The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Datasets
2.2. Tracking the Origin of TMUV
2.3. Selection Analysis of TMUV
2.4. Structural Simulation of the TMUV E Proteins
3. Results
3.1. Evidence for the Temporal Origin of Emerging TMUV Worldwide
3.2. TMUV Genomic Epidemiology Analysis Based on Phylogenetic Analysis
3.3. The Process of Global Dissemination of TMUV
3.4. Relationship between Different Members of the Flaviviridae Family
3.5. Selection Analysis of TMUV NS3 and NS5 Protein
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Lu, H.; Li, S.; Wu, Y.; Gao, G.F.; Su, J. Duck Egg Drop Syndrome Virus: An Emerging Tembusu-Related Flavivirus in China. Sci. China Life Sci. 2013, 56, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Zhao, Y.; Zhang, X.; Xu, D.; Dai, X.; Teng, Q.; Yan, L.; Zhou, J.; Ji, X.; Zhang, S.; et al. An Infectious Disease of Ducks Caused by a Newly Emerged Tembusu Virus Strain in Mainland China. Virology 2011, 417, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Li, S.; Hu, X.; Yu, X.; Wang, Y.; Liu, P.; Lu, X.; Zhang, G.; Hu, X.; Liu, D.; et al. Duck Egg-Drop Syndrome Caused by BYD Virus, a New Tembusu-Related Flavivirus. PLoS ONE 2011, 6, e18106. [Google Scholar] [CrossRef] [Green Version]
- Homonnay, Z.G.; Kovács, E.W.; Bányai, K.; Albert, M.; Fehér, E.; Mató, T.; Tatár-Kis, T.; Palya, V.; Palya, V. Tembusu-Like Flavivirus (Perak Virus) as the Cause of Neurological Disease Outbreaks in Young Pekin Ducks. Avian Pathol. 2014, 43, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Arshad, S.S.; Toung, O.P.; Abba, Y.; Selvarajah, G.T.; Abu, J.; A.R, Y.; Ong, B.L.; Bande, F. The Distribution of Important Sero-Complexes of Flaviviruses in Malaysia. Trop. Anim. Health Prod. 2019, 51, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, S.; Mahalingam, S.; Wang, M.; Cheng, A. An Updated Review of Avian-Origin Tembusu Virus: A Newly Emerging Avian Flavivirus. J. Gen. Virol. 2017, 98, 2413–2420. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Sheng, Z.Z.; Huang, B.; Ma, X.; Li, Y.; Yuan, X.; Qin, Z.; Wang, D.; Chakravarty, S.; Li, F.; et al. Structural, Antigenic, and Evolutionary Characterizations of the Envelope Protein of Newly Emerging Duck Tembusu Virus. PLoS ONE 2013, 8, e71319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunterak, W.; Prakairungnamthip, D.; Ninvilai, P.; Tiawsirisup, S.; Oraveerakul, K.; Sasipreeyajan, J.; Amonsin, A.; Thontiravong, A.; Thontiravong, A. Patterns of Duck Tembusu Virus Infection in Ducks, Thailand: A Serological Study. Poult. Sci. 2021, 100, 537–542. [Google Scholar] [CrossRef]
- Peng, S.H.; Su, C.L.; Chang, M.C.; Hu, H.C.; Yang, S.L.; Shu, P.Y. Genome Analysis of a Novel Tembusu Virus in Taiwan. Viruses 2020, 12, 567. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Guo, X.; Fu, S.; Feng, Y.; Tao, X.; Gao, X.; Song, J.; Yang, Z.; Zhou, H.; Liang, G.; et al. The Genetic Characteristics and Evolution of Tembusu Virus. Vet. Microbiol. 2017, 201, 32–41. [Google Scholar] [CrossRef]
- Dai, L.; Li, Z.; Tao, P. Evolutionary Analysis of Tembusu Virus: Evidence for the Emergence of a Dominant Genotype. Infect. Genet. Evol. 2015, 32, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chen, M.; Tang, Z. Analysis of Synonymous Codon Usage Bias in Flaviviridae Virus. BioMed Res. Int. 2019, 2019, 5857285. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.; Cui, Y.; Li, Y.; Li, Y.; Wang, Y. The Spread of Tembusu Virus in China from 2010 to 2019. Virus Res. 2021, 300, 198374. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Meng, G.; Zhao, K.; Gu, J.; Chen, P.; Cao, R. Isolation and Genome Characterization of a Novel Duck Tembusu Virus with a 74 Nucleotide Insertion in the 3′ Non-Translated Region. Avian Pathol. 2015, 44, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Liu, L.; Li, X.F.; Ye, Q.; Deng, Y.Q.; Qin, E.D.; Qin, C.F. In Vitro and In Vivo Characterization of Chimeric Duck Tembusu Virus Based on Japanese Encephalitis Live Vaccine strain SA14-14-2. J. Gen. Virol. 2016, 97, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ren, H.; Sun, M.; Xie, W.; Sun, S.; Liang, N.; Wang, H.; Ying, X.; Sun, Y.; Wang, Y.; et al. Tembusu Virus Infection in Laying Chickens: Evidence for a Distinct Genetic Cluster with Significant Antigenic Variation. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Huang, X.; Han, K.; Zhao, D.; Liu, Y.; Zhang, J.; Niu, H.; Zhang, K.; Zhu, J.; Wu, D.; Gao, L.; et al. Identification and Molecular Characterization of a Novel Flavivirus Isolated from Geese in China. Res. Vet. Sci. 2013, 94, 774–780. [Google Scholar] [CrossRef]
- Tang, Y.; Diao, Y.; Yu, C.; Gao, X.; Ju, X.; Xue, C.; Liu, X.; Ge, P.; Qu, J.; Zhang, D.; et al. Characterization of a Tembusu Virus Isolated from Naturally Infected House Sparrows (Passer domesticus) in Northern China. Transbound. Emerg. Dis. 2013, 60, 152–158. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Zhang, L.; Wang, Y.; Yu, X.; Tian, K.; Su, W.; Han, B.; Su, J.; Han, B.; et al. Duck Tembusu Virus Exhibits Neurovirulence in BALB/C Mice. Virol. J. 2013, 10, 260. [Google Scholar] [CrossRef] [Green Version]
- Pulmanausahakul, R.; Ketsuwan, K.; Jaimipuk, T.; Smith, D.R.; Auewarakul, P.; Songserm, T. Detection of Antibodies to Duck Tembusu Virus in Human Population with or Without the History of Contact with Ducks. Transbound. Emerg. Dis. 2021, 69, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhang, C.; Liu, Y.; Liu, Y.; Ye, W.; Han, J.; Ma, G.; Zhang, D.; Xu, F.; Gao, X.; et al. Tembusu Virus in Ducks, china. Emerg. Infect. Dis. 2011, 17, 1873–1875. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Stringer, E.M.; de Silva, A.M. The Emerging Zika Virus Epidemic in the Americas: Research Priorities. JAMA 2016, 315, 1945–1946. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Aguilera-Sepúlveda, P.; Gómez-Martín, B.; Agüero, M.; Jiménez-Clavero, M.Á.; Fernández-Pinero, J. A New Cluster of West Nile Virus Lineage 1 Isolated from a Northern Goshawk in Spain. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Gao, G.F. From “A”IV to “Z”IKV: Attacks from Emerging and Re-Emerging Pathogens. Cell 2018, 172, 1157–1159. [Google Scholar] [CrossRef] [Green Version]
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L.; Robertson, D.L. Evolutionary Origins of the SARS-CoV-2 Sarbecovirus Lineage Responsible for the COVID-19 Pandemic. Nat. Microbiol. 2020, 5, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian Phylogeography Finds Its Roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; De Maio, N. Accounting for Spatial Sampling Patterns in Bayesian Phylogeography. Proc. Natl Acad. Sci. USA 2021, 118, e2105273118. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P.; et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, P. AlphaFold2 and the Future of Structural Biology. Nat. Struct. Mol. Biol. 2021, 28, 704–705. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Simpson, D.I.; Smith, C.E.; Bowen, E.T.; Platt, G.S.; Way, H.; McMahon, D.; Bright, W.F.; Hill, M.N.; Mahadevan, S.; Macdonald, W.W.; et al. Mahadevan, S.; Macdonald, W.W. Arbovirus Infections in Sarawk: Virus Isolations from Mosquitoes. Ann. Trop. Med. Parasitol. 1970, 64, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Platt, G.S.; Way, H.J.; Bowen, E.T.; Simpson, D.I.; Hill, M.N.; Kamath, S.; Bendell, P.J.; Heathcote, O.H.; Heathcote, O.H. Arbovirus Infections in Sarawak, October 1968–February 1970 Tembusu and Sindbis Virus Isolations from Mosquitoes. Ann. Trop. Med. Parasitol. 1975, 69, 65–71. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, T.; Chen, G.; Geng, N.; Guo, Z.; Cao, S.; Yang, Y.; Liu, K.; Wang, S.; Zhao, Y.; et al. Non-Structural Protein 3 of Duck Tembusu Virus Induces Autophagy via the ERK and PI3K-AKT-mTOR Signaling Pathways. Front. Immunol. 2022, 13, 746890. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Tang, Y.; Diao, Y. Screening of Duck Tembusu Virus NS3 Interacting Host Proteins and Identification of Its Specific Interplay Domains. Viruses 2019, 11, 740. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.; Chen, S.; Zhang, W.; Duan, Y.; Jiang, B.; Pan, X.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; et al. Nuclear Localization of Duck Tembusu Virus NS5 Protein Attenuates Viral Replication In Vitro and NS5-NS2B3 Interaction. Vet. Microbiol. 2021, 262, 109239. [Google Scholar] [CrossRef]
- Li, L.; An, H.; Sun, M.; Dong, J.; Yuan, J.; Hu, Q. Identification and Genomic Analysis of Two Duck-Origin Tembusu Virus Strains in Southern China. Virus Genes. 2012, 45, 105–112. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Li, Z.; Lin, F.; Cheng, X.; Zhu, X.; Wang, J.; Chen, S.; Huang, M.; Zheng, M.; et al. Isolation and Characterization of a Chinese Strain of Tembusu Virus from Hy-Line Brown Layers with Acute Egg-Drop Syndrome in Fujian, China. Arch. Virol. 2014, 159, 1099–1107. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Z.; Lv, X.; Huang, R.; Gu, X.; Zhang, C.; Zhang, M.; Wei, J.; Wu, Q.; Li, J.; et al. A Novel Tembusu Virus Isolated from Goslings in China Form a New Subgenotype 2.1.1. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Kaikai, H.; Zhao, D.; Liu, Y.; Liu, Q.; Huang, X.; Yang, J.; Zhang, L.; Li, Y.; Li, Y. The E3 Ubiquitin Ligase TRIM25 Inhibits Tembusu Virus Replication In Vitro. Front. Vet. Sci. 2021, 8, 722113. [Google Scholar] [CrossRef]
- Gómez-Carballa, A.; Bello, X.; Pardo-Seco, J.; Martinón-Torres, F.; Salas, A. Mapping Genome Variation of SARS-CoV-2 Worldwide Highlights the Impact of COVID-19 Super-Spreaders. Genome Res. 2020, 30, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Romanó, L.; Paladini, S.; Galli, C.; Raimondo, G.; Pollicino, T.; Zanetti, A.R. Hepatitis B Vaccination. Hum. Vaccin. Immunother. 2015, 11, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Yurayart, N.; Ninvilai, P.; Chareonviriyaphap, T.; Kaewamatawong, T.; Thontiravong, A.; Tiawsirisup, S. Pathogenesis of Thai Duck Tembusu Virus in BALB/C Mice: Descending Infection and Neuroinvasive Virulence. Transbound. Emerg. Dis. 2021, 68, 3529–3540. [Google Scholar] [CrossRef]
- Hu, T.; Wu, Z.; Wu, S.X.; Wang, M.S.; Jia, R.Y.; Zhu, D.K.; Liu, M.; Zhao, X.; Yang, Q.; Wu, Y.; et al. Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Front. Microbiol. 2021, 12, 688172. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, R.C.; Zhang, W.; Qi, J.X.; Song, H.; Liu, S.; Wang, H.J.; Wang, M.; Xiao, H.X.; Fu, L.F.; et al. Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Rep. 2019, 29, 2217–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.C.F.; Bahl, J.; Joseph, U.; Butt, K.M.; Peck, H.A.; Koay, E.S.C.; Oon, L.L.E.; Barr, I.G.; Vijaykrishna, D.; Smith, G.J.D.; et al. Phylodynamics of H1N1/2009 Influenza Reveals the Transition from Host Adaptation to Immune-Driven Selection. Nat. Commun. 2015, 6, 7952. [Google Scholar] [CrossRef] [Green Version]
- Ngwe Tun, M.M.N.; Mori, D.; Sabri, S.B.; Kugan, O.; Shaharom, S.B.; John, J.; Soe, A.M.; Nwe, K.M.; Dony, J.F.; Inoue, S.; et al. Serological Evidence of Zika Virus Infection in Febrile Patients and Healthy Blood Donors in Sabah, Malaysian Borneo, 2017–2018. Am. J. Trop. Med. Hyg. 2021, 106, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Masrani, A.S.; Nik Husain, N.R.; Musa, K.I.; Yasin, A.S. Prediction of Dengue Incidence in the Northeast Malaysia Based on Weather Data Using the Generalized Additive Model. BioMed Res. Int. 2021, 2021, 3540964. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Cao, J.; Yang, Y.; Dong, H.; Cui, Y.; Yao, X.; Zhou, H.; Lu, L.; Lycett, S.; et al. Re-Emergence of H5N8 Highly Pathogenic Avian Influenza Virus in Wild Birds, China. Emerg. Microbes Infect. 2021, 10, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Zhao, Q.; Guo, X.; Zhou, H.; Cao, W.; Zhang, J. Detection of Quang Binh Virus from Mosquitoes in China. Virus Res. 2014, 180, 31–38. [Google Scholar] [CrossRef]
- Yu, X.; Shan, C.; Zhu, Y.; Ma, E.; Wang, J.; Wang, P.; Shi, P.Y.; Cheng, G.; Cheng, G. A Mutation-Mediated Evolutionary Adaptation of Zika Virus in Mosquito and Mammalian Host. Proc. Natl. Acad. Sci. USA 2021, 118, e2113015118. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Brito, A.F.; Swetnam, D.M.; Vogels, C.B.F.; Tokarz, R.E.; Andersen, K.G.; Smith, R.C.; Bedford, T.; Grubaugh, N.D.; Bedford, T.; et al. Twenty Years of West Nile Virus Spread and Evolution in the Americas Visualized by Nextstrain. PLoS Pathog. 2019, 15, e1008042. [Google Scholar] [CrossRef] [Green Version]
Codon | FEL | SLAC | FUBAR | MEME | ||||
---|---|---|---|---|---|---|---|---|
dN-dS | p-Value | dN-dS | p-Value | dN-dS | Post. Pro | W+ | p-Value | |
NS3-591 | 3.279 | 0.072 | 2.42 | 0.304 | 19.058 | 0.825 | 3.28 | 0.09 |
NS5-883 | 1.302 | 0.11 | 3.16 | 0.226 | 2.394 | 0.991 | 4.41 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Pan, Y.; Guo, J.; Wang, D.; Tong, X.; Wang, Y.; Li, J.; Zhao, J.; Ji, Y.; Wu, Z.; et al. The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses 2022, 14, 1236. https://doi.org/10.3390/v14061236
Cui Y, Pan Y, Guo J, Wang D, Tong X, Wang Y, Li J, Zhao J, Ji Y, Wu Z, et al. The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses. 2022; 14(6):1236. https://doi.org/10.3390/v14061236
Chicago/Turabian StyleCui, Yongqiu, Yang Pan, Jinshuo Guo, Dedong Wang, Xinxin Tong, Yongxia Wang, Jingyi Li, Jie Zhao, Ying Ji, Zhi Wu, and et al. 2022. "The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus" Viruses 14, no. 6: 1236. https://doi.org/10.3390/v14061236
APA StyleCui, Y., Pan, Y., Guo, J., Wang, D., Tong, X., Wang, Y., Li, J., Zhao, J., Ji, Y., Wu, Z., Zeng, P., Zhou, J., Feng, X., Hou, L., & Liu, J. (2022). The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses, 14(6), 1236. https://doi.org/10.3390/v14061236