Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses’ Viability and Indoor Transmission
Abstract
:1. Introduction
2. Effect of Chemical Properties of Human Respiratory Droplets and Aerosol Particles in Virus Viability in Indoor Environments
2.1. Effect of Chemical Composition on Virus Viability of Enveloped Viruses
2.2. Effect of Change in pH (Due to Change in RH) on Viability of Enveloped Viruses
2.2.1. Effect of Conformational Changes in Viral Glycoproteins Related to Changes in pH
2.2.2. Impact of RH and pH on Virus Viability
2.2.3. Virus Isoelectric Points and Their Dependence on pH
3. Instrumentation Required for Measuring Expelled Viral Droplets and Aerosol Particle’s Chemical Properties
4. Conclusions
- High organic content in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy structure that restricts the virus inactivation process mostly in dry indoor conditions [3].
- The enveloped bacteriophage Phi6 decayed more at lower and higher pH values while staying viable at a neutral pH value of 7 [13].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vejerano, E.P.; Marr, L.C. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R. Soc. Interface 2018, 15, 20170939. [Google Scholar] [CrossRef] [Green Version]
- Niazi, S.; Groth, R.; Spann, K.; Johnson, G.R. The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review. Environ. Poll. 2021, 276, 115767. [Google Scholar] [CrossRef] [PubMed]
- Huynh, E.; Olinger, A.; Woolley, D.; Kohli, R.K.; Choczynski, J.M.; Davies, J.F.; Lin, K.; Marr, L.C.; Davis, R.D. Evidence for a semi-solid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. Proc. Nat. Acad. Sci. USA 2022, 119, e2109750119. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, J.; Li, Y.; Ooi, A. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 2017, 27, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Sosso, G.C.; Chen, J.; Cox, S.J.; Fitzner, M.; Pedevilla, P.; Zen, A.; Michaelides, A. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations. Chem. Rev. 2016, 116, 7078–7116. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Prather, K.A.; Wang, C.C.; Schooley, R.T. Reducing transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol. Sci. Technol. 2020, 54, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Bukhari, Q.; Jameel, Y. Will Coronavirus Pandemic Diminish by Summer? SSRN, 2020; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556998 (accessed on 1 January 2022).
- Ahlawat, A.; Wiedensohler, A.; Mishra, S.K. An Overview on the role of relative humidity in airborne transmission of SARS-CoV-2 in indoor environments. Aerosol. Air Qual. Res. 2020, 20, 1856–1861. [Google Scholar] [CrossRef]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of respiratory viral infections. Ann. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Schulte, C.R.; Marr, L.C. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, pH, and salt, protein, and surfactant concentrations. PLoS ONE 2020, 15, e0243505. [Google Scholar] [CrossRef]
- Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci. Rep. 2020, 10, 22419. [Google Scholar] [CrossRef] [PubMed]
- Beggs, C.B.; Avital, E.J. A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols. PeerJ 2021, 9, e11024. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.; Groth, R.; Cravigan, L.; He, C.; Tang, J.W.; Spann, K.; Johnson, G.R. Susceptibility of an airborne common cold virus to relative humidity. Environ. Sci. Technol. 2021, 55, 499–508. [Google Scholar] [CrossRef]
- Niazi, S.; Short, K.R.; Groth, R.; Cravigan, L.; Spann, K.; Ristovski, Z.; Johnson, G.R. Humidity dependent survival of an airborne Influenza A virus: Practical implications for controlling airborne viruses. Environ. Sci. Technol. Lett. 2021, 8, 412–418. [Google Scholar] [CrossRef]
- Benbough, J.E. Some factors affecting the survival of airborne viruses. J. Gen. Virol. 1971, 10, 209–220. [Google Scholar] [CrossRef]
- Johnson, G.R.; Morawska, L. The mechanism of breath aerosol formation. J. Aerosol. Med. Pulm. Drug Deliv. 2009, 22, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Bozic, A.; Kanduc, M. Relative humidity in droplet and airborne transmission of disease. J. Biol. Phys. 2021, 47, 1–29. [Google Scholar] [CrossRef]
- Effros, R.M.; Hoagland, K.W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.E.; Sun, F. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 2002, 165, 663–669. [Google Scholar] [CrossRef]
- Yang, W.; Elankumaran, S.; Marr, L.C. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 2011, 8, 1176–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicas, M.; Nazaroff, W.W.; Hubbard, A. Towards understanding the risk of secondary infection: Emission of respirable pathogens. J. Occup. Environ. Hyg. 2005, 2, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.Y.; Chrétien, J. Respiratory tract fluids: Analysis of content and contemporary use in understanding lung diseases. Disease-a-month 1984, 30, 1–103. [Google Scholar] [CrossRef]
- Ali, M.; Lillehoj, E.P.; Park, Y.; Kyo, Y.; Kim, K.C. Analysis of the proteome of human airway epithelial secretions. Proteome Sci. 2011, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Schenkels, L.C.; Veerman, E.C.; Nieuw Amerongen, A.V. Biochemical composition of human saliva in relation to other mucosal fluids. Crit. Rev. Oral. Biol. Med. 1995, 6, 161–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kormuth, K.A.; Lin, K.; Prussin, A.J.; Vejerano, E.P.; Tiwari, A.J.; Cox, S.S.; Myerburg, M.M.; Lakdawala, S.S.; Marr, L.C. Influenza Virus Infectivity Is Retained in Aerosols and Droplets Independent of Relative Humidity. J. Infect. Dis. 2018, 218, 739–747. [Google Scholar] [CrossRef]
- Kormuth, K.A.; Lin, K.; Qian, Z.; Myerburg, M.M.; Marr, L.C.; Lakdawala, S.S. Environmental Persistence of Influenza Viruses Is Dependent upon Virus Type and Host Origin. mSphere 2019, 4, e00552-19. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Marr, L.C. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ. Sci. Technol. 2020, 54, 1024–1032. [Google Scholar] [CrossRef]
- Pica, N.; Bouvier, N.M. Environmental factors affecting the transmission of respiratory viruses. Curr. Opin. Virol. 2012, 2, 90–95. [Google Scholar] [CrossRef]
- Yang, W.; Marr, L.C. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol. 2012, 78, 6781–6788. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Ham, S.; Andrews, R.J.; You, Y.; Bertram, A.K. Liquid–liquid phase separation in organic particles containing one and two organic species: Importance of the average O: C. Atmos. Chem. Phys. 2018, 18, 12075–12084. [Google Scholar] [CrossRef] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelii, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, M.A. Phase separation in organic aerosol. Chem. Soc. Rev. 2017, 46, 7694–7705. [Google Scholar] [CrossRef]
- Benton, D.J.; Gamblin, S.J.; Rosenthal, P.B.; Skehel, J.J. Structural transitions in influenza haemagglutinin at membrane fusion pH. Nature 2020, 583, 150–153. [Google Scholar] [CrossRef]
- Dasika, G.K.; Letchworth, G.J. Homologous and heterologous interference requires bovine herpesvirus-1 glycoprotein D at the cell surface during virus entry. Microbiology 2000, 81, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.M.; Mason, D.I.A.N.E.; White, J.M. Fusion of Rous sarcoma virus with host cells does not require exposure to low pH. J. Virol. 1990, 64, 5106–5113. [Google Scholar] [CrossRef] [Green Version]
- Lakadamyali, M.; Rust, M.J.; Babcock, H.P.; Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Nat. Acad. Sci. USA 2003, 100, 9280–9285. [Google Scholar] [CrossRef] [Green Version]
- Stiasny, K.; Heinz, F.X. Flavivirus membrane fusion. J. Gen. Virol. 2006, 87, 2755–2766. [Google Scholar] [CrossRef]
- White, J.; Kartenbeck, J.; Helenius, A. Fusion of Semliki forest virus with the plasma membrane can be induced by low pH. J. Cell Biol. 1980, 87, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, P.; Liu, K.; Guo, F.; Zhang, Y.; Zhang, G.; Jiang, C. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell Res. 2008, 18, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Nenes, A. Exploring the Science of Humidity and Its Impact on Viruses, Their Hosts, and Human Well-Being (10 May 2021). Available online: https://smw.ch/expert-webinars/indoor-air-and-covid-transmission (accessed on 9 January 2022).
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S.; et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmes, J.; Winkler, K.; Kool, S. Virus survival as a seasonal factor in influenza and poliomyelitis. Antonie Van Leeuwenhoek 1962, 28, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Hemmes, J.H.; Winkler, K.; Kool, S.M. Virus survival as a seasonal factor in influenza and poliomyelitis. Nature 1960, 188, 430–431. [Google Scholar] [CrossRef] [PubMed]
- Harper, G.J. Airborne micro-organisms: Survival tests with four viruses. J. Hyg. 1961, 59, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Shechmeister, I.L. Studies on the experimental epidemiology of respiratory infections III. Certain aspects of behavior of type A influenza virus as an airborne cloud. J. Infect. Dis. 1950, 87, 128–132. [Google Scholar] [CrossRef]
- Schaffer, F.L.; Soergel, M.E.; Straube, D.C. Survival of airborne influenza virus: Effects of propagating host, relative humidity, and composition of spray fluids. Arch. Virol. 1976, 51, 263–273. [Google Scholar] [CrossRef]
- Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol. 2011, 2011, 134690. [Google Scholar] [CrossRef]
- Darnell, M.E.R.; Subbarao, K.; Feinstone, S.M.; Taylor, D.R. I nactivation of the coronavirus that induces severe acute repiratory syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 85–97. [Google Scholar] [CrossRef]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microb. 2010, 109, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Duran-Meza, A.L.; Villagrana-Escareño, M.V.; Ruiz-Garcı’a, J.; Knobler, C.M.; Gelbart, W.M. Controlling the surface charge of simple viruses. PLoS ONE 2021, 16, e0255820. [Google Scholar]
- Heffron, J.; Mayer, B.K. Virus isoelectric point estimation: Theories and methods. Appl. Environ. Microb. 2021, 87, e02319-20. [Google Scholar] [CrossRef] [PubMed]
- Joonaki, E.; Hassanpouryouzband, A.; Heldt, C.L.; Areo, O. Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions. Chem 2020, 6, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Ault, A.P.; Axson, J.L. Atmospheric aerosol chemistry: Spectroscopic and microscopic advances. Anal. Chem. 2017, 89, 430–452. [Google Scholar] [CrossRef] [PubMed]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; Kanakidou, M.; et al. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 2020, 20, 4809–4888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almstrand, A.C.; Ljungstrom, E.; Lausmaa, J.; Bake, B.; Sjovall, P.; Olin, A.C. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Anal. Chem. 2009, 81, 662–668. [Google Scholar] [CrossRef]
- Bredberg, A.; Gobom, J.; Almstrand, A.C.; Larsson, P.; Blennow, K.; Olin, A.C.; Mirgorodskaya, E. Exhaled endogenous particles contain lung proteins. Clin. Chem. 2012, 58, 431–440. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, J.J.; Koutrakis, P.; Ferguson, S.T.; Wolfson, J.M.; Fabian, M.P.; Martins, M.; Pantelic, J.; Milton, D.K. Development and Performance Evaluation of an Exhaled-Breath Bioaerosol Collector for Influenza Virus. Aerosol. Sci. Technol. 2013, 47, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Identifying the Coronavirus in One Breath. Available online: https://ch.ambafrance.org/Das-Coronavirus-in-einem-Atemzug-erkennen (accessed on 9 January 2022).
- Ahlawat, A.; Mishra, S.K.; Birks, J.W.; Costabile, F.; Wiedensohler, A. Preventing Airborne Transmission of SARS-CoV-2 in Hospitals and Nursing Homes. Int. J. Environ. Res. Public Health 2020, 17, 8553. [Google Scholar] [CrossRef]
Name of Virus | Fusion pH | Spray Medium | Virus Viability (References) |
---|---|---|---|
Influenza (PR8) | Low pH (<5) | 1-part allantoic fluid plus 1 part 2% peptone | Viability highest at 15–20% RH and lowest at 40–90% RH [44,45] |
Influenza A (PR8) | Low pH (<5) | Allantoic fluid diluted 1:8 or 1:10 in casein McIlvaine’s buffer (pH 7.2) | Viability decreases with increasing RH [46] |
Influenza A (W.S. Strain) | Low pH (<5) | Allantoic fluid in 0.1 M Sorensen’s phosphate buffer (pH 7.1) | Viability highest at 30–34% RH, lowest at 58–60% RH and medium at 66–70% RH [47] |
Influenza A (WSN Strain) | Low pH (<5) | MEM; MEM plus 0.1% BSA; allantoic fluid | Viability highest at <45% RH, lowest at 40–60% RH and medium at RH > 80% [48] |
SARS-CoV-1 | Low pH | Cell culture maintenance | Stable at 40% RH and more rapidly inactivated at higher RH in 1 h [49] Inactivation effect of acidic conditions (pH < 3) and alkanine (pH > 12) [50] |
Phi 6 | Low pH | Cell culture maintenance | Inactivation at intermediate RH, Survival at low RH; Strong inactivation effect of acidic conditions (pH < 4) and alkaline conditions (pH > 10) [13] |
Langat | Low pH (<6) | Culture medium (salts and protein) | Viability highest at 20% RH, lowest at 40–60% RH, and medium at >70% RH [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahlawat, A.; Mishra, S.K.; Herrmann, H.; Rajeev, P.; Gupta, T.; Goel, V.; Sun, Y.; Wiedensohler, A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses’ Viability and Indoor Transmission. Viruses 2022, 14, 1497. https://doi.org/10.3390/v14071497
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, Sun Y, Wiedensohler A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses’ Viability and Indoor Transmission. Viruses. 2022; 14(7):1497. https://doi.org/10.3390/v14071497
Chicago/Turabian StyleAhlawat, Ajit, Sumit Kumar Mishra, Hartmut Herrmann, Pradhi Rajeev, Tarun Gupta, Vikas Goel, Yele Sun, and Alfred Wiedensohler. 2022. "Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses’ Viability and Indoor Transmission" Viruses 14, no. 7: 1497. https://doi.org/10.3390/v14071497
APA StyleAhlawat, A., Mishra, S. K., Herrmann, H., Rajeev, P., Gupta, T., Goel, V., Sun, Y., & Wiedensohler, A. (2022). Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses’ Viability and Indoor Transmission. Viruses, 14(7), 1497. https://doi.org/10.3390/v14071497