Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses?
Abstract
:1. Introduction
- The virus is known to circulate in Austria, i.e., West Nile virus (WNV) [21,22], Usutu virus (USUV) [21,23,24], HEV, which was recently detected in urban rats in Vienna [25], Puumala and Tula orthohantaviruses [26,27,28,29], or neighboring regions, i.e., Dobrava-Belgrade orthohantavirus was reported in urban rats in neighboring Hungary [30] and orthopoxviruses (cowpox virus), diagnosed in free-roaming Austrian cats most likely following rodent exposure [31], including zoonotic transmission to humans through direct contact with the poxvirus lesions of the cat [32];
- Rodents are thought to be the natural reservoir for the virus, i.e., encephalomyocarditis virus (Cardiovirus A, EMCV) [33].
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Areas and Sampling Methods
2.3. Barcoding
2.4. Preparation of Tissue
2.5. Detection of Viral Nucleic Acids
3. Results
3.1. Trapping
3.2. Detection of Viruses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Tibbetts, J. Coastal Cities: Living on the Edge. Environ. Health Perspect. 2002, 110, A674–A681. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Feng, A.Y.T.; Himsworth, C.G. The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 2013, 17, 149–162. [Google Scholar] [CrossRef]
- Himsworth, C.G.; Parsons, K.L.; Jardine, C.; Patrick, D.M. Rats, Cities, People, and Pathogens: A Systematic Review and Narrative Synthesis of Literature Regarding the Ecology of Rat-Associated Zoonoses in Urban Centers. Vector-Borne Zoonotic Dis. 2013, 13, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Strand, T.M.; Lundkvist, Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 2019, 9, 1553461. [Google Scholar] [CrossRef] [Green Version]
- Caron, A.; Cappelle, J.; Cumming, G.S.; De Garine-Wichatitsky, M.; Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Veter. Res. 2015, 46, 83. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.; Bhat, M.; Firth, M.A.; Williams, S.; Frye, M.; Simmonds, P.; Conte, J.M.; Ng, J.; Garcia, J.; Bhuva, N.P.; et al. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City. mBio 2014, 5, e01933-14. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, J.D.; Kaplan, J.B.; Glass, G.E.; Watson, J.; Klein, S.L. A survey of rodent-borne pathogens carried by wild-caught Norway rats: A potential threat to laboratory rodent colonies. Lab. Anim. 2008, 42, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, J.D.; Kaplan, J.B.; Vanasco, N.B.; Reeves, W.K.; Purcell, R.H.; Kosoy, M.Y.; Glass, G.E.; Watson, J.; Klein, S.L. A survey of zoonotic pathogens carried by Norway rats in Baltimore, Maryland, USA. Epidemiol. Infect. 2007, 135, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Kariwa, H.; Kimura, M.; Yoshizumi, S.; Arikawa, J.; Yoshimatsu, K.; Takashima, I.; Hashimoto, N. Modes of Seoul virus infections: Persistency in newborn rats and transiency in adult rats. Arch. Virol. 1996, 141, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Plyusnina, A.; Heyman, P.; Baert, K.; Stuyck, J.; Cochez, C.; Plyusnin, A. Genetic characterization of seoul hantavirus originated from norway rats (Rattus norvegicus) captured in Belgium. J. Med. Virol. 2012, 84, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Johne, R.; Dremsek, P.; Kindler, E.; Schielke, A.; Plenge-Bönig, A.; Gregersen, H.; Wessels, U.; Schmidt, K.; Rietschel, W.; Groschup, M.H.; et al. Rat hepatitis E virus: Geographical clustering within Germany and serological detection in wild Norway rats (Rattus norvegicus). Infect. Genet. Evol. 2012, 12, 947–956. [Google Scholar] [CrossRef]
- Johne, R.; Plenge-Bönig, A.; Hess, M.; Ulrich, R.G.; Reetz, J.; Schielke, A. Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR. J. Gen. Virol. 2009, 91, 750–758. [Google Scholar] [CrossRef]
- Kabrane-Lazizi, Y.; Glass, G.E.; Higa, H.; Diwan, A.; Gibbs, C.J.; Purcell, R.H.; Fine, J.B.; Meng, X.J.; Elm, J.; Emerson, S.U. Evidence for widespread infection of wild rats with hepatitis E virus in the United States. Am. J. Trop. Med. Hyg. 1999, 61, 331–335. [Google Scholar] [CrossRef]
- Cummings, C.O.; Hill, N.J.; Puryear, W.B.; Rogers, B.; Mukherjee, J.; Leibler, J.H.; Rosenbaum, M.H.; Runstadler, J.A. Evidence of Influenza A in Wild Norway Rats (Rattus norvegicus) in Boston, Massachusetts. Front. Ecol. Evol. 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Bartak, M.; Słońska, A.; Bańbura, M.W.; Cymerys, J. SDAV, the Rat Coronavirus—How Much Do We Know about It in the Light of Potential Zoonoses. Viruses 2021, 13, 1995. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Liu, P.; Li, H.; Huo, S.; Zong, K.; Zhu, S.; Guo, Y.; Zhang, L.; Hu, B.; et al. A Novel Potentially Recombinant Rodent Coronavirus with a Polybasic Cleavage Site in the Spike Protein. J. Virol. 2021, 95, e0117321. [Google Scholar] [CrossRef]
- Monastiri, A.; Martín-Carrillo, N.; Foronda, P.; Izquierdo-Rodríguez, E.; Feliu, C.; López-Roig, M.; Miquel, J.; Gouilh, M.A.; Serra-Cobo, J. First Coronavirus Active Survey in Rodents from the Canary Islands. Front. Veter. Sci. 2021, 8, 708079. [Google Scholar] [CrossRef]
- Aberle, S.W.; Kolodziejek, J.; Jungbauer, C.; Stiasny, K.; Aberle, J.H.; Zoufaly, A.; Hourfar, M.K.; Weidner, L.; Nowotny, N. Increase in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveillance 2018, 23, 1800545. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejek, J.; Jungbauer, C.; Stephan, W.; Allerberger, F.; Bagó, Z.; Camp, J.; de Heus, P.; Kolodziejek, M.; Schiefer, P.; Seidel, B.; et al. Integrated analysis of human-animal-vector surveillance: West Nile virus infections in Austria, 2015–2016. Emerg. Microbes Infect. 2018, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camp, J.V.; Kolodziejek, J.; Nowotny, N. Targeted surveillance reveals native and invasive mosquito species infected with Usutu virus. Parasites Vectors 2019, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Weissenböck, H.; Kolodziejek, J.; Url, A.; Lussy, H.; Rebel-Bauder, B.; Nowotny, N. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis 2002, 8, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Ryll, R.; Bernstein, S.; Heuser, E.; Schlegel, M.; Dremsek, P.; Zumpe, M.; Wolf, S.; Pépin, M.; Bajomi, D.; Müller, G.; et al. Detection of rat hepatitis E virus in wild Norway rats (Rattus norvegicus) and Black rats (Rattus rattus) from 11 European countries. Veter. Microbiol. 2017, 208, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Aberle, S.W.; Lehner, P.; Ecker, M.; Aberle, J.H.; Arneitz, K.; Khanakah, G.; Radda, A.; Radda, I.; Popow-Kraupp, T.; Kunz, C.; et al. Nephropathia epidemica and Puumala virus in Austria. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Bowen, M.D.; Gelbmann, W.; Ksiazek, T.G.; Nichol, S.T.; Nowotny, N. Puumala virus and two genetic variants of tula virus are present in Austrian rodents. J. Med. Virol. 1997, 53, 174–181. [Google Scholar] [CrossRef]
- Camp, J.V.; Schmon, E.; Krause, R.; Sixl, W.; Schmid, D.; Aberle, S.W. Genetic diversity of Puumala orthohantavirus in rodents and human patients in Austria, 2012–2019. Viruses 2021, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Plyusnina, A.; Aberle, S.W.; Aberle, J.H.; Plyusnin, A. Genetic analysis of Puumala hantavirus strains from Austria. Scand. J. Infect. Dis. 2006, 38, 512–519. [Google Scholar] [CrossRef]
- Kurucz, K.; Madai, M.; Bali, D.; Hederics, D.; Horváth, G.; Kemenesi, G.; Jakab, F. Parallel survey of two widespread renal syndrome-causing zoonoses: Leptospira spp. and hantavirus in urban environment, Hungary. Vector Borne Zoonotic Dis. 2018, 18, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.S.; Emerson, G.L.; Li, Y.; Sammons, S.; Olson, V.; Frace, M.; Nakazawa, Y.; Czerny, C.P.; Tryland, M.; Kolodziejek, J.; et al. Chasing Jenner’s vaccine: Revisiting cowpox virus classification. PLoS ONE 2011, 6, e23086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawranek, T.; Tritscher, M.; Muss, W.H.; Jecel, J.; Nowotny, N.; Kolodziejek, J.; Emberger, M.; Schaeppi, H.; Hintner, H. Feline orthopoxvirus infection transmitted from cat to human. J. Am. Acad. Dermatol. 2003, 49, 513–518. [Google Scholar] [CrossRef]
- Carocci, M.; Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 2012, 3, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, J.D.; Kaplan, J.B.; Glass, G.E.; Pletnikov, M.V.; Klein, S.L. Elevated testosterone and reduced 5-HIAA concentrations are associated with wounding and hantavirus infection in male Norway rats. Horm. Behav. 2007, 52, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Bird, B.H.; Nelson, R.J.; Glass, G.E. Environmental and physiological factors associated with Seoul virus infection among urban populations of Norway rats. J. Mammal. 2002, 83, 478–488. [Google Scholar] [CrossRef] [Green Version]
- Cavia, R.; Cueto, G.R.; Suárez, O.V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plan. 2009, 90, 11–19. [Google Scholar] [CrossRef]
- Gardner-Santana, L.C.; Norris, D.E.; Fornadel, C.M.; Hinson, E.R.; Klein, S.L.; Glass, G.E. Commensal ecology, urban landscapes, and their influence on the genetic characteristics of city-dwelling Norway rats (Rattus norvegicus). Mol. Ecol. 2009, 18, 2766–2778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Mills, J.N.; Timonin, M.E.; Willis, C.K.; Cunningham, A.A.; et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013, 280, 2012–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, E.; Spruill-Harrell, B.; Taylor, M.; Lee, J.; Nywening, A.; Yang, Z.; Nichols, J.; Camp, J.; Owen, R.; Jonsson, C. Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021, 13, 1509. [Google Scholar] [CrossRef]
- Chu, D.K.W.; Chin, A.W.; Smith, G.J.; Chan, K.-H.; Guan, Y.; Peiris, J.S.M.; Poon, L.L.M. Detection of novel astroviruses in urban brown rats and previously known astroviruses in humans. J. Gen. Virol. 2010, 91, 2457–2462. [Google Scholar] [CrossRef]
- Pankovics, P.; Boros, Á.; László, Z.; Szekeres, S.; Földvári, G.; Altan, E.; Delwart, E.; Reuter, G. Genome characterization, prevalence and tissue distribution of astrovirus, hepevirus and norovirus among wild and laboratory rats (Rattus norvegicus) and mice (Mus musculus) in Hungary. Infect. Genet. Evol. 2021, 93, 104942. [Google Scholar] [CrossRef] [PubMed]
- Desvars-Larrive, A.; Ruppitsch, W.; Lepuschitz, S.; Szostak, M.P.; Spergser, J.; Feßler, A.T.; Schwarz, S.; Monecke, S.; Ehricht, R. Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017 separator commenting unavailable. Eurosurveillance 2019, 24, 1900149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desvars-Larrive, A.; Smith, S.; Munimanda, G.; Bourhy, P.; Waigner, T.; Odom, M.; Gliga, D.S.; Walzer, C. Prevalence and risk factors of Leptospira infection in urban brown rats (Rattus norvegicus), Vienna, Austria. Urban Ecosyst. 2020, 23, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Heyman, P.; Baert, K.; Plyusnina, A.; Cochez, C.; Lundkvist, Å.; Van Esbroeck, M.; Goossens, E.; Vandenvelde, C.; Stuyck, J. Serological and genetic evidence for the presence of Seoul hantavirus in Rattus norvegicus in Flanders, Belgium. Scand. J. Infect. Dis. 2009, 41, 51–56. [Google Scholar] [CrossRef]
- Spyrou, V.; Maurice, H.; Billinis, C.; Papanastassopoulou, M.; Psalla, D.; Nielen, M.; Koenen, F.; Papadopoulos, O. Transmission and pathogenicity of encephalomyocarditis virus (EMCV) among rats. Veter. Res. 2004, 35, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Boswell, C.A.; Mundo, E.E.; Ulufatu, S.; Bumbaca, D.; Cahaya, H.S.; Majidy, N.; Van Hoy, M.; Schweiger, M.G.; Fielder, P.J.; Prabhu, S.; et al. Comparative Physiology of Mice and Rats: Radiometric Measurement of Vascular Parameters in Rodent Tissues. Mol. Pharm. 2014, 11, 1591–1598. [Google Scholar] [CrossRef]
- Robins, J.H.; Hingston, M.; Matisoo-Smith, E.; Ross, H.A. Identifying Rattus species using mitochondrial DNA. Mol. Ecol. Notes 2007, 7, 717–729. [Google Scholar] [CrossRef]
- Camp, J.V.; Bakonyi, T.; Soltész, Z.; Zechmeister, T.; Nowotny, N. Uranotaenia unguiculata Edwards, 1913 are attracted to sound, feed on amphibians, and are infected with multiple viruses. Parasites Vectors 2018, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Escutenaire, S.; Mohamed, N.; Isaksson, M.; Thorén, P.; Klingeborn, B.; Belák, S.; Berg, M.; Blomberg, J. SYBR Green real-time reverse transcription-polymerase chain reaction assay for the generic detection of coronaviruses. Arch. Virol. 2006, 152, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Muradrasoli, S.; Mohamed, N.; Hornyák, Á.; Fohlman, J.; Olsen, B.; Belák, S.; Blomberg, J. Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos). J. Virol. Methods 2009, 159, 277–287. [Google Scholar] [CrossRef]
- Moureau, G.; Temmam, S.; Gonzalez, J.-P.; Charrel, R.; Grard, G.; De Lamballerie, X. A Real-Time RT-PCR Method for the Universal Detection and Identification of Flaviviruses. Vector-Borne Zoonotic Dis. 2007, 7, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Bakonyi, T.; Chvala, S.; Nowotny, N. Experimental Usutu virus infection of suckling mice causes neuronal and glial cell apoptosis and demyelination. Acta Neuropathol. 2004, 108, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Klempa, B.; Fichet-Calvet, E.; Lecompte, E.; Auste, B.; Aniskin, V.; Meisel, H.; Denys, C.; Koivogui, L.; Ter Meulen, J.; Krüger, D.H. Hantavirus in African Wood Mouse, Guinea. Emerg. Infect. Dis. 2006, 12, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Jothikumar, N.; Cromeans, T.L.; Robertson, B.H.; Meng, X.J.; Hill, V.R. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J. Virol. Methods 2006, 131, 65–71. [Google Scholar] [CrossRef]
- Wolf, S.; Reetz, J.; Johne, R.; Heiberg, A.-C.; Petri, S.; Kanig, H.; Ulrich, R.G. The simultaneous occurrence of human norovirus and hepatitis E virus in a Norway rat (Rattus norvegicus). Arch. Virol. 2013, 158, 1575–1578. [Google Scholar] [CrossRef]
- World Health Organization. WHO Information for Molecular Detection of Influenza Virus. Available online: https://www.who.int/influenza/gisrs_laboratory/Protocols_influenza_virus_detection_Nov_2018.pdf (accessed on 22 November 2019).
- Cardeti, G.; Mariano, V.; Eleni, C.; Aloisi, M.; Grifoni, G.; Sittinieri, S.; Dante, G.; Antognetti, V.; Foglia, E.A.; Cersini, A.; et al. Encephalomyocarditis virus infection in Macaca sylvanus and Hystrix cristata from an Italian rescue centre for wild and exotic animals. Virol. J. 2016, 13, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, N.; Dickinson, N.; Wilsden, G.; Carra, E.; Brocchi, E.; De Simone, F. Molecular analysis of encephalomyocarditis viruses isolated from pigs and rodents in Italy. Virus Res. 1998, 57, 53–62. [Google Scholar] [CrossRef]
- Qin, S.; Underwood, D.; Driver, L.; Kistler, C.; Diallo, I.; Kirkland, P.D. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus. J. Veter. Diagn. Investig. 2018, 30, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Meyer, H.; Zhao, H.; Damon, I.K. GC Content-Based Pan-Pox Universal PCR Assays for Poxvirus Detection. J. Clin. Microbiol. 2010, 48, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Canelli, E.; Luppi, A.; Lavazza, A.; Lelli, D.; Sozzi, E.; Martin, A.M.M.; Gelmetti, D.; Pascotto, E.; Sandri, C.; Magnone, W.; et al. Encephalomyocarditis virus infection in an Italian zoo. Virol. J. 2010, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Tesh, R.B.; Wallace, G.D. Observations on the Natural History of Encephalomyocarditis Virus. Am. J. Trop. Med. Hyg. 1978, 27, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Machnowska, P.; Ellerbroek, L.; Johne, R. Detection and characterization of potentially zoonotic viruses in faeces of pigs at slaughter in Germany. Veter. Microbiol. 2014, 168, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Maurice, H.; Nielen, M.; Brocchi, E.; Nowotny, N.; Kassimi, L.B.; Billinis, C.; Loukaides, P.; O’Hara, R.S.; Koenen, F. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol. Infect. 2005, 133, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Deutz, A.; Fuchs, K.; Schuller, W.; Nowotny, N.; Auer, H.; Aspöck, H.; Stünzner, D.; Kerbl, U.; Klement, C.; Köfer, J. Seroepidemiological studies of zoonotic infections in hunters in southeastern Austria—Prevalences, risk factors, and preventive methods. Berl. Munch. Tierarztl. Wochenschr. 2003, 116, 306–311. [Google Scholar]
- Juncker-Voss, M.; Prosl, H.; Lussy, H.; Enzenberg, U.; Auer, H.; Lassnig, H.; Müller, M.; Nowotny, N. Screening for antibodies against zoonotic agents among employees of the Zoological Garden of Vienna, Schönbrunn, Austria. Berl. Munch. Tierarztl. Wochenschr. 2004, 117, 404–409. [Google Scholar]
- Fischer, C.; Hofmann, M.; Danzer, M.; Hofer, K.; Kaar, J.; Gabriel, C. Seroprevalence and Incidence of hepatitis E in Blood Donors in Upper Austria. PLoS ONE 2015, 10, e0119576. [Google Scholar] [CrossRef]
- Lagler, H.; Poeppl, W.; Winkler, H.; Herkner, H.; Faas, A.; Mooseder, G.; Burgmann, H. Hepatitis E Virus Seroprevalence in Austrian Adults: A Nationwide Cross-Sectional Study among Civilians and Military Professionals. PLoS ONE 2014, 9, e87669. [Google Scholar] [CrossRef] [Green Version]
- Forgách, P.; Nowotny, N.; Erdélyi, K.; Boncz, A.; Zentai, J.; Szűcs, G.; Reuter, G.; Bakonyi, T. Detection of Hepatitis E virus in samples of animal origin collected in Hungary. Veter. Microbiol. 2010, 143, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Widén, F.; Ayral, F.; Artois, M.; Olofson, A.-S.; Lin, J. PCR detection and analyzis of potentially zoonotic Hepatitis E virus in French rats. Virol. J. 2014, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Klempa, B.; Avsic-Zupanc, T.; Clement, J.; Dzagurova, T.K.; Henttonen, H.; Heyman, P.; Jakab, F.; Kruger, D.H.; Maes, P.; Papa, A.; et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Arch. Virol. 2012, 158, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Papa, A. Dobrava-Belgrade virus: Phylogeny, epidemiology, disease. Antivir. Res. 2012, 95, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, M.; Klempa, B.; Auste, B.; Bemmann, M.; Schmidt-Chanasit, J.; Büchner, T.; Groschup, M.H.; Meier, M.; Balkema-Buschmann, A.; Zoller, H.; et al. Dobrava-Belgrade Virus Spillover Infections, Germany. Emerg. Infect. Dis. 2009, 15, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Chanasit, J.; Essbauer, S.; Petraityte, R.; Yoshimatsu, K.; Tackmann, K.; Conraths, F.J.; Sasnauskas, K.; Arikawa, J.; Thomas, A.; Pfeffer, M.; et al. Extensive Host Sharing of Central European Tula Virus. J. Virol. 2010, 84, 459–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidmann, M.; Schmidt, P.; Vackova, M.; Krivanec, K.; Munclinger, P.; Hufert, F.T. Identification of Genetic Evidence for Dobrava Virus Spillover in Rodents by Nested Reverse Transcription (RT)-PCR and TaqMan RT-PCR. J. Clin. Microbiol. 2005, 43, 808–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupinay, T.; Pounder, K.C.; Ayral, F.; Laaberki, M.-H.; Marston, D.A.; Lacôte, S.; Rey, C.; Barbet, F.; Voller, K.; Nazaret, N.; et al. Detection and genetic characterization of Seoul Virus from commensal brown rats in France. Virol. J. 2014, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Heyman, P.; Plyusnina, A.; Berny, P.; Cochez, C.; Artois, M.; Zizi, M.; Pirnay, J.-P.; Plyusnin, A. Seoul hantavirus in Europe: First demonstration of the virus genome in wild Rattus norvegicus captured in France. Eur. J. Clin. Microbiol. 2004, 23, 711–717. [Google Scholar] [CrossRef]
- Jameson, L.J.; Logue, C.H.; Atkinson, B.; Baker, N.; Galbraith, S.E.; Carroll, M.W.; Brooks, T.; Hewson, R. The continued emergence of hantaviruses: Isolation of a Seoul virus implicated in human disease, United Kingdom, October 2012. Euro Surveill. 2013, 18, 4–7. [Google Scholar] [CrossRef]
- de Heus, P.; Kolodziejek, J.; Camp, J.V.; Dimmel, K.; Bagó, Z.; Hubálek, Z.; van den Hoven, R.; Cavalleri, J.-M.V.; Nowotny, N. Emergence of West Nile virus lineage 2 in Europe: Characteristics of the first seven cases of West Nile neuroinvasive disease in horses in Austria. Transbound. Emerg. Dis. 2020, 67, 1189–1197. [Google Scholar] [CrossRef]
- Root, J.J. West Nile virus associations in wild mammals: A synthesis. Arch. Virol. 2012, 158, 735–752. [Google Scholar] [CrossRef]
- Diagne, M.M.; Ndione, M.H.D.; Di Paola, N.; Fall, G.; Bedekelabou, A.P.; Sembène, P.M.; Faye, O.; Zanotto, P.M.D.A.; Sall, A.A. Usutu Virus Isolated from Rodents in Senegal. Viruses 2019, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Camp, J.V.; Nowotny, N. The knowns and unknowns of West Nile virus in Europe: What did we learn from the 2018 outbreak? Expert Rev. Anti-Infect. Ther. 2020, 18, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.K.; Noppenberger, J. Avian influenza: A review. Am. J. Health Syst. Pharm. 2007, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018, 100, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Woo, P.C.Y.; Li, K.S.M.; Tsang, A.K.L.; Fan, R.Y.Y.; Luk, H.K.H.; Cai, J.-P.; Chan, K.-H.; Zheng, B.-J.; Wang, M.; et al. Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A. J. Virol. 2015, 89, 3076–3092. [Google Scholar] [CrossRef] [Green Version]
- Colombo, V.C.; Sluydts, V.; Marien, J.; Vanden Broecke, B.; Van Houtte, N.; Leirs, W.; Jacobs, L.; Iserbyt, A.; Hubert, M.; Heyndrickx, L.; et al. SARS-CoV-2 surveillance in Norway rats (Rattus norvegicus) from Antwerp sewer system, Belgium. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Chantrey, J.; Meyer, H.; Baxby, D.; Begon, M.; Bown, K.J.; Hazel, S.M.; Jones, T.; Montgomery, W.I.; Bennett, M. Cowpox: Reservoir hosts and geographic range. Epidemiol. Infect. 1999, 122, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Essbauer, S.; Pfeffer, M.; Meyer, H. Zoonotic poxviruses. Vet. Microbiol. 2010, 140, 229–236. [Google Scholar] [CrossRef]
- Campe, H.; Zimmermann, P.; Glos, K.; Bayer, M.; Bergemann, H.; Dreweck, C.; Graf, P.; Weber, B.K.; Meyer, H.; Büttner, M.; et al. Cowpox Virus Transmission from Pet Rats to Humans, Germany. Emerg. Infect. Dis. 2009, 15, 777–780. [Google Scholar] [CrossRef]
- Tantawi, H.H.; Zaghloul, T.M.; Zakaria, M. Poxvirus infection in a rat (Rattus norvegicus) in Kuwait. Int. J. Zoonoses 1983, 10, 28–32. [Google Scholar]
- Martina, B.E.; Van Doornum, G.; Dorrestein, G.M.; Niesters, H.; Stittelaar, K.J.; Wolters, M.A.; Van Bolhuis, H.G.; Osterhaus, A.D. Cowpox Virus Transmission from Rats to Monkeys, the Netherlands. Emerg. Infect. Dis. 2006, 12, 1005–1007. [Google Scholar] [CrossRef]
- Wolfs, T.F.; Wagenaar, J.A.; Niesters, H.; Osterhaus, A. Rat-to-Human Transmission of Cowpox Infection. Emerg. Infect. Dis. 2002, 8, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Angley, L.P.; Combs, M.; Firth, C.; Frye, M.J.; Lipkin, W.I.; Richardson, J.L.; Munshi-South, J. Spatial variation in the parasite communities and genomic structure of urban rats in New York City. Zoonoses Public Health 2017, 65, e113–e123. [Google Scholar] [CrossRef] [PubMed]
- Desvars-Larrive, A.; Baldi, M.; Walter, T.; Zink, R.; Walzer, C. Brown rats (Rattus norvegicus) in urban ecosystems: Are the constraints related to fieldwork a limit to their study? Urban Ecosyst. 2018, 21, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.H.; Banks, P.B.; Deutsch, M.A.; Corrigan, R.F.; Munshi-South, J. Trends in urban rat ecology: A framework to define the prevailing knowledge gaps and incentives for academia, pest management professionals (PMPs) and public health agencies to participate. J. Urban Ecol. 2017, 3, jux005. [Google Scholar] [CrossRef] [Green Version]
- Cervero-Aragó, S.; Desvars-Larrive, A.; Lindner, G.; Sommer, R.; Häfeli, I.; Walochnik, J. Surface Waters and Urban Brown Rats as Potential Sources of Human-Infective Cryptosporidium and Giardia in Vienna, Austria. Microorganisms 2021, 9, 1596. [Google Scholar] [CrossRef]
- Fanelli, D. Negative results are disappearing from most disciplines and countries. Scientometrics 2011, 90, 891–904. [Google Scholar] [CrossRef]
- Weintraub, P.G. The Importance of Publishing Negative Results. J. Insect Sci. 2016, 16, 109. [Google Scholar] [CrossRef] [Green Version]
- Albery, G.F.; Carlson, C.J.; Cohen, L.E.; Eskew, E.A.; Gibb, R.; Ryan, S.J.; Sweeny, A.R.; Becker, D.J. Urban-adapted mammal species have more known pathogens. Nat. Ecol. Evol. 2022, 6, 794–801. [Google Scholar] [CrossRef]
- Pellizzaro, M.; Martins, C.M.; Yamakawa, A.C.; Ferraz, D.D.C.; Morikawa, V.M.; Ferreira, F.; Dos Santos, A.P.; Biondo, A.W.; Langoni, H. Molecular detection of Leptospira spp. in rats as early spatial predictor for human disease in an endemic urban area. PLoS ONE 2019, 14, e0216830. [Google Scholar] [CrossRef]
- Sures, B.; Scheible, T.; Bashtar, A.R.; Taraschewski, H. Lead concentrations in Hymenolepis diminuta adults and Taenia taeniaeformis larvae compared to their rat hosts (Rattus norvegicus) sampled from the city of Cairo, Egypt. Parasitology 2003, 127, 483–487. [Google Scholar] [CrossRef]
- Wünschmann, S.; Oehlmann, J.; Delakowitz, B.; Markert, B. Possible use of wild-living rats (Rattus norvegicus) as bioindicators for heavy metal pollution: Part II: Body burden calculations for identification of depot compartments. Umweltwiss. Schadst.-Forsch. 2002, 14, 96–103. [Google Scholar] [CrossRef]
Virus Family | Target Virus/Taxon | Assay | Primers/Probes | Ref. |
---|---|---|---|---|
Coronaviridae | Coronaviruses | RT-PCR | Fwd primer from [49], PanCoV-13-RV [50] | [49,50] |
Flaviviridae | Flavivirus (universal) | RT-qPCR | PF1S, PF2Rbis/SYBR Green | [51] |
West Nile virus | RT-PCR | WNV-10090f, WNV-10807r | [22] | |
Usutu virus | RT-PCR | Usu9170f, Usu9704r | [52] | |
Hantaviridae | Hantaviruses | RT-PCR, nested | HAN-L-F1, HAN-L-R1; nested HAN-L-F2, nested HAN-LR2 | [53] |
Hepeviridae | Hepatitis E virus | RT-qPCR | JVHEVF, JVHEVR/JVHEVP | [54] |
Hepatitis E virus | RT-PCR | rHEV-SW-for, rHEV-SW-rev | [55] | |
Orthomyxoviridae | Influenza A virus | RT-qPCR | FLUAM-1F, FLUAM-1R/FLUAM-1P | [56] |
Picornaviridae | Encephalomyo-carditis virus | RT-qPCR | 5NTR-F, 5NTR-R/5NTR-P; | [59] |
RT-qPCR | 2B-F, 2B-R/2B-P | [59] | ||
Encephalomyo-carditis virus | RT-PCR, nested | EMCVff2,EMCVrev1; nested EMCVffint3, EMCVrevint3 | [57] | |
Poxviridae | Chordopoxivirinae | PCR | “Low GC” primers | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camp, J.V.; Desvars-Larrive, A.; Nowotny, N.; Walzer, C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses 2022, 14, 1516. https://doi.org/10.3390/v14071516
Camp JV, Desvars-Larrive A, Nowotny N, Walzer C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses. 2022; 14(7):1516. https://doi.org/10.3390/v14071516
Chicago/Turabian StyleCamp, Jeremy V., Amélie Desvars-Larrive, Norbert Nowotny, and Chris Walzer. 2022. "Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses?" Viruses 14, no. 7: 1516. https://doi.org/10.3390/v14071516
APA StyleCamp, J. V., Desvars-Larrive, A., Nowotny, N., & Walzer, C. (2022). Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses, 14(7), 1516. https://doi.org/10.3390/v14071516