Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of X. juglandis
2.2. Identification of X. juglandis
2.3. Bacteriophages Isolation
2.4. In Vitro Propagation and Lytic Activity of Bacteriophage
2.5. One-Step Phage Growth Curve
2.6. Host Range Determination
2.7. Test for Lysogeny
2.8. Stored Stability of Bacteriophages
2.9. Transmission Electron Microscopy
2.10. Nucleic Acid Extraction from Phages
2.11. Phylogenetics and Comparative Genomics Analysis of Bacteriophages
2.12. Field Trials against X. juglandis with Bacteriophages
3. Results
3.1. Isolation and Identification of X. juglandis
3.2. Phage Isolation and Characterization
3.3. One-Step Curve of Bacteriophages
3.4. Lysogenic Assay and Phage Titer Stability
3.5. Bioinformatics Analysis of the Bacteriophage Genomes
3.6. Walnut Field Trials Using Bacteriophages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burokiene, D.; Pulawska, J. Characterization of Xanthomonas arboricola pv. juglandis isolated from walnuts in Lithuania. J. Plant Pathol. 2012, 94, 23–27. [Google Scholar]
- Frutos, D. Bacterial diseases of walnut and hazelnut and genetic resources. J. Plant Pathol. 2010, 92, 79–85. [Google Scholar]
- Lindow, S.; Olson, W.; Buchner, R. Colonization of dormant walnut buds by Xanthomonas arboricola pv. juglandis is predictive of subsequent disease. Phytopathology 2014, 104, 1163–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandi, A.; Hevesi, M.; Szani, Z.; Toth, M. Assessment of bacterial blight tolerance of persian walnut based on immature nut test. Not. Sci. Biol. 2015, 7, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Frampton, R.A.; Pitman, A.R.; Fineran, P.C. Advances in bacteriophage mediated control of plant pathogens. Int. J. Microbiol. 2012, 2012, 326452. [Google Scholar] [CrossRef] [Green Version]
- Gardan, L.; Brault, T.; Germain, E. Copper resistance of Xanthomonas campestris pv. juglandis in French walnut orchards and its association with conjugative plasmids. Acta Hort 1993, 311, 259–265. [Google Scholar] [CrossRef]
- Lee, Y.A.; Hendson, M.; Panopoulos, N.J.; Schroth, M.N. Molecular cloning, chromosomal mapping, and sequence-analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: Homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 1994, 176, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Giovanardi, D.; Bonneau, S.; Gironde, S.; Fischer-Le Saux, M.; Manceau, C.; Stefani, E. Morphological and genotypic features of Xanthomonas arboricola pv. juglandis populations from walnut groves in Romagna region, Italy. Eur. J. Plant Pathol. 2016, 145, 1–16. [Google Scholar] [CrossRef]
- Higuera, G.; González-Escalona, N.; Véliz, C.; Vera, F.; Romero, J. Draft genome sequences of four Xanthomonas arboricola pv. juglandis strains associated with walnut blight in Chile. Genome Announc. 2015, 3, e01160-15. [Google Scholar] [CrossRef] [Green Version]
- Pereira, U.P.; Gouran, H.; Nascimento, R.; Adaskaveg, J.E.; Goulart, L.R.; Dandekar, A.M. Complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from Juglans regia L. Genome Announc. 2015, 3, e01126-15. [Google Scholar] [CrossRef] [Green Version]
- Retamales, J.; Segovia, C.; Alvarado, R.; Núñez, P.; Santander, J. Draft genome sequence of Xanthomonas arboricola pv. juglandis J303, isolated from infected walnut trees in southern Chile. Genome Announc. 2017, 5, e01085-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Chen, Q.; Wei, M.; Zhu, J.; Zou, L.; Li, G.; Wang, L. Complete genome sequence of Xanthomonas arboricola pv. juglandis strain DW3F3, isolated from a Juglans regia L. bacterial blighted fruitlet. Genome Announc. 2018, 6, e00023-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svircev, A.; Roach, D.; Castle, A. Framing the Future with Bacteriophages in Agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefani, E.; Obradović, A.; Gašić, K.; Altin, I.; Nagy, I.K.; Kovács, T. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- McNeil, D.L.; Romero, S.; Kandula, J.; Stark, C.; Stewart, A.; Larsen, S. Bacteriophages: A potential biocontrol agent against walnut blight (Xanthomonas campestris pv juglandis). N. Z. Plant Prot. 2001, 54, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Romero-Suarez, S.; Jordan, B.; Heinemann, J.A. Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease. World J. Microbiol. Biotechnol. 2012, 28, 1917–1927. [Google Scholar] [CrossRef]
- Dömötör, D.; Frank, T.; Rákhely, G.; Doffkay, Z.; Schneider, G.; Kovács, T. Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis. Infect. Genet. Evol. 2016, 6, 371–377. [Google Scholar] [CrossRef]
- Retamales, J.; Vasquez, I.; Santos, L.; Segovia, C.; Ayala, M.; Alvarado, R.; Núñez, P.; Santander, J. Complete genome sequences of lytic bacteriophages of Xanthomonas arboricola pv. juglandis. Genome Announc. 2016, 4, e00336-16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Rao, X.; Tan, Y.; Xiong, K.; Hu, Z.; Chen, Z.; Jin, X.; Li, S.; Chen, Y.; Hu, F. Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. Genomics 2010, 96, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Moragrega, C. Detection and identification methods and new tests as developed and used in the framework of cost 873 for bacteria pathogenic to stone fruits and nuts: Xanthomonas arboricola pv. juglandis. J. Plant Pathol. 2012, 94, 155–159. [Google Scholar]
- Weisberg, W.G.; Barns, S.M.; Pelletier, D.A.; Land, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, M. Fast classification of plant-associated bacteria in the Xanthomonas genus. FEMS Microbiol. Lett. 1993, 113, 161–166. [Google Scholar] [CrossRef]
- Pagani, M.C.; Pelludat, C.; Ritchie, D.F.; Duffy, B. A duplex-PCR method for species-and pathovar-level identification and detection of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. J. Microbiol. Methods 2011, 86, 16–24. [Google Scholar]
- Santander, J.; Robeson, J. Aislamiento y caracterización de bacteriófagos líticos contra Salmonella enteritidis y su ensayo sobre Salmonella pullorum. Acta Microbiol. 2002, 8, 17–22. [Google Scholar]
- Davis, R.; Botstein, D.; Roth, J. A Manual for Genetic Engineering: Advanced Bacterial Genetics, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1980. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Leuschner, R.G.K.; Arendt, E.K.; Hammes, W.P. Characterization of a virulent Lactobacillus sake phage PWH2. Appl. Microbiol. Biotechnol. 1993, 39, 617–621. [Google Scholar] [CrossRef]
- Ellis, E.L.; Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 1939, 22, 365–384. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.H. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Ceyssens, P.J.; Lavigne, R.; Mattheus, W.; Chibeu, A.; Hertveldt, K.; Mast, J.; Robben, J.; Volckaert, G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the phiKMV subgroup within the T7 supergroup. J. Bacteriol. 2006, 188, 6924–6931. [Google Scholar] [CrossRef] [Green Version]
- Petty, N.K.; Foulds, I.J.; Pradel, E.; Ewbank, J.J.; Salmond, G.P.C. A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: A tool for functional genomics of an opportunistic human pathogen. Microbiology 2006, 152, 1701–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggers, C.H.; Samuels, D.S. Molecular Evidence for a new bacteriophage of Borrelia burgdorferi. J. Bacteriol. 1999, 181, 7308–7313. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, K.; Murray, N.; Whittaker, P. Construction of representative genomic DNA libraries using phages lambda replacement vectors. In A Practical Approach DNA Cloning; Glover, D., Hames, B., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 37–83. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Kałużna, M.; Fischer-Lesaux, M.; Pothier, J.F.; Jacques, M.A.; Obradović, A.; Tavares, F.; Stefani, E. Xanthomonas arboricola pv. juglandis and pv. corylina: Brothers or distant relatives? Genetic clues, epidemiology, and insights for disease management. Mol. Plant Pathol. 2021, 22, 1481–1499. [Google Scholar] [CrossRef]
- Bandi, A.; Tóth, M.; Hevesi, M. Comparison of Xanthomonas arboricola pv. juglandis isolates from walnut trees grown in Romania and Hungary. Int. J. Hortic. Sci. 2014, 20, 65–69. [Google Scholar] [CrossRef]
- Fernandes, C.; Albuquerque, P.; Sousa, R.; Cruz, L.; Tavares, F. Multiple DNA markers for identification of Xanthomonas arboricola pv. juglandis isolates and its direct detection in plant samples. Plant Dis. 2017, 101, 858–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.; Martins, L.; Teixeira, M.; Blom, J.; Pothier, J.F.; Fonseca, N.A.; Tavares, F. Comparative genomics of Xanthomonas euroxanthea and Xanthomonas arboricola pv. juglandis strains isolated from a single walnut host tree. Microorganisms 2021, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbio. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Leeuw, M.; Baron, M.; David, O.B.; Kushmaro, A. Molecular Insights into Bacteriophage Evolution toward Its Host. Viruses 2020, 12, 1132. [Google Scholar] [CrossRef]
- Sabuquillo, P.; Cubero, J. Biofilm formation in Xanthomonas arboricola pv. pruni: Structure and Development. Agronomy 2021, 11, 546. [Google Scholar] [CrossRef]
- Rosner, D.; Clark, J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals 2021, 14, 359. [Google Scholar] [CrossRef]
- Moragrega, C.; Matias, J.; Aletà, N.; Montesinos, E.; Rovira, M. Apical necrosis and premature drop of Persian (English) walnut fruit caused by Xanthomonas arboricola pv. juglandis. Plant Dis. 2011, 95, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
Bacterial Strains | Biological and Geographical Origin | Year Isolation | Bacteriophages | ||
---|---|---|---|---|---|
f20-Xaj | f29-Xaj | f30-Xaj | |||
X. arboricola pv. juglandis J303 | Walnut, VIII Region-Chile | 2011 | + | + | + |
X. arboricola pv. juglandis N3 | Walnut, VIII Region-Chile | 2014 | + | + | + |
X. arboricola pv. juglandis 3A | Walnut, VIII Region-Chile | 2014 | + | + | + |
X. arboricola pv. juglandis 3BT | Walnut, VIII Region-Chile | 2015 | + | + | + |
X. arboricola pv. juglandis LMM13 | Walnut, VIII Region-Chile | 2015 | + | + | + |
X. arboricola pv. juglandis LMM14 | Walnut, VIII Region-Chile | 2015 | + | + | + |
X. arboricola pv. juglandis GN2 | Walnut, RM-Chile | 2016 | + | + | + |
X. arboricola pv. juglandis GN3 | Walnut, RM-Chile | 2016 | + | + | + |
X. arboricola pv. juglandis GN4 | Walnut, RM-Chile | 2016 | + | + | + |
X. arboricola pv. juglandis GN5 | Walnut, RM-Chile | 2016 | + | + | + |
X. arboricola pv. juglandis FS11 | Walnut, Toulouse-Francia | 2018 | + | + | + |
X. arboricola pv. juglandis FS12 | Walnut, Toulouse-Francia | 2018 | + | + | + |
X. arboricola pv. juglandis FS15 | Walnut, Toulouse-Francia | 2018 | + | + | + |
X. arboricola pv. juglandis FS17A | Walnut, Toulouse-Francia | 2018 | + | + | + |
X. arboricola pv. juglandis FS18 | Walnut, Toulouse-Francia | 2018 | + | + | + |
X. arborícola pv. corylina H.1 | Hazelnut, VII Region-Chile | 2016 | − | (+) | + |
X. arborícola pv. corylina H1.3 | Hazelnut, VII Region-Chile | 2016 | − | (+) | + |
X. arborícola pv. corylina H.2 | Hazelnut, VII Region-Chile | 2016 | − | − | + |
X. arborícola pv. corylina H1.4 | Hazelnut, VII Region-Chile | 2016 | − | − | + |
Xanthomonas campestris | Hazelnut, VII Region-Chile | 2015 | − | − | − |
Pantoea agglomerans | Walnut, VIII Region- Chile | 2014 | − | − | − |
Curtobacterium flaccumfaciens | Walnut, VIII Region- Chile | 2015 | − | − | − |
Brachybacterium paraconglomeratum | Walnut, VIII Region- Chile | 2015 | − | − | − |
Leucobacter tardus | Walnut, VIII Region- Chile | 2015 | − | − | − |
Enterobacter sp. | Walnut, VIII Region- Chile | 2015 | − | − | − |
Bacillus cereus | Walnut, VIII Region- Chile | 2015 | − | − | − |
Agrobacterium tumefacien1 | Plum, RM-Chile | 2017 | − | − | − |
Temperature (°C) | Distilled Water | Tap Water | YPG Broth | YPG Broth + Algae Extract | YPG Broth + Cuprous Oxide | YPG Broth + Copper Hydroxide | YPG Broth + Copper Sulfate |
---|---|---|---|---|---|---|---|
−20 | +++ | +++ | +++ | +++ | + | + | ++ |
4 | ++ | +++ | +++ | +++ | − | − | + |
17 | + | +++ | +++ | +++ | − | − | − |
28 | − | +++ | +++ | +++ | − | − | − |
Leave | Fruit | Performance (Kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Incidence (%) | Severity (Grade) | Incidence (%) | Severity (Grade) | Incidence (%) | Severity (Grade) | Incidence (%) | Severity (Grade) | |||
Treatments | November 2015 | November 2015 | January 2016 | February 2016 | March 2016 | |||||
UTC | 66.3 b | 3 b | 38.75 c | 3 b | 58.13 | 4 c | 37.5 b | 4 c | 10.25 a | |
CuT | 25.6 a | 2 a | 8.75 bc | 2 a | 12.5 | 2 a | 22.5 a | 2 a | 25 c | |
Phage cocktail | 2 cc/L | 41.88 c | 2a | 33.13 abc | 2 a | 46.25 | 3 b | 30 ab | 3 b | 12.75 a |
3 cc/L | 39.38 bc | 2a | 28.75 ab | 2 a | 40 | 3 b | 29.38 ab | 3 b | 17.0 b | |
4 cc/L | 30.0 ab | 2 a | 11.88 a | 2 a | 22.5 | 2 a | 28.13 a | 2.75 b | 19.75 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retamales, J.; Núñez, P.; Alvarado, R.; Campan, E.D.M.; Otto, T.; Segovia, C.; Vasquez, I.; Santander, J. Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses 2022, 14, 1380. https://doi.org/10.3390/v14071380
Retamales J, Núñez P, Alvarado R, Campan EDM, Otto T, Segovia C, Vasquez I, Santander J. Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses. 2022; 14(7):1380. https://doi.org/10.3390/v14071380
Chicago/Turabian StyleRetamales, Julio, Pablo Núñez, Romina Alvarado, Erick D. M. Campan, Thierry Otto, Cristopher Segovia, Ignacio Vasquez, and Javier Santander. 2022. "Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation" Viruses 14, no. 7: 1380. https://doi.org/10.3390/v14071380
APA StyleRetamales, J., Núñez, P., Alvarado, R., Campan, E. D. M., Otto, T., Segovia, C., Vasquez, I., & Santander, J. (2022). Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses, 14(7), 1380. https://doi.org/10.3390/v14071380