TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Determination of TREC and KREC Concentrations
2.3. Evaluation of T and B cell Subsets by Flow Cytometry
2.4. Statistical Data Analysis
3. Results
3.1. Determination of TREC and KREK Levels in COVID-19 Patients at Different Stages of the Disease
3.2. T cell Subsets in COVID-19 Patients at Different Stages of the Disease
3.3. B cell Subsets in COVID-19 Patients at Different Stages of the Disease
3.4. Correlation of TREC and KREC Values with T and B Cell Subsets at Different Stages of COVID-19
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pashenkov, M.V.; Khaitov, M.R. Immune response against epidemic coronaviruses. Immunologiya 2020, 41, 5–18. [Google Scholar] [CrossRef]
- Miyazawa, M. Immunopathogenesis of SARS-CoV-2-induced pneumonia: Lessons from influenza virus infection. Inflamm. Regen. 2020, 40, 39. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.; Shin, H.W. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw. 2021, 21, e3. [Google Scholar] [CrossRef]
- Potapnev, M. P Cytokine storm. Causes and consequences. Immunologiya 2021, 42, 175–188. [Google Scholar] [CrossRef]
- Malkova, A.; Kudlay, D.; Kudryavtsev, I.; Starshinova, A.; Yablonskiy, P.; Shoenfeld, Y. Immunogenetic Predictors of Severe COVID-19. Vaccines 2021, 9, 211. [Google Scholar] [CrossRef]
- Pum, A.; Ennemoser, M.; Adage, T.; Kungl, A.J. Cytokines and Chemokines in SARS-CoV-2 Infections-Therapeutic Strategies Targeting Cytokine Storm. Biomolecules 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Gudima, G.O.; Khaitov, R.M.; Kudlay, D.A.; Khaitov, M.R. Molecular immunological aspects of the diagnosis, prevention and treatment of coronavirus infection. Immunologiya 2021, 42, 198–210. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Al-Ahmed, S.H.; Muhammad, J.; Khan, A.; Sule, A.A.; Tirupathi, R.; Mutair, A.A.; Alhumaid, S.; Al-Omari, A.; Dhawan, M.; et al. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines 2021, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.D.; Emerson, S.G.; Punt, J.; Goff, W.D. Decreased Naïve T-cell Production Leading to Cytokine Storm as Cause of Increased COVID-19 Severity with Comorbidities. Aging Dis. 2020, 11, 742–745. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Mann, E.R.; Menon, M.; Knight, S.B.; Konkel, J.E.; Jagger, C.; Shaw, T.N.; Krishnan, S.; Rattray, M.; Ustianowski, A.; Bakerly, N.D.; et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol. 2020, 5, eabd6197. [Google Scholar] [CrossRef] [PubMed]
- Shuwa, H.A.; Shaw, T.N.; Knight, S.B.; Wemyss, K.; McClure, F.A.; Pearmain, L.; Prise, I.; Jagger, C.; Morgan, D.J.; Khan, S.; et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Davydova, N.V.; Prodeus, A.P.; Obraztsov, I.V.; Kudlay, D.A.; Korsunsky, I.A. Reference values for TREC and KREC concentrations in adults. Doctor 2021, 6, 21–28. [Google Scholar] [CrossRef]
- Obraztsov, I.V.; Prodeus, A.P.; Rumyantsev, A.G. Excision rings of the T-cell receptor and recombination rings of the K-deletion element: Immunobiology, approaches to assessment, application in clinical practice. Russ. J. Immunol. 2015, 9, 251–260. [Google Scholar]
- Khadzhieva, M.B.; Kalinina, E.V.; Larin, S.S.; Sviridova, D.A.; Gracheva, A.S.; Chursinova, J.V.; Stepanov, V.A.; Redkin, I.V.; Avdeikina, L.S.; Rumyantsev, A.G.; et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics 2021, 11, 1486. [Google Scholar] [CrossRef] [PubMed]
- Gordukova, M.A.; Korsunsky, I.A.; Chursinova, Y.V.; Byakhova, M.M.; Oscorbin, I.P.; Prodeus, A.P.; Filipenko, M.L. Determining reference ranges for TREC and KREC assays in immune deficiency screening of newborns in Russian Federation. Meditsinskaya Immunol. 2019, 21, 527–538. [Google Scholar] [CrossRef]
- Korsunskiy, I.; Blyuss, O.; Gordukova, M.; Davydova, N.; Zaikin, A.; Zinovieva, N.; Zimin, S.; Molchanov, R.; Salpagarova, A.; Eremeeva, A.; et al. Expanding TREC and KREC Utility in Primary Immunodeficiency Diseases Diagnosis. Front. Immunol. 2020, 11, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinwari, K.; Bolkov, M.; Tuzankina, I.A.; Chereshnev, V.A. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm. Antiallergy Agents Med. Chem. 2021, 20, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Temporary Methodical Recommendations: Prevention, Diagnosis and Treatment of Novel Coronavirus Infection (COVID-19); Version 11 (05/07/2021); Approved by the Ministry of Health of the Russian Federation; Ministry of Health of the Russian Federation: Moscow, Russia, 2021.
- Kudryavtsev, I.V.; Subbotovskaya, A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Med. Immunol. 2015, 17, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D.R.; Ortiz, F.; Quest, G.; Illingworth, A.; Benko, M.; Nayyar, R.; Marinov, I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytom. B Clin. Cytom. 2018, 94, 637–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golovkin, A.; Kalinina, O.; Bezrukikh, V.; Aquino, A.; Zaikova, E.; Karonova, T.; Melnik, O.; Vasilieva, E.; Kudryavtsev, I. Imbalanced Immune Response of T-Cell and B-Cell Subsets in Patients with Moderate and Severe COVID-19. Viruses 2021, 13, 1966. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, V.A.; Savchenko, A.A.; Kudryavtsev, I.V.; Kozlov, I.G.; Kudlay, D.A.; Prodeus, A.P.; Borisov, A.G. Clinical Immunology; Polikor: Krasnoyarsk, Russia, 2020; p. 386. ISBN 978-5-6044565-6-9. [Google Scholar]
- Markel, D.C.; Bergum, C.; Flynn, J.; Jackson, N.; Bou-Akl, T.; Ren, W. Relationship of Blood Metal Ion Levels and Leukocyte Profiles in Patients With Articular Surface Replacement Metal-on-Metal Hip Replacement. Orthopedics 2018, 41, e424–e431. [Google Scholar] [CrossRef]
- Vahidi, Y.; Bagheri, M.; Ghaderi, A.; Faghih, Z. CD8-positive memory T cells in tumor-draining lymph nodes of patients with breast cancer. BMC Cancer 2020, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Maier, R.; Bawamia, B.; Bennaceur, K.; Dunn, S.; Marsay, L.; Amoah, R.; Kasim, A.; Filby, A.; Austin, D.; Hancock, H.; et al. Telomerase Activation to Reverse Immunosenescence in Elderly Patients with Acute Coronary Syndrome: Protocol for a Randomized Pilot Trial. JMIR Res. Protoc. 2020, 9, e19456. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.; He, B.; Ireland, J.; Zou, Z.; Shen, T.; Roth, G.; Sun, P.D. The Role of L-Selectin in HIV Infection. Front. Microbiol. 2021, 12, 725741. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, D.; Nie, G.D.; Dai, Z. CD8(+)CD122(+) T-Cells: A Newly Emerging Regulator with Central Memory Cell Phenotypes. Front. Immunol. 2015, 6, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toor, S.M.; Saleh, R.; Sasidharan Nair, V.; Taha, R.Z.; Elkord, E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology 2021, 162, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Dai, Y.; Zheng, T.; Cheng, L.; Zhao, D.; Wang, H.; Liu, M.; Pei, H.; Jin, T.; Yu, D.; et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Investig. 2020, 130, 6588–6599. [Google Scholar] [CrossRef] [PubMed]
- Kuri-Cervantes, L.; Pampena, M.B.; Meng, W.; Rosenfeld, A.M.; Ittner, C.A.G.; Weisman, A.R.; Agyekum, R.S.; Mathew, D.; Baxter, A.E.; Vella, L.A.; et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 2020, 5, eabd7114. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Kuo, H.H.; Boucau, J.; Farmer, J.R.; Allard-Chamard, H.; Mahajan, V.S.; Piechocka-Trocha, A.; Lefteri, K.; Osborn, M.; Bals, J.; et al. Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 2020, 183, 143–157.e13. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtsev, I.V.; Arsentieva, N.A.; Batsunov, O.K.; Korobova, Z.R.; Khamitova, I.V.; Isakov, D.V.; Kuznetsova, R.N.; Rubinstein, A.A.; Stanevich, O.V.; Lebedeva, A.A.; et al. Alterations in B Cell and Follicular T-Helper Cell Subsets in Patients with Acute COVID-19 and COVID-19 Convalescents. Curr. Issues Mol. Biol. 2022, 44, 194–205. [Google Scholar] [CrossRef]
- Dewanjee, S.; Kandimalla, R.; Kalra, R.S.; Valupadas, C.; Vallamkondu, J.; Kolli, V.; Dey Ray, S.; Reddy, A.P.; Reddy, P.H. COVID-19 and Rheumatoid Arthritis Crosstalk: Emerging Association, Therapeutic Options and Challenges. Cells 2021, 10, 3291. [Google Scholar] [CrossRef]
- Malkova, A.; Kudryavtsev, I.; Starshinova, A.; Kudlay, D.; Zinchenko, Y.; Glushkova, A.; Yablonskiy, P.; Shoenfeld, Y. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens 2021, 10, 1408. [Google Scholar] [CrossRef] [PubMed]
- Picchianti Diamanti, A.; Rosado, M.M.; Nicastri, E.; Sesti, G.; Pioli, C.; Laganà, B. Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Autoimmunity 1 Year Later: The Era of Vaccines. Front. Immunol. 2021, 12, 708848. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Acute Stage of COVID-19 (Favorable Outcome) n = 25 | Acute Stage of COVID-19 (Unfavorable Outcome) n = 8 | COVID-19 Survivors n = 33 | p |
---|---|---|---|---|
Female | 14/56.0% | 6/75.0% | 18/54.55% | p1 = 0.751 p2 = 1.000 p3 < 0.001 |
Male | 11/44.0% | 2/25.0% | 15/45.45% | p1 = 0.700 p2 = 1.000 p3 = 0.707 |
Mean age | 60 56.0–63.0 | 70 62.3–73.3 | 63 52.5–68.5 | p1 = 0.989 p2 = 0.994 p3 = 0.875 |
Age group | ||||
<45 | 3/12.0% | 1/12.5% | 5/15.15% | p1 = 1.000 p2 = 1.000 p3 = 1.000 |
45–59 | 15/60.0% | 1/12.5% | 18/54.55% | p1 = 0.238 p2 = 0.830 p3 = 0.249 |
≥ 60 | 7/28.0% | 6/75.0% | 10/30.3% | p1 = 0.171 p2 = 1.000 p3 = 0.183 |
Severity | ||||
Moderate | 7/28.0% | 0/0% | 16/48.48% | p1 = 0.309 p2 = 0.325 p3 = 0.090 |
Severe | 17/68.0% | 1/12.5% | 17/51.52% | p1 = 0.012 p2 = 0.007 p3 = 0.413 |
Extremely Severe | 1/4% | 7/87.5% | 0/0% | p1 < 0.001 p2 = 1.000 p3 = 0.001 |
Complications | ||||
Pneumonia | 22/88.0% | 8/100% | 32/96.67% | p1 = 0.989 p2 = 0.994 p3 = 0.875 |
Data of CT scan 3–4 | 1/4.0% | 8/100% | 0/0% | p1 < 0.001 p2 = 0.431 p3 < 0.001 |
Respiratory failure | 12/48.0% | 8/100% | 14/42.42% | p1 = 0.355 p2 = 0.816 p3 = 0.224 |
Systemic inflammatory response syndrome | 5/20.0% | 6/75.0% | 9/27.27% | p1 = 0.132 p2 = 0.765 p3 = 0.165 |
Multiple organ failure | 2/8.0% | 3/37.5% | 4/12.1% | p1 = 0.078 p2 = 0.690 p3 = 0.120 |
Septic shock | 0/0% | 1/12,5% | 0/0% | p1 = 0.242 p2 = 1.000 p3 = 0.195 |
Several complications | 13/52.0% | 8/100% | 15/45.45% | p1 = 0.363 p2 = 0.819 p3 = 0.232 |
Concomitant disorders including | ||||
Hypertension | 10/40.0% | 5 | 27/81.82% | p1 = 0.509 p2 = 0.131 p3 = 0.764 |
Diabetes | 2/8.0% | 3 | 5/15.15% | p1 = 0.134 p2 = 0.690 p3 = 0.355 |
Cardiovascular diseases | 3/12.0% | 4 | 8/24.24% | p1 = 0.168 p2 = 0.505 p3 = 0.434 |
Chronic kidney disease | 0/0% | 2/25.0% | 1/3.03% | p1 = 0.076 p2 = 1.000 p3 = 0.125 |
Chronic pulmonary disease | 1/4.0% | 2/25.0% | 2/6.06% | p1 = 0.181 p2 = 0.818 p3 = 0.209 |
Chronic liver disease | 0/0% | 2/25.0% | 2/6.06% | p1 = 0.076 p2 = 0.506 p3 = 0.209 |
Other disorders | 2/8.0% | 2/25.0% | 3/9.09% | p1 = 0.291 p2 = 1.000 p3 = 0.295 |
Several disorders | 15/60.0% | 8/100% | 18/54.55% | p1 = 0.549 p2 = 0.830 p3 = 0.380 |
CT scan findings | ||||
CT1 | 9/36.0% | 0/0% | 17/51.52% | p1 = 0.168 p2 = 0.631 p3 = 0.090 |
CT2 | 15/60.0% | 0/0% | 12/36.36% | p1 = 0.044 p2 = 0.353 p3 = 0.175 |
CT3 | 1/4.0% | 1/12.5% | 3/9.09% | p1 = 0.454 p2 = 0.633 p3 = 1.000 |
CT4 | 0/0% | 7/87.5% | 0/0% | p1 < 0.001 p2 = 1.000 p3 < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savchenko, A.A.; Tikhonova, E.; Kudryavtsev, I.; Kudlay, D.; Korsunsky, I.; Beleniuk, V.; Borisov, A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses 2022, 14, 646. https://doi.org/10.3390/v14030646
Savchenko AA, Tikhonova E, Kudryavtsev I, Kudlay D, Korsunsky I, Beleniuk V, Borisov A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022; 14(3):646. https://doi.org/10.3390/v14030646
Chicago/Turabian StyleSavchenko, Andrei A., Elena Tikhonova, Igor Kudryavtsev, Dmitry Kudlay, Ilya Korsunsky, Vasily Beleniuk, and Alexandr Borisov. 2022. "TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease" Viruses 14, no. 3: 646. https://doi.org/10.3390/v14030646