Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Processing of Sequencing Data of Circulating CD4+ T Lymphocytes Isolated from Blood of 19 Patients
2.2. Data Processing
2.3. Gene Ontology and miRNA Prediction Algorithms
3. Results
3.1. Data Quality Parameters after Processing
3.2. Genomic Origin of circRNAs Suggests Predisposition for Chromosome 17
3.3. Identification of circRNAs Derived from Genes Associated with HIV-1 Gene Expression
3.4. circRNA Profiles Exclusive to HIV-1 Patients’ Viremic Status
3.5. Identification of MRE in the Host circRNAs Upregulated in Viremic Patients
3.6. Six MREs Were in Common between HIV and the Host circRNAs and mRNAs
4. Discussion
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zucko, D.; Boris-Lawrie, K. Circular RNAs are Regulators of Diverse Animal Transcriptomes: One Health Perspective. Front. Genet. 2020, 11, 999. [Google Scholar] [CrossRef]
- Ashwal-Fluss, R.; Meyer, M.; Reddy Pamudurti, N.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. CircRNA Biogenesis competes with Pre-mRNA splicing. Mol. Cell 2014, 45, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Chen, L.-L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-Y.; Kuo, H.-C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.C. Circular RNAs Act as miRNA Sponges. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lasda, E.; Parker, R. Circular RNAs: Diversity of form and function. RNA 2014, 20, 1829–1842. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Boudreault, S.; Roy, P.; Lemay, G.; Bisaillon, M. Viral modulation of cellular RNA alternative splicing: A new key player in virus–host interactions? Wiley Interdiscip. Rev. RNA 2019, 10, e1543. [Google Scholar] [CrossRef]
- Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.-L.; Cherry, S.; Wilusz, J.E. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol. Cell 2017, 68, 940–954. [Google Scholar] [CrossRef]
- Chen, T.-C.; Tallo-Parra, M.; Cao, Q.M.; Kadener, S.; Böttcher, R.; Pérez-Vilaró, G.; Boonchuen, P.; Somboonwiwat, K.; Díez, J.; Sarnow, P. Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. PLoS Pathog. 2020, 16, e1008346. [Google Scholar] [CrossRef]
- Qian, S.; Zhong, X.; Yu, L.; Ding, B.; de Haan, P.; Boris-Lawrie, K. HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proc. Natl. Acad. Sci. USA 2009, 106, 605–610. [Google Scholar] [CrossRef]
- Bennasser, Y.; Le, S.-Y.; Benkirane, M.; Jeang, K.T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005, 22, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.M.; Sinck, L.; Ward, N.J.; Melendez-Peña, C.E.; Scarborough, R.; Azar, I.; Rance, E.; Daher, A.; Pang, K.-M.; Rossi, J.J.; et al. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs. RNA Biol. 2015, 12, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, T.; Deng, R.; Xia, X.; Li, B.; Wang, X. A study of differential circRNA and lncRNA expressions in COVID-19-infected peripheral blood. Sci. Rep. 2021, 11, 7991. [Google Scholar] [CrossRef] [PubMed]
- Demirci, Y.M.; Saçar Demirci, M.D. Circular RNA-MicroRNA-MRNA interaction predictions in SARS-CoV-2 infection. J. Integr. Bioinform. 2021, 18, 45–50. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, T.; Wang, Q.; Liu, J.; Jiao, W. Circular RNAs: Crucial regulators in the human body (Review). Oncol. Rep. 2018, 40, 3119–3135. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. eBioMedicine 2018, 34, 267–274. [Google Scholar] [CrossRef]
- Panda, A.C.; Grammatikakis, I.; Munk, R.; Gorospe, M.; Abdelmohsen, K. Emerging roles and context of circular RNAs. Wiley Interdiscip. Rev. RNA 2016, 8, e1386. [Google Scholar] [CrossRef]
- Su, X.; Xing, J.; Wang, Z.; Chen, L.; Cui, M.; Jiang, B. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin. J. Cancer Res. 2013, 25, 235–239. [Google Scholar]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; Da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef]
- Lim, L.P.; Lau, N.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773. [Google Scholar] [CrossRef]
- Hayes, A.M.; Qian, S.; Yu, L.; Boris-Lawrie, K. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 2011, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; An, M.; Zhao, B.; Ding, H.; Zhang, Z.; He, Y.; Shang, H.; Han, X. Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection. J. Transl. Med. 2018, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari Emameh, R.; Nosrati, H.; Eftekhari, M.; Falak, R.; Khoshmirsafa, M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol. Proced. Online 2020, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- El-Diwany, R.; Breitwieser, F.P.; Soliman, M.; Skaist, A.M.; Srikrishna, G.; Blankson, J.N.; Ray, S.; Wheelan, S.J.; Thomas, D.L.; Balagopal, A. Intracellular HIV-1 RNA and CD4+ T-cell activation in patients starting antiretrovirals. AIDS 2017, 31, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC. Babraham Bioinforma 2010, 7, 1338. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. [Heng Li—Compares BWA to other long read aligners like CUSHAW2] Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 2013; arXiv:1303.3997v2. [Google Scholar]
- Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015, 16, 4. [Google Scholar]
- Gao, Y.; Zhang, J.; Zhao, F. Circular RNA identification based on multiple seed matching. Briefings Bioinform. 2018, 19, 803–810. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar]
- Thomas, P.D.; Campbell, M.J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.; Diemer, K.; Muruganujan, A.; Narechania, A. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res. 2003, 13, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ji, P.; Zhao, F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020, 21, 101. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.C.; Bovolenta, L.A.; Nachtigall, P.G.; Herkenhoff, M.; Lemke, N.; Pinhal, D. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses. Front. Genet. 2017, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ouyang, Y.; Yao, W. shinyCircos: An R/Shiny application for interactive creation of Circos plot. Bioinformatics 2018, 34, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Mendoza, K.M.; Abrahante, J.E.; Velleman, S.G.; Strasburg, G.M. Data Mining Identifies Differentially Expressed Circular RNAs in Skeletal Muscle of Thermally Challenged Turkey Poults. Front. Physiol. 2021, 12, 732208. [Google Scholar] [CrossRef]
- Zaghlool, A.; Ameur, A.; Wu, C.; Westholm, J.O.; Niazi, A.; Manivannan, M.; Bramlett, K.; Nilsson, M.; Feuk, L. Expression profiling and in situ screening of circular RNAs in human tissues. Sci. Rep. 2018, 8, 16953. [Google Scholar]
- Zhang, J.; Chen, S.; Yang, J.; Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 2020, 11, 90. [Google Scholar] [CrossRef]
- Amr, S.; Funke, B. Targeted Hybrid Capture for Inherited Disease Panels. In Clinical Genomics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Gonçalves, J.; Moreira, E.; Sequeira, I.J.; Rodrigues, A.S.; Rueff, J.; Brás, A. Integration of HIV in the Human Genome: Which Sites Are Preferential? A Genetic and Statistical Assessment. J. Genom. 2016, 2016, 2168590. [Google Scholar] [CrossRef]
- Schröder, A.R.; Shinn, P.; Chen, H.; Berry, C.; Ecker, J.; Bushman, F. HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots. Cell 2002, 110, 521–529. [Google Scholar] [CrossRef]
- Zody, M.C.; Garber, M.; Adams, D.J.; Sharpe, T.; Harrow, J.; Lupski, J.R.; Nicholson, C.; Searle, S.M.; Wilming, L.; Young, S.K.; et al. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 2006, 440, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Veno, M.T.; Hansen, T.B.; Venø, S.T.; Clausen, B.H.; Grebing, M.; Finsen, B.; Holm, I.E.; Kjems, J. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015, 16, 245. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Guria, A.; Sharma, P.; Natesan, S.; Pandi, G. Circular RNAs—The Road Less Traveled. Front. Mol. Biosci. 2020, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-O.; Dong, R.; Zhang, Y.; Zhang, J.-L.; Luo, Z.; Zhang, J.; Chen, L.-L.; Yang, L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016, 26, 1277–1287. [Google Scholar] [CrossRef]
- Zhang, X.-O.; Wang, H.-B.; Zhang, Y.; Lu, X.; Chen, L.-L.; Yang, L. Complementary Sequence-Mediated Exon Circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef]
- Dalmer, T.R.A.; Clugston, R.D. Gene ontology enrichment analysis of congenital diaphragmatic hernia-associated genes. Pediatric Res. 2019, 85, 13–19. [Google Scholar] [CrossRef]
- Turner, A.-M.W.; Margolis, D.M. Chromatin Regulation and the Histone Code in HIV Latency. Yale J. Biol. Med. 2017, 90, 229–243. [Google Scholar]
- Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res. 2014, 24, 24–41. [Google Scholar] [CrossRef]
- Borel, S.; Espert, L.; Biard-Piechaczyk, M. Macroautophagy Regulation during HIV-1 Infection of CD4+ T Cells and Macrophages. Front. Immunol. 2012, 3, 97. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.T.; Ou, J.-H.J. Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response. Viruses 2017, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ou, J.-H.J. Hepatitis C virus and autophagy. Biol. Chem. 2015, 396, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Nikolai, B.C.; Feng, Q. HIV Latency Gets a New Histone Mark. Cell Host Microbe 2017, 21, 549–550. [Google Scholar] [CrossRef]
- Alvarez-Carbonell, D.; Ye, F.; Ramanath, N.; Dobrowolski, C.; Karn, J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J. Neuroimmune Pharmacol. 2019, 14, 94–109. [Google Scholar] [CrossRef]
- Kumar, P.P.; Purbey, P.K.; Ravi, D.S.; Mitra, D.; Galande, S. Displacement of SATB1-Bound Histone Deacetylase 1 Corepressor by the Human Immunodeficiency Virus Type 1 Transactivator Induces Expression of Interleukin-2 and Its Receptor in T Cells. Mol. Cell. Biol. 2005, 25, 1620–1633. [Google Scholar] [CrossRef]
- Kumar, P.P.; Mehta, S.; Purbey, P.K.; Notani, D.; Jayani, R.S.; Purohit, H.J.; Raje, D.V.; Ravi, D.S.; Bhonde, R.R.; Mitra, D.; et al. SATB1-Binding Sequences and Alu -Like Motifs Define a Unique Chromatin Context in the Vicinity of Human Immunodeficiency Virus Type 1 Integration Sites. J. Virol. 2007, 81, 5617–5627. [Google Scholar] [CrossRef][Green Version]
- Martinez-Mariño, B.; Foster, H.; Hao, Y.; Levy, J.A. Differential gene expression in CD8+ cells from HIV-1-infected subjects showing suppression of HIV replication. Virology 2007, 362, 217–225. [Google Scholar] [CrossRef][Green Version]
- Hrecka, K.; Hao, C.; Shun, M.-C.; Kaur, S.; Swanson, S.K.; Florens, L.; Washburn, M.P.; Skowronski, J. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 3921–3930. [Google Scholar] [CrossRef]
- Jäger, S.; Cimermancic, P.; Gulbahce, N.; Johnson, J.R.; McGovern, K.E.; Clarke, S.C.; Shales, M.; Mercenne, G.; Pache, L.; Li, K.; et al. Global landscape of HIV–human protein complexes. Nature 2011, 481, 365–370. [Google Scholar] [CrossRef]
- Yeung, M.L.; Houzet, L.; Yedavalli, V.S.R.K.; Jeang, K.-T. A Genome-wide Short Hairpin RNA Screening of Jurkat T-cells for Human Proteins Contributing to Productive HIV-1 Replication. J. Biol. Chem. 2009, 284, 19463–19473. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.K.; Yukl, S.A. Tissue reservoirs of HIV. Curr. Opin. HIV AIDS 2016, 11, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Gruhl, F.; Janich, P.; Kaessmann, H.; Gatfield, D. Circular RNA repertoires are associated with evolutionarily young transposable elements. eLife 2021, 10, 67991. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, F.; Argyris, E.; Chen, K.; Liang, Z.; Tian, H.; Huang, W.; Squires, K.; Verlinghieri, G.; Zhang, H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med. 2007, 13, 1241–1247. [Google Scholar] [CrossRef]
- Nilson, K.A.; Price, D.H. The Role of RNA Polymerase II Elongation Control in HIV-1 Gene Expression, Replication, and Latency. Genet. Res. Int. 2011, 2011, 726901. [Google Scholar] [CrossRef][Green Version]
- Ott, M.; Geyer, M.; Zhou, Q. The Control of HIV Transcription: Keeping RNA Polymerase II on Track. Cell Host Microbe 2011, 10, 426–435. [Google Scholar] [CrossRef]
- Pinney, J.W.; Dickerson, J.E.; Fu, W.; Sanders-Beer, B.E.; Ptak, R.G.; Robertson, D.L. HIV–host interactions: A map of viral perturbation of the host system. AIDS 2009, 23, 549–554. [Google Scholar] [CrossRef]
- Ptak, R.G.; Fu, W.; Sanders-Beer, B.E.; Dickerson, J.E.; Pinney, J.W.; Robertson, D.L.; Rozanov, M.N.; Katz, K.S.; Maglott, D.R.; Pruitt, K.; et al. Short Communication: Cataloguing the HIV Type 1 Human Protein Interaction Network. AIDS Res. Hum. Retroviruses 2008, 24, 1497–1502. [Google Scholar] [CrossRef]
- Fu, W.; Sanders-Beer, B.E.; Katz, K.S.; Maglott, D.R.; Pruitt, K.D.; Ptak, R.G. Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res. 2009, 37, D417–D422. [Google Scholar] [CrossRef]
- Mantri, C.K.; Pandhare Dash, J.; Mantri, J.V.; Dash, C.C.V. Cocaine Enhances HIV-1 Replication in CD4+ T Cells by Down-Regulating MiR-125b. PLoS ONE 2012, 7, e51387. [Google Scholar] [CrossRef]
- Houzet, L.; Klase, Z.; Yeung, M.L.; Wu, A.; Le, S.-Y.; Quiñones, M.; Jeang, K.-T. The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1. Nucleic Acids Res. 2012, 40, 11684–11694. [Google Scholar] [CrossRef] [PubMed]
- Balducci, E.; Leroyer, A.; Lacroix, R.; Robert, S.; Todorova, D.; Simoncini, S.; Lyonnet, L.; Chareyre, C.; Zaegel-Faucher, O.; Micallef, J.; et al. Extracellular vesicles from T cells overexpress miR-146b-5p in HIV-1 infection and repress endothelial activation. Sci. Rep. 2019, 9, 10299. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-Z.; Wang, J.; Wang, S.; Yuan, D.; Li, Z.; Yi, B.; Hou, Q.; Mao, Y.; Liu, W. MicroRNA miR-320a and miR-140 inhibit mink enteritis virus infection by repression of its receptor, feline transferrin receptor. Virol. J. 2014, 11, 210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, P.; Jia, S.; Wang, K.; Fan, Z.; Zheng, H.; Lv, J.; Jiang, Y.; Hou, Y.; Lou, B.; Zhou, H.; et al. MiR-140 inhibits classical swine fever virus replication by targeting Rab25 in swine umbilical vein endothelial cells. Virulence 2020, 11, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Liu, F.; Guo, H.; Li, J.; Zhang, Y.; Mo, Z. miR-224 suppresses HBV replication posttranscriptionally through inhibiting SIRT1-mediated autophagy. Int. J. Clin. Exp. Pathol. 2018, 11, 189–198. [Google Scholar] [PubMed]
Members of Cohort | Prevalence of Unique circRNAs | ||
---|---|---|---|
Proportion | Abundance | Pre-ART a | Post-ART |
100% | 19 | 7 | 0 |
75% | 14 | 65 | 61 |
50% | 9 | 147 | 167 |
25% | 5 | 339 | 357 |
15% | 3 | 588 | 638 |
5% | 1 | 2720 | 2675 |
Designation Role of Parental Gene Locus | MREs Identified in Host circRNA | MRE Identified in HIV-1 3’UTR | Anti-HIV-1 Activity of Cognate miRNA | Frequency of Host mRNAs with MREs | Other Virus-Related Activity of Cognate miRNA |
---|---|---|---|---|---|
circANKRD17 Upregulates dsRNA receptor DDX58 and IFIH1 signaling pathways in antiviral innate immune response | hsa-miR-105-5p | Not identified | Not identified | 231 | Not identified |
hsa-miR-128-3p | Not identified | Not identified | 464 | Herpesvirus 1, Influenza A virus, Murine gammaherpesvirus 68, Respiratory syncytial virus | |
hsa-miR-140-5p | Yes | Not identified | 91 | Classical swine fever virus, Mink enteritis virus | |
hsa-miR-141-5p | Not identified | Not identified | 101 | Enteroviruses, Epstein–Barr virus | |
hsa-miR-197-3p | Yes | Maybe | 106 | Enteroviruses, Hepatitis B virus, SARS-CoV2 | |
hsa-miR-203a-5p | Not identified | Not identified | 61 | Hepatitis C virus, Influenza A virus, Sendai virus | |
circHIPK3 Regulates transcription and apoptotic pathways | hsa-miR-17-3p | Not identified | Not identified | 146 | Not identified |
hsa-miR-143-5p | Not identified | Not identified | 133 | Influenza A virus | |
hsa-miR-150-3p | Yes | Yes | 132 | Dengue virus, SARS-CoV2 | |
circPHC3 Maintains repressed state of genes through chromatin remodeling and histone modification | hsa-miR-141-5p | Not identified | Yes | 101 | Enteroviruses, Epstein–Barr virus |
hsa-miR-145-5p | Not identified | Not identified | 311 | Hepatitis C virus, Zika virus, SARS-CoV2 | |
hsa-miR-197-3p | Yes | Maybe | 106 | Enteroviruses, Hepatitis B virus, SARS-CoV2 | |
hsa-miR-219-a-1-3p | Not identified | Not identified | 66 | Avian Influenza virus, SARS-CoV2 | |
circSATB1 Regulates chromatin structure and remodeling | hsa-miR-22-5p | Not identified | Not identified | 150 | Not identified |
hsa-miR-125b-2-3p | Yes | Yes | 141 | Hepatitis C virus, Japanese encephalitis virus | |
hsa-miR-224-5p | Yes | Not identified | 183 | Hepatitis B virus | |
circZNF609 Binds promoters with paused Pol II | hsa-miR-26b-3p | Not identified | Not identified | 106 | Newcastle disease virus, Sendai virus, Vesicular stomatitis virus |
hsa-miR-149-5p | Yes, twice | Yes | 155 | Hantaan virus, Influenza A virus | |
circATXN1 circFAM13B circFBXW7 | None identified | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucko, D.; Hayir, A.; Grinde, K.; Boris-Lawrie, K. Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses 2022, 14, 683. https://doi.org/10.3390/v14040683
Zucko D, Hayir A, Grinde K, Boris-Lawrie K. Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses. 2022; 14(4):683. https://doi.org/10.3390/v14040683
Chicago/Turabian StyleZucko, Dora, Abdullgadir Hayir, Kelsey Grinde, and Kathleen Boris-Lawrie. 2022. "Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients" Viruses 14, no. 4: 683. https://doi.org/10.3390/v14040683
APA StyleZucko, D., Hayir, A., Grinde, K., & Boris-Lawrie, K. (2022). Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses, 14(4), 683. https://doi.org/10.3390/v14040683