Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus
Plaque Assay
2.2. Ticks
2.3. Tick Infection by Artificial Feeding
2.4. Virus Detection Using Real-Time RT-PCR
3. Results and Discussion
3.1. KEMV Acquisition by I. ricinus and I. persulcatus Ticks and Trans-Stadial Transmission
3.2. Persistent Infection in Ticks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labuda, M.; Nuttall, P. Tick-borne viruses. Parasitology 2004, 129, S221–S245. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, A.; Esilaghi, C.; Eobiegala, A.; Erudolf, I.; Hubálek, Z.; Földvári, G.; Plantard, O.; Evayssier-Taussat, M.; Bonnet, S.; Spitalska, E.; et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front. Public Health 2014, 2, 251. [Google Scholar] [CrossRef] [PubMed]
- Migné, C.V.; Beck, C.; Gonzalez, G.; Lecollinet, S.; Moutailler, S. Which tools for monitoring emerging arboviruses within their mammalian hosts and arthropod vectors? Virologie 2021, 25, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Dedkov, V.; Markelov, M.; Gridneva, K.; Bekova, M.; Gmyl, A.; Kozlovskaya, L.; Karganova, G.; Romanova, L.; Pogodina, V.; Yakimenko, V.; et al. Prevalence of Kemerovo virus in ixodid ticks from the Russian Federation. Ticks Tick-Borne Dis. 2014, 5, 651–655. [Google Scholar] [CrossRef]
- Libikova, H.; Rehacek, J.; Somogyiova, J. Viruses related to the Kemerovo virus in Ixodes ricinus ticks in czechoslovakia. Acta Virol. 1965, 9, 76–82. [Google Scholar]
- Chumakov, M.P. Report on the isolation from Ixodes persulcatus ticks and from patients in western Siberia of a virus differing from the agent of tick-borne encephalitis. Acta Virol. 1963, 7, 82–83. [Google Scholar]
- Tkachev, S.; Panov, V.; Dobler, G.; Tikunova, N. First detection of Kemerovo virus in Ixodes pavlovskyi and Ixodes persulcatus ticks collected in Novosibirsk region, Russia. Ticks Tick-Borne Dis. 2014, 5, 494–496. [Google Scholar] [CrossRef]
- Migné, C.V.; Hönig, V.; Bonnet, S.I.; Palus, M.; Rakotobe, S.; Galon, C.; Heckmann, A.; Vyletova, E.; Devillers, E.; Attoui, H.; et al. Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors. Sci. Rep. 2022, 12, 491. [Google Scholar] [CrossRef]
- Sato, M.; Maeda, N.; Yoshida, H.; Urade, M.; Saito, S.; Miyazaki, T.; Shibata, T.; Watanabe, M. Plaque formation of herpes virus hominis type 2 and rubella virus in variants isolated from the colonies of BHK21/WI-2 cells formed in soft agar. Arch. Virol. 1977, 53, 269–273. [Google Scholar] [CrossRef]
- Jaafar, F.M.; Belhouchet, M.; Vitour, D.; Adam, M.; Breard, E.; Zientara, S.; Mertens, P.P.; Attoui, H. Immunisation with bacterial expressed VP2 and VP5 of bluetongue virus (BTV) protect α/β interferon-receptor knock-out (IFNAR−/−) mice from homologous lethal challenge. Vaccine 2014, 32, 4059–4067. [Google Scholar] [CrossRef]
- Jaafar, F.M.; Attoui, H.; Mertens, P.P.C.; De Micco, P.; De Lamballerie, X. Structural organization of an encephalitic human isolate of Banna virus (genus Seadornavirus, family Reoviridae). J. Gen. Virol. 2005, 86, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Jouglin, M.; Malandrin, L.; Becker, C.; Agoulon, A.; L’Hostis, M.; Chauvin, A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology 2007, 134, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Gondard, M.; Michelet, L.; Nisavanh, A.; Devillers, E.; Delannoy, S.; Fach, P.; Aspan, A.; Ullman, K.; Chirico, J.; Hoffmann, B.; et al. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog. Dis. 2018, 76, fty083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remedio, R.N.; Sampieri, B.R.; Vendramini, M.C.R.; Souza, N.M.; Anholeto, L.A.; DeNardo, T.A.G.B.; Camargo-Mathias, M.I. Morphology of the midgut of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) adult ticks in different feeding stages. Parasitol. Res. 2012, 112, 415–425. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulauskas, A.; Galdikaitė-Brazienė, E.; Radzijevskaja, J.; Aleksandravičienė, A.; Galdikas, M. Genetic diversity of Ixodes ricinus (Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. J. Vector Ecol. 2016, 41, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnavajhala, A.; Armstrong, B.A.; Lopez, J.E. Vector Competence of Geographical Populations of Ornithodoros turicata for the Tick-Borne Relapsing Fever Spirochete Borrelia turicatae. Appl. Environ. Microbiol. 2018, 84, 1–9. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.P.; Hutet, E.; Paboeuf, F.; Duhayon, M.; Boinas, F.; De Leon, A.P.; Filatov, S.; Vial, L.; Le Potier, M.-F. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS ONE 2019, 14, e0225657. [Google Scholar] [CrossRef] [Green Version]
- Migné, C.; Moutailler, S.; Attoui, H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens 2020, 9, 915. [Google Scholar] [CrossRef]
- Vega-Rúa, A.; Zouache, K.; Girod, R.; Failloux, A.-B.; Lourenço-De-Oliveira, R. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.P.; Hutet, E.; Lancelot, R.; Paboeuf, F.; Duhayon, M.; Boinas, F.; de León, A.A.P.; Filatov, S.; Le Potier, M.-F.; Vial, L. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasites Vectors 2020, 13, 618. [Google Scholar] [CrossRef] [PubMed]
Tick Species | Origin | Generation | Stage | Tested Stage for KEMV |
---|---|---|---|---|
I. ricinus | Slovakia (Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia) | 4th generation of a laboratory colony | Nymph | Unfed nymph |
France (Provided by Sarah Bonnet, Senart forest, France) | 1st generation of ticks collected in the Sénart forest from the Ile de France region | Larvae | Female after egg laying | |
I. persulcatus | Russia (Siberia) (Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic) | 3rd generation of a laboratory colony | Larvae | Unfed larvae |
Tested Parameters | I. ricinus from France | I. ricinus from Slovakia | I. persulcatus from Russia |
---|---|---|---|
Stage of AFS with KEMV | Larvae | Nymphs | Larvae |
% of engorgement after AFS (number of engorged ticks/number of total used ticks) | 22.6% (678/3000 *) | 22% (55/250 *) | 4.5% (90/2000 *) |
% of infected ticks after AFS (number of positive ticks/number of tested engorged ticks) | 88.3% (27/30 * engorged larvae) | 100% (4/4 * engorged nymphs) | 100% (10/10 * engorged larvae) |
% of trans-stadial transmission (number of positive ticks/number of tested moulted ticks) | 10% (1/10 * unfed nymphs) | 100% (2/2 * unfed female 2/2 * unfed male) | 100% (5/5 * unfed nymphs) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migné, C.V.; Braga de Seixas, H.; Heckmann, A.; Galon, C.; Mohd Jaafar, F.; Monsion, B.; Attoui, H.; Moutailler, S. Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus. Viruses 2022, 14, 1102. https://doi.org/10.3390/v14051102
Migné CV, Braga de Seixas H, Heckmann A, Galon C, Mohd Jaafar F, Monsion B, Attoui H, Moutailler S. Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus. Viruses. 2022; 14(5):1102. https://doi.org/10.3390/v14051102
Chicago/Turabian StyleMigné, Camille Victoire, Hélène Braga de Seixas, Aurélie Heckmann, Clémence Galon, Fauziah Mohd Jaafar, Baptiste Monsion, Houssam Attoui, and Sara Moutailler. 2022. "Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus" Viruses 14, no. 5: 1102. https://doi.org/10.3390/v14051102
APA StyleMigné, C. V., Braga de Seixas, H., Heckmann, A., Galon, C., Mohd Jaafar, F., Monsion, B., Attoui, H., & Moutailler, S. (2022). Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus. Viruses, 14(5), 1102. https://doi.org/10.3390/v14051102