Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus, Plasmid and Bacterial Strain
2.2. Construction of pPG-SD-S1/Δupp ATCC 393
2.3. Protein Expression
2.4. Immunization and Sample Collection
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Detection of PEDV Neutralizing Antibody Activity in Serum
2.7. Lymphocyte Proliferation and Cytokine Detection
2.8. Statistical Analysis
3. Results
3.1. Protein Expression
3.2. Changes in IgG Levels Induced by Oral Immunization
3.3. Changes in SIgA Levels Induced by Oral Immunization
3.4. Detection of Cytokines in Serum
3.5. Lymphocyte Proliferation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Yoo, D. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling. Virus Res. 2016, 226, 128–141. [Google Scholar] [CrossRef]
- Song, D.; Park, B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 2012, 44, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.; Lager, K.M.; Kulshreshtha, V.; Miller, L.C.; Faaberg, K.S. Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada. Virus Res. 2016, 226, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Wang, L.; Ma, S. Immunogenicity of eGFP-Marked Recombinant Lactobacillus casei against Transmissible Gastroenteritis Virus and Porcine Epidemic Diarrhea Virus. Viruses 2017, 9, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, H.; Watanabe, T.; Fukuda, S.; Fukuoka, S.; Ohara, O.; Ohno, H. A novel mucosal vaccine targeting Peyer’s patch M cells induces protective antigen-specific IgA responses. Int. Immunol. 2014, 26, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Shonyela, S.M.; Shi, C.; Yang, W.; Cao, X.; Yang, G.; Wang, C. Recombinant Lactobacillus plantarum NC8 strain expressing porcine rotavirus VP7 induces specific antibodies in BALB/c mice. Acta Biochem. Biophys. 2021, 53, 12. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Bo, Y.D.; Chen, Z.Q. Expression of S1 gene of porcine transmissible gastroenteritis virus in food graded lactococcus lactis. Chin. J. Vet. Sci. 2015, 35, 868–872. [Google Scholar]
- Peran, L.; Camuesco, D.; Comalada, M. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J. Appl. Microbiol. 2010, 103, 836–844. [Google Scholar] [CrossRef]
- Wang, G.H.; Hou, X.L.; Yu, L.Y.; Liu, J.K.; Wei, C.H. Studies on Mucosal Immunity Induced by Transmissible Gastroenteritis Virus Nucleocapsid Protein Recombinant Lactobacillus casei in Mice and Sow. Chin. Agric. Sci. 2009, 8, 231–237. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Han, D. Lactobacillus casei DBN023 protects against jejunal mucosal injury in chicks infected with Salmonella pullorum CMCC-533. Res. Vet. Sci. 2019, 127, 33–41. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Z.; Liu, J. Recombinant Lactobacillus casei expressing Clostridium perfringens toxoids α, β2, ε and β1 gives protection against Clostridium perfringens in rabbits. Vaccine 2017, 35, 4010–4021. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cui, H.; Tang, L. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J. Microbiol. Methods 2014, 102, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Peck, R.F.; Dassarma, S.; Krebs, M.P. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 2000, 35, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Azcarate-Peril, M.A.; Duong, T.; Conners, S.B.; Kelly, R.M.; Klaenhammer, T.R. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc. Natl. Acad. Sci. USA 2006, 103, 3816–3821. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Y.; Hsu, W.T.; Chao, Y.C.; Chang, H.W. Display of Porcine Epidemic Diarrhea Virus Spike Protein on Baculovirus to Improve Immunogenicity and Protective Efficacy. Viruses 2018, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Makadiya, N.; Brownlie, R.; van den Hurk, J. S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen. Virol. J. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Wicht, O.; Li, W.; Willems, L. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J. Virol. 2014, 88, 7952–7961. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, W.; Lucio de Esesarte, E. Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. J. Virol. 2017, 91, e00273-17. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Bae, J.L.; Kang, T.J. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells 2002, 14, 295–299. [Google Scholar]
- Suzuki, T.; Terada, Y.; Enjuanes, L.; Ohashi, S.; Kamitani, W. S1 Subunit of Spike Protein from a Current Highly Virulent Porcine Epidemic Diarrhea Virus is an Important Determinant of Virulence in Piglets. Viruses 2018, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Phalipon, A.; Cardona, A.; Kraehenbuhl, J.P.; Edelman, L.; Sansonetti, P.J.; Corthésy, B. Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002, 17, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, A.J.; Cakebread, J.; Callaghan, M. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria. Dev. Comp. Immunol. 2017, 68, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yu, M.; Qiao, X. Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. Appl. Microbiol. Biotechnol. 2014, 98, 8301–8312. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Huang, X. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV. Viruses 2017, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, C.; Chen, Y. Effect of route of inoculation on innate and adaptive immune responses to porcine epidemic diarrhea virus infection in suckling pigs. Vet. Microbiol. 2019, 228, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, L.; Huang, X. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb. Cell Factories 2018, 17, 20. [Google Scholar] [CrossRef]
- Wang, X.N.; Wang, L.; Zheng, D.Z. Oral immunization with a Lactobacillus casei-based anti-porcine epidemic diarrhoea virus (PEDV) vaccine expressing microfold cell-targeting peptide Co1 fused with the COE antigen of PEDV. J. Appl. Microbiol. 2018, 124, 368–378. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, B.; Ji, C.M.; Cong, X.; Wang, M.; Huang, Y.W. Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antivir. Res. 2018, 150, 1–8. [Google Scholar] [CrossRef]
- Huy, N.-X.; Yang, M.-S.; Kim, T.-G. Expression of a Cholera Toxin B Subunit-Neutralizing Epitope of the Porcine Epidemic Diarrhea Virus Fusion Gene in Transgenic Lettuce (Lactuca sativa L.). Mol. Biotechnol. 2011, 48, 201–209. [Google Scholar] [CrossRef]
- Kang, T.J.; Seo, J.E.; Kim, D.H.; Kim, T.G.; Jang, Y.S.; Yang, M.S. Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr. Purif. 2005, 41, 378–383. [Google Scholar] [CrossRef]
- Hou, X.; Jiang, X.; Jiang, Y. Oral Immunization against PEDV with Recombinant Lactobacillus casei Expressing Dendritic Cell-Targeting Peptide Fusing COE Protein of PEDV in Piglets. Viruses 2018, 10, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdts, V.; Zakhartchouk, A. Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet. Microbiol. 2017, 206, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, J.; Wang, F. Expression Pattern Analysis of Antiviral Genes and Inflammatory Cytokines in PEDV-Infected Porcine Intestinal Epithelial Cells. Front. Vet. Sci. 2020, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Yi, S.; Guo, Y. Construction of a Recombinant Lactococcus lactis Strain Expressing a Variant Porcine Epidemic Diarrhea Virus S1 Gene and Its Immunogenicity Analysis in Mice. Viral Immunol. 2019, 32, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Vilander, A.C.; Dean, G.A. Adjuvant Strategies for Lactic Acid Bacterial Mucosal Vaccines. Vaccines 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, X.; Ma, R. Oral Immunization with Lactobacillus casei Expressing the Porcine Circovirus Type 2 Cap and LTB Induces Mucosal and Systemic Antibody Responses in Mice. Viruses 2021, 13, 1302. [Google Scholar] [CrossRef]
- Villena, J.; Li, C.; Vizoso-Pinto, M.G.; Sacur, J.; Ren, L.; Kitazawa, H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021, 9, 683. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, W.; Jia, X. Isolation and Identification of Porcine Epidemic Diarrhea Virus and Its Effect on Host Natural Immune Response. Front. Microbiol. 2019, 10, 2272. [Google Scholar] [CrossRef]
- Chairatana, P.; Nolan, E.M. Defensins, lectins, mucins, and secretory immunoglobulin A: Microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, E.; Huang, L. Detection and correlation analysis of digestive tract specific SIgA by oral inactivated porcine epidemic diarrhea virus. J. Nanjing Agric. Univ. 2019, 42, 499–504. [Google Scholar]
- Asseman, C.; Read, S.; Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: Control by CD4+ regulatory T cells and IL-10. J. Immunol. 2003, 171, 971–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, S.J. Distinct Effects of T-bet in TH1 Lineage Commitment and IFN-γ Production in CD4 and CD8 T Cells. Science 2002, 295, 338–342. [Google Scholar] [CrossRef] [PubMed]
- O’Garra, A.; Barrat, F.J. In vitro generation of IL-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by Th1- and Th2-inducing cytokines. Immunol. Lett. 2003, 85, 135–139. [Google Scholar] [CrossRef]
- Fukao, T.; Matsuda, S.; Koyasu, S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J. Immunol. 2000, 164, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Cheng, J.; Gao, X. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 2009, 183, 5886–5895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | ID | Primer Sequence (5′-3′) | PCR Size |
---|---|---|---|
SD+ Flag | SDF | TACGTAGCGAGGAGTGACGATAAAGATGAAATTAAAGCAA | 161 bp |
SDR | CTTATCGTCGTCATCCTTGTAATCAAGTCGACCATCAGCTTTAACTGTTG | ||
S1 | S1F | GTCGACTTGATTACAAGGATGACGACGATAAGTGCATTGGTTAT | 1518 bp |
S1R | GGGCCCCTAGTAAAAGAAACCAGGCAACTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wang, X.; Li, Y.; Li, F.; Zhao, H.; Shao, Y.; Zhang, L.; Ding, G.; Li, J.; Jiang, Y.; et al. Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein. Viruses 2022, 14, 890. https://doi.org/10.3390/v14050890
Xiao Y, Wang X, Li Y, Li F, Zhao H, Shao Y, Zhang L, Ding G, Li J, Jiang Y, et al. Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein. Viruses. 2022; 14(5):890. https://doi.org/10.3390/v14050890
Chicago/Turabian StyleXiao, Ya, Xiaona Wang, Yue Li, Fengsai Li, Haiyuan Zhao, Yilan Shao, Liu Zhang, Guojie Ding, Jiaxuan Li, Yanping Jiang, and et al. 2022. "Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein" Viruses 14, no. 5: 890. https://doi.org/10.3390/v14050890
APA StyleXiao, Y., Wang, X., Li, Y., Li, F., Zhao, H., Shao, Y., Zhang, L., Ding, G., Li, J., Jiang, Y., Cui, W., Shan, Z., Zhou, H., Wang, L., Qiao, X., Tang, L., & Li, Y. (2022). Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein. Viruses, 14(5), 890. https://doi.org/10.3390/v14050890