Epidemiology of the Epstein–Barr Virus in Autoimmune Inflammatory Rheumatic Diseases in Northern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Ethical Aspects
2.2. Serological Assays
2.3. Molecular Assays
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bossuyt, X.; De Langhe, E.; Borghi, M.O.; Meroni, P.L. Understanding and interpreting antinuclear antibody tests in systemic rheumatic diseases. Nat. Rev. Rheumatol. 2020, 16, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Ha, Y.J.; Lee, Y.J. Autoantibody Biomarkers in Rheumatic Diseases. Int. J. Mol. Sci. 2020, 21, 1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Mühlen, C.A.; Tan, E.M. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin. Arthritis Rheum. 1995, 24, 323–358. [Google Scholar] [CrossRef]
- Solomon, D.H.; Kavanaugh, A.J.; Schur, P.H. American College of Rheumatology Ad Hoc Committee on Immunologic Testing Guidelines. Evidence-based guidelines for the use of immunologic tests: Antinuclear antibody testing. Arthritis Rheum. 2002, 47, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Systemic lupus erythematosus: Withdrawing standard of care therapies in SLE trials? Nat. Rev. Rheumatol. 2017, 13, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Shah, N.P.; Mudano, A.S. Belimumab for systemic lupus erythematosus. Cochrane Database Syst. Rev. 2021, 2, CD010668. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy. 2020. Available online: http://www.ictvonline.org/virusTaxonomy.asp (accessed on 2 March 2021).
- Johnson, K.H.; Webb, C.H.; Schmeling, D.O.; Brundage, R.C.; Balfour, H.H. Epstein-Barr virus dynamics in asymptomatic immunocompetent adults: An intensive 6-month study. Clin. Transl. Immunol. 2016, 5, e81. [Google Scholar] [CrossRef]
- Lorentsen, R.D.; Klarskov, L.L.; Steenholdt, C. Severe ulcerative oesophagitis caused by primary Epstein-Barr virus infection in an immunocompetent individual. BMJ Open Gastroenterol. 2021, 8, e000586. [Google Scholar] [CrossRef]
- Correia, S.; Bridges, R.; Wegner, F.; Venturini, C.; Palser, A.; Middeldorp, J.M.; Cohen, J.I.; Lorenzetti, M.A.; Bassano, I.; White, R.E.; et al. Sequence variation of epstein-barr virus: Viral types, geography, codon usage, and diseases. J. Virol. 2018, 92, e01132-18. [Google Scholar] [CrossRef] [Green Version]
- Styles, C.T.; Paschos, K.; White, R.E.; Farrell, P.J. The Cooperative Functions of the EBNA3 Proteins Are Central to EBV Persistence and Latency. Pathogens 2018, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Farrell, P.J. Epstein-Barr Virus Strain Variation. Curr. Top. Microbiol. Immunol. 2015, 390, 45–69. [Google Scholar]
- Ding, Y.; He, X.; Liao, W.; Yi, Z.; Yang, H.; Xiang, W. The expression of EBV-encoded LMP1 in young patients with lupus nephritis. Int. J. Clin. Exp. Med. 2015, 8, 6073–6078. [Google Scholar] [PubMed]
- Poole, B.D.; Scofield, R.H.; Harley, J.B.; James, J.A. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 2006, 39, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Illescas-Montes, R.; Corona-Castro, C.C.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Infectious processes and systemic lupus erythematosus. Immunology 2019, 158, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draborg, A.; Izarzugaza, J.M.; Houen, G. How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr. Opin. Rheumatol. 2016, 28, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascherio, A.; Munger, K.L. EBV and Autoimmunity. Curr. Top. Microbiol. Immunol. 2015, 390, 365–385. [Google Scholar]
- Sorgato, C.C.; Lins-E-Silva, M.; Leão, J.C.; Vasconcelos, L.R.; Romão, T.P.; Duarte, A.L.; Gueiros, L.A. EBV and CMV viral load in rheumatoid arthritis and their role in associated Sjogren’ syndrome. J. Oral Pathol. Med. 2020, 49, 693–700. [Google Scholar] [CrossRef]
- Sample, J.; Young, L.; Martin, B.; Chatman, T.; Kieff, E.; Rickinson, A.; Kieff, E. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 1990, 64, 4084–4092. [Google Scholar] [CrossRef] [Green Version]
- Tomkinson, B.; Robertson, E.; Kieff, E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol. 1993, 67, 2014–2025. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.S.; Rothfield, N.F.; Niederman, J.C. Raised antibody titres to E.B. virus in systemic lupus erythematosus. Lancet 1971, 1, 167–168. [Google Scholar] [CrossRef]
- Rothfield, N.F.; Evans, A.S.; Niederman, J.C. Clinical and laboratory aspects of raised virus antibody titres in systemic lupus erythematosus. Ann. Rheum. Dis. 1973, 32, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trier, N.; Izarzugaza, J.; Chailyan, A.; Marcatili, P.; Houen, G. Human MHC-II with shared epitope motifs are optimal epstein-barr virus glycoprotein 42 ligands-relation to rheumatoid arthritis. Int. J. Mol. Sci. 2018, 19, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trier, N.H.; Draborg, A.H.; Sternbæk, L.; Troelsen, L.; Larsen, J.L.; Jacobsen, S.; Houen, G. EBNA1 IgM-Based discrimination between rheumatoid arthritis patients, systemic lupus erythematosus patients and healthy controls. Antibodies 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, B.; Kollert, F.; Sculean, A.; Villiger, P.M. Infectious triggers in periodontitis and the gut in rheumatoid arthritis (RA): A complex story about association and causality. Front. Immunol. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Rasmussen, N.S.; Draborg, A.H.; Nielsen, C.T.; Jacobsen, S.; Houen, G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand. J. Rheumatol. 2015, 44, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Vista, E.S.; Weisman, M.H.; Ishimori, M.L.; Chen, H.; Bourn, R.L.; Bruner, B.F.; Hamijoyo, L.; Tanangunan, R.D.; Gal, N.J.; Robertson, J.M.; et al. Strong viral associations with SLE among Filipinos. Lupus Sci. Med. 2017, 4, e000214. [Google Scholar] [CrossRef]
- Li, Z.X.; Zeng, S.; Wu, H.X.; Zhou, Y. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: A systematic review and meta-analysis. Clin. Exp. Med. 2019, 19, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.; Sauce, D.; Deback, C.; Arnaud, L.; Mathian, A.; Miyara, M.; Boutolleau, D.; Parizot, C.; Dorgham, K.; Papagno, L.; et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 2011, 7, e1002328. [Google Scholar] [CrossRef]
- Draborg, A.H.; Jacobsen, S.; Westergaard, M.; Mortensen, S.; Larsen, J.L.; Houen, G.; Duus, K. Reduced response to Epstein-Barr virus antigens by T-cells in systemic lupus erythematosus patients. Lupus Sci. Med. 2014, 1, e000015. [Google Scholar] [CrossRef] [Green Version]
- Fattal, I.; Shental, N.; Molad, Y.; Gabrielli, A.; Pokroy-Shapira, E.; Oren, S.; Livneh, A.; Langevitz, P.; Pauzner, R.; Sarig, O.; et al. Epstein-Barr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology 2014, 141, 276–285. [Google Scholar] [CrossRef]
- Westergaard, M.W.; Draborg, A.H.; Troelsen, L.; Jacobsen, S.; Houen, G. Isotypes of Epstein-Barr virus antibodies in rheumatoid arthritis: Association with rheumatoid factors and citrulline-dependent antibodies. Biomed Res. Int. 2015, 2015, 472174. [Google Scholar] [CrossRef] [PubMed]
- Erre, G.L.; Mameli, G.; Cossu, D.; Muzzeddu, B.; Piras, C.; Paccagnini, D.; Passiu, G.; Sechi, L.A. Increased Epstein-Barr Virus DNA load and antibodies against EBNA1 and EA in Sardinian patients with rheumatoid arthritis. Viral Immunol. 2015, 28, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Mehra, V.; Rhone, E.; Widya, S.; Zuckerman, M.; Potter, V.; Raj, K.; Kulasekararaj, A.; McLornan, D.; De Lavallade, H.; Benson-Quarm, N.; et al. Epstein-Barr virus and monoclonal gammopathy of clinical significance in autologous stem cell transplantation for multiple sclerosis. Clin. Infect. Dis. 2019, 69, 1757–1763. [Google Scholar] [CrossRef]
- Cabral, R.; Klumb, E.M.; Carneiro, S. Patients opinion and adherence to antimalarials in lupus erythematosus and rheumatoid arthritis treatment. J. Dermatol. Treat. 2020, 31, 264–269. [Google Scholar] [CrossRef] [PubMed]
Anti-VCA * IgM | Anti-VCA IgG | Infection Profile |
---|---|---|
+ | + | Active |
+ | +/− | Active |
− | + | Latent |
− | + | Latent |
EBV Active | EBV Latent | p-Value | |||
---|---|---|---|---|---|
Parameters | n (%) | CI * (95%) | n (%) | CI * (95%) | |
Lupus | |||||
Positive | 42 (75.00) | 61.63; 85.81 | 50 (60.24) | 49.90; 70.83 | 0.1049 |
Negative | 14 (25.00) | 14.39; 38.37 | 33 (39.76) | 29.17; 51.10 | |
Rheumatoid arthritis | |||||
Positive | 7 (12.50) | 5.18; 24.07 | 20 (24.10) | 65.27; 84.62 | 0.1398 |
Negative | 49 (87.50) | 75.93; 94.82 | 63 (75.90) | 15.38; 34.73 | |
Others AIRD | |||||
Positive | 7 (12.50) | 5.18; 24.07 | 13 (15.66) | 8.61; 25.29 | 0.7835 |
Negative | 49 (87.50) | 75.93; 94.82 | 70 (84.34) | 74.71; 91.39 | |
Age (Years) | |||||
Up to 38 | 36 (64.29) | 50.36; 76.64 | 44 (53.01) | 41.74; 64.07 | 0.2526 |
>38 | 20 (35.71) | 23.36; 49.64 | 39 (46.99) | 35.93; 58.26 | |
Platelets | |||||
Normal | 48 (85.71) | 73.18; 93.62 | 76 (91.57) | 83.39; 96.54 | 0.4168 |
Altered | 8 (14.29) | 6.38; 26.22 | 7 (8.43) | 3.46; 16.61 | |
Lymphocytes | |||||
Normal | 47 (83.93) | 71.67; 92.38 | 68 (81.93) | 71.95; 89.52 | 0.9383 |
Altered | 9 (16.07) | 7.62; 28.33 | 15 (18.07) | 10.48; 28.05 | |
ESS ** | |||||
Normal | 37 (66.07) | 52.19; 78.19 | 65 (78.31) | 69.91; 86.61 | 0.1597 |
Altered | 19 (33.93) | 21.81; 47.81 | 18 (21.69) | 13.39; 32.09 | |
CRP † | |||||
Normal | 30 (53.57) | 39.74; 67.01 | 54 (65.06) | 53.81; 75.20 | 0.2372 |
Altered | 26 (46.43) | 32.99; 60.26 | 29 (34.94) | 24.80; 46.19 | |
Symptoms | |||||
Asymptomatic | 10 (17.86) | 8.91; 30.40 | 17 (20.48) | 12.41; 30.76 | 0.8688 |
Symptomatic | 46 (82.14) | 69.60; 91.09 | 66 (79.52) | 69.24; 87.59 | |
Drugs | |||||
Immunosuppressive medication only | 40 (48.19) | 37.08; 59.44 | 33 (58.93) | 44.98; 71.90 | 0.2845 |
Immunosuppressive medication + corticoid | 43 (51.81) | 40.56; 62.92 | 23 (41.07) | 28.10; 55.02 | |
Immunosuppressive medication per day | |||||
Up to 400 mg | 36 (64.29) | 50.36; 76.64 | 54 (65.06) | 53.81; 75.20 | 1.0000 |
>400 mg | 20 (35.71) | 23.36; 49.64 | 29 (34.94) | 24.80; 46.19 | |
Corticoid per day | |||||
Up to 20 mg | 75(90.36) | 81.89; 95.75 | 1 (1.79) | 0.05; 9.55 | 0.1351 |
>20 mg | 8(9.64) | 4.25; 18.11 | 55 (98.21) | 90.45; 99.95 | |
Diagnosis period | |||||
Up to 5 years | 34 (60.71) | 46.75; 73.50 | 54 (65.06) | 53.81; 75.20 | 0.7323 |
>5 years | 22 (39.29) | 26.50; 53.25 | 29 (34.94) | 24.80; 46.19 |
Parameters | OR * | CI ** 95% | p-Value |
---|---|---|---|
Lupus | 2.5126 | 1.1524; 5.4782 | 0.0205 |
Corticoid dose per day > 20 mg | 11.0099 | 1.2716; 95.3253 | 0.0294 |
EBV Active | EBV Latent | p-Value | |||
---|---|---|---|---|---|
Parameters | n (%) | CI * (95%) | n (%) | CI * (95%) | |
Anti-DNA-ds | |||||
Non reagent | 31 (73.81) | 57.96; 86.14 | 39 (78.00) | 64.04; 88.47 | 0.8227 |
Reagent | 11 (26.19) | 13.86; 42.04 | 11 (22.00) | 11.53; 35.96 | |
Complements | |||||
Normal | 32 (76.19) | 60.55; 87.95 | 34 (68.00) | 53.30; 80.48 | 0.5243 |
Altered | 10 (23.81) | 12.05; 39.45 | 16 (32.00) | 19.52; 46.70 | |
SLEDAI ** | |||||
Active | 19 (45.24) | 29.85; 61.33 | 20 (40.00) | 26.41; 54.82 | 0.7682 |
Non active | 23 (54.76) | 38.67; 70.15 | 30 (60.00) | 45.18; 73.59 | |
Proteinuria | |||||
Present | 27 (64.29) | 48.03; 78.45 | 23 (46.00) | 31.81; 60.68 | 0.1226 |
Absent | 15 (35.71) | 21.55; 51.97 | 27 (54.00) | 39.32; 68.19 | |
Pulse Therapy | |||||
Present | 21 (50.00) | 34.19; 65.81 | 31 (62.00) | 47.17; 75.35 | 0.3444 |
Absent | 21 (50.00) | 34.19; 65.81 | 19 (38.00) | 24.65; 52.83 | |
Age (Years) | |||||
Up to 38 | 28 (66.67) | 50.45; 80.43 | 36 (72.00) | 57.51; 83.77 | 0.7441 |
>38 | 14 (33.33) | 19.57; 49.55 | 14 (28.00) | 16.23; 42.49 | |
Platelets | |||||
Normal | 36 (85.71) | 71.46; 94.57 | 46 (92.00) | 80.77; 97.78 | 0.5296 |
Altered | 6 (14.29) | 5.43; 28.54 | 4 (8.00) | 2.22; 19.73 | |
Lymphocytes | |||||
Normal | 33 (78.57) | 63.19; 89.70 | 43 (86.00) | 72.76; 94.06 | 0.5090 |
Altered | 9 (21.43) | 10.30; 36.81 | 7 (14.00) | 5.94; 27.24 | |
ESS *** | |||||
Normal | 30 (71.43) | 55.42; 84.28 | 41 (82.00) | 73.26; 94.18 | 0.3400 |
Altered | 12 (28.57) | 15.72; 44.58 | 9 (18.00) | 5.82; 26.74 | |
CRP † | |||||
Normal | 28 (66.67) | 50.45; 80.43 | 40 (80.00) | 66.28; 89.97 | 0.2253 |
Altered | 14 (33.33) | 19.57; 49.55 | 10 (20.00) | 10.03; 33.72 | |
Symptoms | |||||
Asymptomatic | 8 (19.05) | 88.60; 31.12 | 11 (22.00) | 11.53; 35.96 | 0.9283 |
Symptomatic | 34 (80.95) | 65.88; 91.40 | 66 (79.52) | 64.04; 88.47 | |
Drugs | |||||
Immunosuppressive medication only | 10 (20.00) | 10.03; 33.72 | 28 (66.67) | 50.45; 80.43 | 0.0467 |
Immunosuppressive medication + corticoid | 40 (80.00) | 66.28; 89.97 | 14 (33.33) | 19.57; 49.55 | |
Immunosuppressive medication per day | |||||
Up to 400 mg | 23 (54.76) | 38.67; 70.15 | 25 (50.00) | 35.53; 64.47 | 0.8057 |
>400 mg | 19 (45.24) | 29.85; 61.33 | 25 (50.00) | 35.53; 64.47 | |
Corticoid per day | |||||
Up to 20 mg | 8 (16.00) | 7.17; 29.11 | 41 (97.62) | 87.43; 99.94 | 0.0660 |
>20 mg | 42 (84.00) | 70.89; 92.83 | 1 (2.38) | 0.06; 12.57 | |
Diagnosis period | |||||
Up to 5 years | 23 (54.76) | 38.67; 70.15 | 31 (62.00) | 47.17; 75.35 | 0.6242 |
>5 years | 19 (45.24) | 29.85; 61.33 | 19 (38.00) | 24.65; 52.83 |
Parameters | OR * | CI ** 95% | p-Value |
---|---|---|---|
High ESS †—EBV active | 8.3330 | 1.0343; 67.1384 | 0.0464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, S.A.d.S.; Viana, J.B.G.d.O.; Góes, H.C.A.; Fonseca, R.R.d.S.; Laurentino, R.V.; Costa, I.B.; Oliveira-Filho, A.B.; Machado, L.F.A. Epidemiology of the Epstein–Barr Virus in Autoimmune Inflammatory Rheumatic Diseases in Northern Brazil. Viruses 2022, 14, 694. https://doi.org/10.3390/v14040694
França SAdS, Viana JBGdO, Góes HCA, Fonseca RRdS, Laurentino RV, Costa IB, Oliveira-Filho AB, Machado LFA. Epidemiology of the Epstein–Barr Virus in Autoimmune Inflammatory Rheumatic Diseases in Northern Brazil. Viruses. 2022; 14(4):694. https://doi.org/10.3390/v14040694
Chicago/Turabian StyleFrança, Samires Avelino de Souza, Julimar Benedita Gomes de Oliveira Viana, Hilda Carla Azevedo Góes, Ricardo Roberto de Souza Fonseca, Rogério Valois Laurentino, Igor Brasil Costa, Aldemir Branco Oliveira-Filho, and Luiz Fernando Almeida Machado. 2022. "Epidemiology of the Epstein–Barr Virus in Autoimmune Inflammatory Rheumatic Diseases in Northern Brazil" Viruses 14, no. 4: 694. https://doi.org/10.3390/v14040694
APA StyleFrança, S. A. d. S., Viana, J. B. G. d. O., Góes, H. C. A., Fonseca, R. R. d. S., Laurentino, R. V., Costa, I. B., Oliveira-Filho, A. B., & Machado, L. F. A. (2022). Epidemiology of the Epstein–Barr Virus in Autoimmune Inflammatory Rheumatic Diseases in Northern Brazil. Viruses, 14(4), 694. https://doi.org/10.3390/v14040694