart Failure, and Arrhythmias: A Literature Review. Cureus 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Dong, H.L.; Huang, X.Y.; Qiu, Y.F.; Wang, H.J.; Deng, Y.Q.; Zhang, N.N.; Ye, Q.; Zhao, H.; Liu, Z.Y.; et al. Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine 2016, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Strange, D.P.; Jiyarom, B.; Sadri-Ardekani, H.; Cazares, L.H.; Kenny, T.A.; Ward, M.D.; Verma, S. Paracrine IFN Response Limits ZIKV Infection in Human Sertoli Cells. Front. Microbiol. 2021, 12, 1044. [Google Scholar] [CrossRef]
- Nie, Y.; Hui, L.; Guo, M.; Yang, W.; Huang, R.; Chen, J.; Wen, X.; Zhao, M.; Wu, Y. Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood–Testis Barrier Hyperpermeability. Virol. Sin. 2021, 36, 692–705. [Google Scholar] [CrossRef]
Number That Are Significant | Total Unique | 3 dpi | 5 dpi | 7 dpi |
---|---|---|---|---|
and F.C. > 1.00 | 4423 | 853 | 1651 | 1209 |
and F.C. < 1.00 | 1514 | 712 | 573 | |
and F.C. > 1.10 | 4361 | 832 | 1632 | 1197 |
and F.C. < −1.10 | 1495 | 700 | 559 | |
and F.C. > 1.25 | 2234 | 393 | 744 | 647 |
and F.C. < −1.25 | 755 | 329 | 193 | |
and F.C. > 1.33 | 1342 | 286 | 468 | 382 |
and F.C. < −1.33 | 395 | 197 | 90 | |
and F.C. > 1.50 | 619 | 180 | 246 | 176 |
and F.C. < −1.50 | 140 | 97 | 22 | |
and F.C. > 1.66 | 351 | 119 | 161 | 94 |
and F.C. < −1.66 | 71 | 45 | 7 | |
and F.C. > 2.00 | 173 | 70 | 95 | 39 |
and F.C. < −2.00 | 24 | 14 | 3 | |
and F.C. > 2.50 | 79 | 36 | 38 | 19 |
and F.C. < −2.50 | 6 | 8 | 1 |
Swprot | Gene | Protein | 3 dpi | 5 dpi | 7 dpi | |||
---|---|---|---|---|---|---|---|---|
Inf/Mock F.C. | p-Value | Inf/Mock F.C. | p-Value | Inf/Mock F.C. | p-Value | |||
Up-regulated proteins | ||||||||
O15539 | RGS5 | Regulator of G-protein signaling 5 | 45.46 | 5.5 × 10−3 | ||||
Q86XK2 | FBXO11 | F-box only protein 11 | 41.16 | 4.9 × 10−3 | −1.01 | 7.9 × 10−1 | 1.11 | 1.9 × 10−1 |
Q96PU4 | UHRF2 | E3 ubiquitin-protein ligase UHRF2 | 17.55 | 1.1 × 10−3 | 5.74 | 2.4 × 10−4 | −1.10 | 2.5 × 10−1 |
Q12955 | ANK3 | Ankyrin-3 | 13.21 | 8.1 × 10−4 | 3.36 | 6.5 × 10−4 | 2.29 | 3.8 × 10−3 |
Q8N6Y2 | LRRC17 | Leucine-rich repeat-containing protein 17 | 9.94 | 4.9 × 10−4 | 2.82 | 1.4 × 10−4 | 1.31 | 9.5 × 10−3 |
O15544 | LINC01565 | Protein GR6 | 5.71 | 1.8 × 10−4 | ||||
P14679 | TYR | Tyrosinase | 4.85 | 2.6 × 10−4 | 15.63 | 1.8 × 10−3 | ||
O95294 | RASAL1 | RasGAP-activating-like protein 1 | 4.80 | 8.5 × 10−4 | 2.08 | 4.0 × 10−2 | ||
Q9P275 | USP36 | Ubiquitin carboxyl-terminal hydrolase 36 | 4.44 | 1.2 × 10−4 | 1.03 | 7.0 × 10−1 | 1.06 | 3.5 × 10−1 |
Q96PN6 | ADCY10 | Adenylate cyclase type 10 | 4.39 | 8.8 × 10−5 | 4.19 | 2.8 × 10−4 | 1.00 | 9.1 × 10−1 |
P61371 | ISL1 | Insulin gene enhancer protein ISL-1 | 4.11 | 1.6 × 10−4 | ||||
P10145 | CXCL8 | Interleukin-8 | 3.83 | 1.8 × 10−4 | 3.07 | 4.5 × 10−4 | ||
P20591 | MX1 | Interferon-induced GTP-binding protein Mx1 | 3.53 | 8.1 × 10−5 | 5.24 | 1.0 × 10−4 | 4.54 | 4.8 × 10−4 |
Q6ZV65 | FAM47E | Protein FAM47E | 3.53 | 4.9 × 10−5 | ||||
Q13438 | OS9 | Protein | 3.42 | 2.1 × 10−4 | 0.99 | 8.0 × 10−1 | 1.04 | 5.7 × 10−1 |
Q8N9S9 | SNX31 | Sorting nexin-31 | 3.31 | 1.0 × 10−4 | ||||
O14879 | IFIT3 | Interferon-induced protein with tetratricopeptide repeats 3 | 3.30 | 3.5 × 10−5 | 3.41 | 9.5 × 10−5 | 3.75 | 4.2 × 10−4 |
Q8TEJ3 | SH3RF3 | SH3 domain-containing RING finger protein 3 | 3.22 | 2.4 × 10−4 | 1.01 | 8.1 × 10−1 | ||
P30447 | HLA-A | HLA class I histocompatibility antigen, A-23 alpha chain | 3.17 | 1.8 × 10−4 | 3.96 | 1.5 × 10−4 | ||
Q96EN8 | MOCOS | Molybdenum cofactor sulfurase | 3.12 | 1.4 × 10−4 | 2.20 | 6.7 × 10−4 | 2.23 | 3.4 × 10−3 |
Q9BXS9 | SLC26A6 | Solute carrier family 26 member 6 | 3.10 | 7.0 × 10−5 | 1.21 | 1.1 × 10−2 | 1.13 | 1.5 × 10−1 |
P29728 | OAS2 | 2’-5’-oligoadenylate synthase 2 | 2.98 | 1.9 × 10−4 | 3.54 | 1.8 × 10−4 | 3.28 | 9.1 × 10−4 |
Q9C002 | NMES1 | Normal mucosa of esophagus-specific gene 1 protein | 2.96 | 1.7 × 10−4 | 2.91 | 1.4 × 10−4 | 1.18 | 1.3 × 10−1 |
P05161 | ISG15 | Ubiquitin-like protein ISG15 | 2.92 | 5.9 × 10−5 | 2.20 | 4.3 × 10−5 | 2.93 | 2.1 × 10−4 |
P02774 | GC | Vitamin D-binding protein | 2.87 | 4.5 × 10−5 | 1.86 | 3.8 × 10−4 | 1.34 | 4.1 × 10−5 |
Q9Y6K5 | OAS3 | 2’-5’-oligoadenylate synthase 3 | 2.85 | 4.3 × 10−5 | 3.60 | 1.1 × 10−4 | 2.30 | 1.4 × 10−3 |
P09913 | IFIT2 | Interferon-induced protein with tetratricopeptide repeats 2 | 2.82 | 6.5 × 10−5 | 2.83 | 5.7 × 10−5 | 2.83 | 8.4 × 10−4 |
Q14207 | NPAT | Protein NPAT | 2.78 | 3.3 × 10−4 | ||||
P09914 | IFIT1 | Interferon-induced protein with tetratricopeptide repeats 1 | 2.76 | 2.4 × 10−5 | 3.05 | 8.4 × 10−5 | 2.76 | 9.0 × 10−4 |
Q06055 | ATP5G2 | ATP synthase F(0) complex subunit C2, mitochondrial | 2.73 | 2.8 × 10−5 | ||||
Q8TCB0 | IFI44 | Interferon-induced protein 44 | 2.68 | 1.1 × 10−4 | 2.07 | 4.5 × 10−4 | 2.37 | 7.5 × 10−4 |
O75071 | EFCAB14 | EF-hand calcium-binding domain-containing protein 14 | 2.67 | 1.7 × 10−3 | 1.06 | 2.9 × 10−1 | ||
Q8N2C7 | UNC80 | Protein unc-80 homolog | 2.66 | 1.6 × 10−4 | ||||
Q92901 | RPL3L | 60S ribosomal protein L3-like | 2.65 | 2.4 × 10−3 | 1.97 | 1.6 × 10−2 | ||
Q92766 | RREB1 | Ras-responsive element-binding protein 1 | 2.56 | 7.7 × 10−4 | 3.72 | 2.1 × 10−4 | ||
Q96LM1 | LINC00615 | Putative uncharacterized protein encoded by LINC00615 | 2.56 | 3.0 × 10−3 | ||||
P47895 | ALDH1A3 | Aldehyde dehydrogenase family 1 member A3 | 2.50 | 3.4 × 10−5 | 3.86 | 9.7 × 10−5 | 1.38 | 2.9 × 10−2 |
P20592 | MX2 | Interferon-induced GTP-binding protein Mx2 | 2.48 | 9.3 × 10−5 | 2.98 | 1.2 × 10−4 | 2.80 | 4.1 × 10−4 |
Q96AZ6 | ISG20 | Interferon-stimulated gene 20 kDa protein | 2.47 | 3.0 × 10−5 | 2.46 | 3.0 × 10−4 | ||
Q9BXU1 | STK31 | Serine/threonine-protein kinase 31 | 2.47 | 3.2 × 10−4 | ||||
Q9Y3Z3 | SAMHD1 | Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 | 2.46 | 1.0 × 10−4 | 2.82 | 4.5 × 10−5 | 2.49 | 1.1 × 10−3 |
P52823 | STC1 | Stanniocalcin-1 | 2.43 | 2.6 × 10−4 | 2.98 | 1.4 × 10−4 | ||
P02795 | MT2A | Metallothionein-2 | 2.42 | 8.0 × 10−6 | 6.81 | 6.8 × 10−4 | ||
P30464 | HLA-B | HLA class I histocompatibility antigen, B-15 alpha chain | 2.41 | 2.3 × 10−4 | 2.49 | 1.6 × 10−4 | 2.11 | 1.5 × 10−3 |
A6ND36 | FAM83G | Protein FAM83G | 2.33 | 1.6 × 10−4 | 1.77 | 1.9 × 10−4 | 1.14 | 7.0 × 10−4 |
P48307 | TFPI2 | Tissue factor pathway inhibitor 2 | 2.32 | 1.4 × 10−4 | 3.11 | 1.9 × 10−4 | 1.18 | 4.1 × 10−2 |
O95760 | IL33 | Interleukin-33 | 2.30 | 4.4 × 10−4 | 2.35 | 1.1 × 10−4 | ||
Q6UXH9 | PAMR1 | Inactive serine protease PAMR1 | 2.26 | 2.1 × 10−4 | 1.12 | 7.5 × 10−2 | ||
P09912 | IFI6 | Interferon alpha-inducible protein 6 | 2.23 | 5.0 × 10−4 | 2.87 | 2.2 × 10−4 | ||
Q71F56 | MED13L | Mediator of RNA polymerase II transcription subunit 13-like | 2.23 | 3.2 × 10−4 | 1.04 | 8.1 × 10−1 | ||
Q8TDJ6 | DMXL2 | DmX-like protein 2 | 2.21 | 1.1 × 10−3 | 3.02 | 1.9 × 10−4 | ||
Q6P589 | TNFAIP8L2 | Tumor necrosis factor alpha-induced protein 8-like protein 2 | 2.20 | 1.9 × 10−4 | 2.59 | 6.9 × 10−4 | −1.13 | 2.2 × 10−1 |
P18464 | HLA-B | HLA class I histocompatibility antigen, B-51 alpha chain | 2.18 | 7.6 × 10−4 | 2.78 | 1.5 × 10−4 | 2.62 | 9.1 × 10−4 |
Q10589 | BST2 | Bone marrow stromal antigen 2 | 2.14 | 3.7 × 10−5 | 3.95 | 2.1 × 10−4 | 3.47 | 3.5 × 10−4 |
P01033 | TIMP1 | Metalloproteinase inhibitor 1 | 2.11 | 4.2 × 10−5 | 2.02 | 4.5 × 10−4 | 1.11 | 1.3 × 10−1 |
Q96J88 | EPSTI1 | Epithelial-stromal interaction protein 1 | 2.10 | 8.8 × 10−4 | 1.57 | 7.8 × 10−3 | ||
O14933 | UBE2L6 | Ubiquitin/ISG15-conjugating enzyme E2 L6 | 2.09 | 2.2 × 10−5 | 2.71 | 2.5 × 10−4 | 1.73 | 7.4 × 10−3 |
P30685 | HLA-B | HLA class I histocompatibility antigen, B-35 alpha chain | 2.09 | 1.3 × 10−4 | 2.28 | 2.8 × 10−4 | 2.00 | 2.0 × 10−3 |
Q86UQ4 | ABCA13 | ATP-binding cassette sub-family A member 13 | 2.09 | 1.9 × 10−3 | ||||
P42224 | STAT1 | Signal transducer and activator of transcription 1-alpha/beta | 2.08 | 1.4 × 10−5 | 2.74 | 5.8 × 10−5 | 1.71 | 3.3 × 10−3 |
P15407 | FOSL1 | Fos-related antigen 1 | 2.08 | 1.5 × 10−4 | 2.18 | 3.2 × 10−4 | ||
O14791 | APOL1 | Apolipoprotein L1 | 2.07 | 5.5 × 10−4 | ||||
Q9UII4 | HERC5 | E3 ISG15--protein ligase HERC5 | 2.07 | 5.5 × 10−4 | 3.23 | 5.5 × 10−4 | 1.75 | 3.4 × 10−3 |
O00182 | LGALS9 | Galectin-9 | 2.07 | 1.8 × 10−4 | 2.69 | 1.2 × 10−4 | 1.67 | 3.9 × 10−3 |
Q14520 | HABP2 | Hyaluronan-binding protein 2 | 2.06 | 6.7 × 10−4 | 1.65 | 2.4 × 10−4 | 1.38 | 6.3 × 10−3 |
Q8IXQ6 | PARP9 | Poly [ADP-ribose] polymerase 9 | 2.05 | 2.8 × 10−5 | 2.11 | 3.3 × 10−4 | 1.77 | 1.6 × 10−3 |
Q03405 | PLAUR | Urokinase plasminogen activator surface receptor | 2.05 | 5.0 × 10−5 | 1.53 | 2.0 × 10−3 | 1.41 | 7.8 × 10−4 |
Q96L93 | KIF16B | Kinesin-like protein KIF16B | 2.04 | 2.1 × 10−3 | 1.13 | 1.4 × 10−1 | ||
Q29960 | HLA-C | HLA class I histocompatibility antigen, Cw-16 alpha chain | 2.04 | 2.1 × 10−4 | 2.37 | 4.4 × 10−4 | ||
P25774 | CTSS | Cathepsin S | 2.02 | 4.8 × 10−4 | 1.79 | 3.3 × 10−4 | ||
P04733 | MT1F | Metallothionein-1F | 3.99 | 5.9 × 10−4 | ||||
Q9Y5P4 | COL4A3BP | Collagen type IV alpha-3-binding protein | 1.08 | 1.3 × 10−1 | 3.52 | 2.6 × 10−4 | −1.03 | 5.5 × 10−1 |
P05231 | IL6 | Interleukin-6 | 3.51 | 1.1 × 10−4 | ||||
P21589 | NT5E | 5’-nucleotidase | 1.98 | 8.2 × 10−5 | 2.87 | 1.2 × 10−4 | 1.88 | 1.6 × 10−3 |
P09341 | CXCL1 | Growth-regulated alpha protein | 2.76 | 6.6 × 10−4 | ||||
Q8N8U9 | BMPER | BMP-binding endothelial regulator protein | 2.62 | 7.6 × 10−5 | ||||
O15162 | PLSCR1 | Phospholipid scramblase 1 | 1.84 | 9.3 × 10−4 | 2.61 | 5.0 × 10−4 | 2.81 | 6.2 × 10−4 |
P43490 | NAMPT | Nicotinamide phosphoribosyltransferase | 1.55 | 3.6 × 10−5 | 2.60 | 1.5 × 10−4 | −1.01 | 8.9 × 10−1 |
P02549 | SPTA1 | Spectrin alpha chain, erythrocytic 1 | 1.16 | 2.8 × 10−2 | 2.49 | 8.1 × 10−6 | ||
Q9H5V8 | CDCP1 | CUB domain-containing protein 1 | 1.87 | 2.7 × 10−4 | 2.47 | 1.9 × 10−4 | 1.44 | 7.9 × 10−4 |
P04179 | SOD2 | Superoxide dismutase [Mn], mitochondrial | 1.54 | 1.2 × 10−3 | 2.47 | 8.6 × 10−5 | −1.27 | 2.2 × 10−2 |
O43581 | SYT7 | Synaptotagmin-7 | 2.45 | 7.5 × 10−3 | ||||
Q8NAP3 | ZBTB38 | Zinc finger and BTB domain-containing protein 38 | 1.15 | 6.6 × 10−3 | 2.44 | 4.6 × 10−4 | 1.06 | 3.6 × 10−1 |
Q53G44 | IFI44L | Interferon-induced protein 44-like | 1.83 | 3.3 × 10−4 | 2.34 | 1.5 × 10−4 | 2.38 | 5.3 × 10−4 |
Q14457 | BECN1 | Beclin-1 | 1.77 | 1.1 × 10−4 | 2.32 | 6.7 × 10−5 | 1.03 | 5.9 × 10−1 |
P35354 | PTGS2 | Prostaglandin G/H synthase 2 | 1.99 | 3.7 × 10−4 | 2.31 | 1.5 × 10−5 | −1.13 | 2.9 × 10−1 |
Q8WZ74 | CTTNBP2 | Cortactin-binding protein 2 | 2.27 | 5.4 × 10−4 | 1.24 | 1.9 × 10−2 | ||
P26022 | PTX3 | Pentraxin-related protein PTX3 | 1.54 | 3.3 × 10−4 | 2.26 | 2.5 × 10−3 | −1.05 | 5.1 × 10−1 |
Q5EBM0 | CMPK2 | UMP-CMP kinase 2, mitochondrial | 1.91 | 1.1 × 10−4 | 2.25 | 9.5 × 10−5 | 1.84 | 1.3 × 10−3 |
P28845 | HSD11B1 | Corticosteroid 11-beta-dehydrogenase isozyme 1 | 1.56 | 1.6 × 10−3 | 2.23 | 2.6 × 10−4 | 1.19 | 3.7 × 10−2 |
Q8WWZ7 | ABCA5 | ATP-binding cassette sub-family A member 5 | 2.23 | 5.5 × 10−5 | 1.13 | 1.2 × 10−1 | ||
O95786 | DDX58 | Probable ATP-dependent RNA helicase DDX58 | 1.79 | 1.2 × 10−4 | 2.23 | 2.1 × 10−4 | 2.11 | 1.3 × 10−3 |
P04732 | MT1E | Metallothionein-1E | 1.26 | 3.8 × 10−3 | 2.22 | 1.5 × 10−4 | 1.91 | 2.3 × 10−3 |
Q96RQ9 | IL4I1 | l-amino-acid oxidase | 1.74 | 3.3 × 10−4 | 2.22 | 1.6 × 10−4 | 1.28 | 2.8 × 10−2 |
P01892 | HLA-A | HLA class I histocompatibility antigen, A-2 alpha chain | 1.78 | 2.8 × 10−4 | 2.22 | 4.1 × 10−4 | 1.60 | 4.9 × 10−3 |
Q4VCS5 | AMOT | Angiomotin | 1.92 | 4.8 × 10−4 | 2.20 | 1.1 × 10−4 | ||
P00973 | OAS1 | 2’-5’-oligoadenylate synthase 1 | 1.99 | 1.0 × 10−4 | 2.20 | 1.3 × 10−3 | 2.02 | 3.5 × 10−3 |
Q5TEJ8 | THEMIS2 | Protein THEMIS2 | 2.18 | 6.1 × 10−5 | ||||
Q96C10 | DHX58 | Probable ATP-dependent RNA helicase DHX58 | 1.35 | 1.6 × 10−2 | 2.18 | 1.8 × 10−4 | 1.08 | 2.6 × 10−1 |
P13500 | CCL2 | C-C motif chemokine 2 | 2.17 | 7.9 × 10−4 | ||||
Q9BY76 | ANGPTL4 | Angiopoietin-related protein 4 | 1.58 | 4.7 × 10−4 | 2.17 | 8.3 × 10−4 | 1.36 | 1.0 × 10−2 |
Q9Y6I4 | USP3 | Ubiquitin carboxyl-terminal hydrolase 3 | 1.01 | 7.1 × 10−1 | 2.16 | 1.3 × 10−4 | ||
O94808 | GFPT2 | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2 | 1.65 | 6.4 × 10−5 | 2.15 | 2.6 × 10−4 | 1.38 | 6.8 × 10−3 |
P15153 | RAC2 | Ras-related C3 botulinum toxin substrate 2 | 1.58 | 2.7 × 10−4 | 2.14 | 5.2 × 10−5 | 1.04 | 3.8 × 10−1 |
P19525 | EIF2AK2 | Interferon-induced, double-stranded RNA-activated protein kinase | 1.59 | 1.1 × 10−4 | 2.13 | 1.1 × 10−4 | 1.91 | 1.6 × 10−3 |
Q9HB58 | SP110 | Sp110 nuclear body protein | 1.80 | 1.7 × 10−3 | 2.11 | 9.3 × 10−4 | 1.81 | 1.2 × 10−3 |
P05534 | HLA-A | HLA class I histocompatibility antigen, A-24 alpha chain | 1.58 | 4.0 × 10−4 | 2.09 | 1.9 × 10−4 | 1.98 | 8.2 × 10−4 |
P52926 | HMGA2 | High mobility group protein HMGI-C | 1.28 | 2.5 × 10−2 | 2.09 | 2.2 × 10−5 | −1.16 | 5.7 × 10−2 |
O75508 | CLDN11 | Claudin-11 | 1.05 | 5.9 × 10−1 | 2.09 | 3.9 × 10−4 | 1.27 | 2.1 × 10−3 |
P07148 | FABP1 | Fatty acid-binding protein, liver | 2.09 | 4.4 × 10−4 | −1.09 | 4.6 × 10−1 | ||
Q7Z402 | TMC7 | Transmembrane channel-like protein 7 | 2.08 | 2.3 × 10−4 | ||||
Q01973 | ROR1 | Inactive tyrosine-protein kinase transmembrane receptor ROR1 | 2.08 | 4.6 × 10−4 | 1.41 | 2.1 × 10−3 | ||
Q8IVT2 | MISP | Mitotic interactor and substrate of PLK1 | 1.75 | 3.8 × 10−4 | 2.07 | 4.0 × 10−4 | ||
Q3MIT2 | PUS10 | Putative tRNA pseudouridine synthase Pus10 | 2.06 | 4.3 × 10−3 | −1.31 | 5.5 × 10−3 | ||
P27701 | CD82 | CD82 antigen | 1.34 | 1.6 × 10−2 | 2.05 | 1.5 × 10−5 | 1.22 | 4.3 × 10−2 |
Q15646 | OASL | 2’-5’-oligoadenylate synthase-like protein | 1.82 | 1.3 × 10−4 | 2.05 | 2.8 × 10−4 | 1.99 | 1.8 × 10−3 |
P01584 | IL1B | Interleukin-1 beta | 1.88 | 9.0 × 10−5 | 2.04 | 2.1 × 10−4 | ||
Q7Z3S9 | NOTCH2NL | Notch homolog 2 N-terminal-like protein | 1.13 | 1.0 × 10−1 | 2.02 | 1.7 × 10−4 | 1.03 | 6.1 × 10−1 |
P68871 | HBB | Hemoglobin subunit beta | 1.54 | 3.6 × 10−3 | 2.02 | 2.4 × 10−4 | 1.31 | 1.3 × 10−2 |
Q9BYX4 | IFIH1 | Interferon-induced helicase C domain-containing protein 1 | 1.82 | 1.8 × 10−4 | 2.01 | 2.5 × 10−4 | 2.09 | 2.7 × 10−3 |
P16070 | CD44 | CD44 antigen | 1.42 | 8.9 × 10−4 | 2.01 | 2.2 × 10−4 | 1.32 | 3.6 × 10−3 |
P28838 | LAP3 | Cytosol aminopeptidase | 1.66 | 2.3 × 10−5 | 2.00 | 1.4 × 10−4 | 1.42 | 6.2 × 10−3 |
Q92597 | NDRG1 | Protein NDRG1 | 1.21 | 1.6 × 10−3 | 2.00 | 1.4 × 10−4 | 1.75 | 7.5 × 10−4 |
P11166 | SLC2A1 | Solute carrier family 2, facilitated glucose transporter member 1 | 1.65 | 6.2 × 10−4 | 1.91 | 7.9 × 10−4 | 2.12 | 9.2 × 10−6 |
P09871 | C1S | Complement C1s subcomponent | 1.08 | 2.3 × 10−1 | 1.25 | 5.7 × 10−3 | 2.10 | 1.3 × 10−3 |
P11169 | SLC2A3 | Solute carrier family 2, facilitated glucose transporter member 3 | 1.28 | 3.2 × 10−3 | 1.21 | 2.2 × 10−2 | 2.71 | 2.3 × 10−5 |
Q96DE5 | ANAPC16 | Anaphase-promoting complex subunit 16 | −1.12 | 2.0 × 10−1 | 1.13 | 8.3 × 10−3 | 3.57 | 4.4E−10 |
P00966 | ASS1 | Argininosuccinate synthase | −1.12 | 1.1 × 10−1 | −1.13 | 2.1 × 10−2 | 2.08 | 1.6 × 10−3 |
Q2UY09 | COL28A1 | Collagen alpha-1(XXVIII) chain | −1.93 | 1.2 × 10−3 | −1.71 | 3.1 × 10−3 | 2.95 | 3.6 × 10−2 |
P04264 | KRT1 | Keratin, type II cytoskeletal 1 | −1.40 | 1.9 × 10−1 | −1.98 | 1.9 × 10−2 | −2.41 | 2.5 × 10−6 |
Q9HCJ2 | LRRC4C | Leucine-rich repeat-containing protein 4C | 7.23 | 1.3 × 10−3 | ||||
Q8IXR9 | C12orf56 | Uncharacterized protein C12orf56 | 3.90 | 8.3 × 10−3 | ||||
O15068 | MCF2L | Guanine nucleotide exchange factor DBS | −1.93 | 1.6 × 10−3 | 3.47 | 3.1 × 10−2 | ||
Q9NQ90 | ANO2 | Anoctamin-2 | 1.23 | 2.1 × 10−2 | 2.86 | 1.2 × 10−3 | ||
P17693 | HLA-G | HLA class I histocompatibility antigen, alpha chain G | 2.59 | 1.9 × 10−4 | ||||
Q8IZ26 | ZNF34 | Zinc finger protein 34 | 2.51 | 2.2 × 10−3 | ||||
Q9Y225 | RNF24 | RING finger protein 24 | 1.13 | 5.7 × 10−2 | 2.42 | 8.5 × 10−4 | ||
P04222 | HLA-C | HLA class I histocompatibility antigen, Cw-3 alpha chain | 2.18 | 1.6 × 10−4 | ||||
Q13794 | PMAIP1 | Phorbol-12-myristate-13-acetate-induced protein 1 | 2.12 | 3.1 × 10−4 | ||||
Q96B67 | ARRDC3 | Arrestin domain-containing protein 3 | 2.09 | 2.3 × 10−4 | ||||
Q13772 | NCOA4 | Nuclear receptor coactivator 4 | −1.04 | 6.0 × 10−1 | 2.08 | 1.3 × 10−3 | ||
Q13137 | CALCOCO2 | Calcium-binding and coiled-coil domain-containing protein 2 | 1.19 | 3.4 × 10−2 | −1.04 | 4.1 × 10−1 | 2.03 | 7.2 × 10−4 |
Down-regulated proteins | ||||||||
Q12756 | KIF1A | Kinesin-like protein KIF1A | −4.38 | 5.4 × 10−5 | ||||
P02452 | COL1A1 | Collagen alpha-1(I) chain | −3.95 | 1.5 × 10−4 | −3.39 | 2.6 × 10−4 | 2.19 | 2.7 × 10−2 |
Q96K58 | ZNF668 | Zinc finger protein 668 | −3.66 | 6.0 × 10−5 | −2.63 | 1.6 × 10−4 | 1.03 | 3.6 × 10−1 |
P08123 | COL1A2 | Collagen alpha-2(I) chain | −3.39 | 1.0 × 10−4 | −3.15 | 2.2 × 10−4 | 1.97 | 3.7 × 10−2 |
Q8IWF6 | DENND6A | Protein DENND6A | −3.20 | 6.3 × 10−4 | ||||
P02461 | COL3A1 | Collagen alpha-1(III) chain | −2.87 | 3.2 × 10−4 | −2.97 | 2.2 × 10−4 | 1.33 | 1.1 × 10−2 |
Q9H1P3 | OSBPL2 | Oxysterol-binding protein-related protein 2 | −2.47 | 3.1 × 10−4 | 1.41 | 4.9 × 10−3 | ||
Q8IZX4 | TAF1L | Transcription initiation factor TFIID subunit 1-like | −2.46 | 5.1 × 10−4 | −1.69 | 3.8 × 10−3 | ||
Q69YL0 | NCBP2-AS2 | Uncharacterized protein NCBP2-AS2 | −2.42 | 6.9 × 10−4 | −1.51 | 3.6 × 10−3 | 1.66 | 2.3 × 10−2 |
Q96JG9 | ZNF469 | Zinc finger protein 469 | −2.41 | 5.0 × 10−5 | 1.03 | 7.2 × 10−1 | ||
P52732 | KIF11 | Kinesin-like protein KIF11 | −2.34 | 6.7 × 10−4 | ||||
P09486 | SPARC | SPARC | −2.32 | 3.7 × 10−4 | −2.08 | 9.4 × 10−4 | 1.41 | 9.8 × 10−3 |
P20908 | COL5A1 | Collagen alpha-1(V) chain | −2.29 | 2.4 × 10−4 | −1.99 | 4.9 × 10−4 | 1.40 | 4.5 × 10−2 |
Q96PQ7 | KLHL5 | Kelch-like protein 5 | −2.20 | 3.6 × 10−4 | −1.11 | 1.2 × 10−1 | ||
P51911 | CNN1 | Calponin-1 | −2.15 | 7.1 × 10−4 | −2.51 | 1.7 × 10−4 | 1.12 | 2.0 × 10−1 |
Q8N7X1 | RBMXL3 | RNA-binding motif protein, X-linked-like-3 | −2.13 | 5.0 × 10−3 | −2.22 | 4.0 × 10−3 | ||
O00767 | SCD | Acyl-CoA desaturase | −2.13 | 4.9 × 10−4 | −1.69 | 2.1 × 10−3 | 1.31 | 5.7 × 10−3 |
P61916 | NPC2 | Epididymal secretory protein E1 | −2.10 | 4.3 × 10−4 | −2.09 | 3.1 × 10−4 | −1.52 | 4.1 × 10−3 |
Q05682 | CALD1 | Caldesmon | −2.08 | 2.7 × 10−4 | −1.95 | 6.8 × 10−4 | −1.15 | 1.1 × 10−1 |
Q8N806 | UBR7 | Putative E3 ubiquitin-protein ligase UBR7 | −2.06 | 1.3 × 10−3 | 1.47 | 2.6 × 10−3 | 1.03 | 6.3 × 10−1 |
Q15113 | PCOLCE | Procollagen C-endopeptidase enhancer 1 | −2.06 | 4.6 × 10−4 | −1.65 | 7.8 × 10−4 | 1.39 | 1.7 × 10−2 |
O75094 | SLIT3 | Slit homolog 3 protein | −2.04 | 3.5 × 10−4 | ||||
Q07352 | ZFP36L1 | Zinc finger protein 36, C3H1 type-like 1 | −2.00 | 1.4 × 10−4 | −1.03 | 5.6 × 10−1 | 1.42 | 5.6 × 10−4 |
P52736 | ZNF133 | Zinc finger protein 133 | −2.00 | 1.7 × 10−3 | ||||
Q9C009 | FOXQ1 | Forkhead box protein Q1 | −4.75 | 4.6 × 10−5 | ||||
Q96RY5 | CRAMP1 | Protein cramped-like | −4.03 | 1.1 × 10−3 | 1.01 | 7.7 × 10−1 | ||
P17661 | DES | Desmin | −1.49 | 5.7 × 10−3 | −2.63 | 1.8 × 10−4 | 1.39 | 4.5 × 10−2 |
P35527 | KRT9 | Keratin, type I cytoskeletal 9 | −1.55 | 1.3 × 10−1 | −2.35 | 4.0 × 10−3 | −2.17 | 3.4 × 10−5 |
Q9NRM1 | ENAM | Enamelin | −1.59 | 3.2 × 10−4 | −2.31 | 2.8 × 10−4 | 1.51 | 3.1 × 10−3 |
O43854 | EDIL3 | EGF-like repeat and discoidin I-like domain-containing protein 3 | −1.70 | 1.1 × 10−3 | −2.16 | 8.2 × 10−4 | −1.33 | 2.6 × 10−3 |
Q86YZ3 | HRNR | Hornerin | −3.94 | 1.8 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, M.-u.; Lao, Y.; Spicer, V.; Coombs, K.M. Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease. Viruses 2022, 14, 377. https://doi.org/10.3390/v14020377
Rashid M-u, Lao Y, Spicer V, Coombs KM. Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease. Viruses. 2022; 14(2):377. https://doi.org/10.3390/v14020377
Chicago/Turabian StyleRashid, Mahamud-ur, Ying Lao, Victor Spicer, and Kevin M. Coombs. 2022. "Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease" Viruses 14, no. 2: 377. https://doi.org/10.3390/v14020377
APA StyleRashid, M.-u., Lao, Y., Spicer, V., & Coombs, K. M. (2022). Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease. Viruses, 14(2), 377. https://doi.org/10.3390/v14020377