Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Samples
2.2. Analysis of the Glycoprotein Gene Sequences
2.3. Glycoprotein Sequence Analysis and 3D Structure Prediction
3. Results
3.1. Sequence Analysis of the Glycoprotein Nucleotide and Amino Acid Sequences
3.2. Glycoprotein Primary, Secondary and Tertiary Structure Analysis
3.2.1. Domain I
3.2.2. Domain II
3.2.3. Domain III
3.2.4. Domain IV
3.3. In Silico Mutagenesis of LNYV-SII G Protein
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dietzgen, R.G.; Callaghan, B.; Campbell, P.R. Biology and genomics of Lettuce necrotic yellows virus. In Plant Viruses; Global Science Books: Middlesex, UK, 2007; Volume 1, pp. 85–92. [Google Scholar]
- Stubbs, L.L.; Grogan, R.G. Necrotic Yellows: A newly recognized virus disease of lettuce. Aust. J. Agric. Res. 1963, 14, 439–459. [Google Scholar] [CrossRef]
- Randles, J.W.; Carver, M. Epidemiology of lettuce necrotic yellows virus in South Australia. II: Distribution of virus, host plants, and vectors. Aust. J. Agric. Res. 1971, 22, 231–237. [Google Scholar] [CrossRef]
- Fletcher, J.D.; Zhang, Y.; Kean, A.M.; Davidson, M.M. Outdoor Lettuce Virus Disease Project, Year 2 Report, 2018. A Plant & Food Research Report Prepared for: Vegetables New Zealand Incorporated; Milestone No. 75055. Contract No. 34998. Job code: P/313050/01. SPTS No. 16208; The New Zealand Institute for Plant & Food Research Ltd.: Auckland, New Zealand, 2018; Available online: https://potatoesnz.co.nz/wp-content/uploads/2019/09/22125-Waka-Paul-Sustainable-vegetable-systems-understanding-FINAL.pdf (accessed on 18 June 2022).
- Boakye, D.B.; Randles, J.W. Epidemiology of lettuce necrotic yellows virus in South Australia. III: Virus transmission parameters and vector feeding behaviour in host and non-host plants. Aust. J. Agric. Res. 1974, 25, 791–802. [Google Scholar] [CrossRef]
- Fry, P.; Close, R.; Procter, C.; Sunde, R. Lettuce necrotic yellows virus in New Zealand. N. Z. J. Agric. Res. 1973, 16, 143–146. [Google Scholar] [CrossRef]
- Fletcher, J.D.; Zhang, Y.; Kean, A.M.; Davidson, M.M. Outdoor Lettuce Virus Disease Project 2016-2018 Year 1. A Plant & Food Research Report Prepared for: Vegetables New Zealand Incorporated; Milestone No. 70479. Contract No. 33791. Job code: P/313050/01. SPTS No. 14591; The New Zealand Institute for Plant & Food Research Ltd.: Auckland, New Zealand, 2017; Available online: https://www.vri.org.nz/dmsdocument/152-lettuce-virus-disease-project-report-john-flectcher-pfr-2016-2018-year-1-final (accessed on 18 June 2022).
- Fletcher, J.; France, C.; Butler, R. Virus surveys of lettuce crops and management of lettuce big-vein disease in New Zealand. N. Z. Plant Prot. 2005, 58, 239–244. [Google Scholar]
- Wetzel, T.; Dietzgen, R.G.; Dale, J.L. Genomic organization of lettuce necrotic yellows rhabdovirus. Virology 1994, 200, 401–412. [Google Scholar] [CrossRef]
- Ammar, E.-D.; Tsai, C.-W.; Whitfield, A.E.; Redinbaugh, M.G.; Hogenhout, S.A. Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts. Annu. Rev. Entomol. 2009, 54, 447–468. [Google Scholar] [CrossRef] [Green Version]
- Gaedigk, K.; Adam, G.; Mundry, K.-W. The Spike Protein of Potato Yellow Dwarf Virus and Its Functional Role in the Infection of Insect Vector Cells. J. Gen. Virol. 1986, 67, 2763–2773. [Google Scholar] [CrossRef]
- Å kalamera, D.; Heath, M.C. Changes in the cytoskeleton accompanying infection-induced nuclear movements and the hypersensitive response in plant cells invaded by rust fungi. Plant J. 1998, 16, 191–200. [Google Scholar] [CrossRef]
- Mann, K.S.; Dietzgen, R.G. Plant rhabdoviruses: New insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch. Virol. 2014, 159, 1889–1900. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Redinbaugh, M.G.; Ammar, E.D. Plant and animal rhabdovirus host range: A bug’s view. Trends Microbiol. 2003, 11, 264–271. [Google Scholar] [CrossRef]
- Jackson, A.O.; Dietzgen, R.G.; Goodin, M.M.; Bragg, J.N.; Deng, M. Biology of plant rhabdoviruses. Annu. Rev. Phytopathol. 2005, 43, 623–660. [Google Scholar] [CrossRef]
- Callaghan, B.; Dietzgen, R.G. Nucleocapsid gene variability reveals two subgroups of Lettuce necrotic yellows virus: Brief report. Arch. Virol. 2005, 150, 1661–1667. [Google Scholar] [CrossRef]
- Higgins, C.M.; Chang, W.L.; Khan, S.; Tang, J.; Elliott, C.; Dietzgen, R.G. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand. Arch. Virol. 2016, 161, 269–277. [Google Scholar] [CrossRef]
- Darling, T.L. Population Analysis and Subgroup Diagnosis of Lettuce Necrotic Yellows Virus in New Zealand: [A Thesis Submitted to Auckland University of Technology in Partial Fulfilment of the Requirements for the Degree of Master of Science (MSc), 2021]. Master’s Thesis, Auckland University of Technology, Auckland, New Zealand, 2021. [Google Scholar]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3-masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012, 40. [Google Scholar] [CrossRef] [Green Version]
- Dietzgen, R.G.; Callaghan, B.; Wetzel, T.; Dale, J.L. Completion of the genome sequence of Lettuce necrotic yellows virus, type species of the genus Cytorhabdovirus. Virus Res. 2006, 118, 16–22. [Google Scholar] [CrossRef]
- Heim, F.; Lot, H.; Delecolle, B.; Bassler, A.; Krczal, G.; Wetzel, T. Complete nucleotide sequence of a putative new cytorhabdovirus infecting lettuce. Arch. Virol. 2008, 153, 81–92. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Ali, A.; Natsuaki, T.; Okuda, S. The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes 2006, 32, 307–311. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Pauszek, S.J.; Bunch, T.A.; Schumann, K.R. Full-length genome analysis of natural isolates of vesicular stomatitis virus (Indiana 1 serotype) from North, Central and South America. J. Gen. Virol. 2002, 83, 2475–2483. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015, 43, W174–W181. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER suite: Protein structure and function prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appe, l.R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef]
- Messaoudi, A.; Belguith, H.; Ben Hamida, J. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor. Biol. Med. Model. 2013, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khor, B.Y.; Tye, G.J.; Lim, T.S.; Noordin, R.; Choong, Y.S. The structure and dynamics of BmR1 protein from Brugia malayi: In silico approaches. Int. J. Mol. Sci. 2014, 15, 11082–11099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, S.; Bressanelli, S.; Rey, F.A.; Gaudin, Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 2006, 313, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomputing. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar]
- Acosta-Leal, R.; Duffy, S.; Xiong, Z.; Hammond, R.W.; Elena, S.F. Advances in plant virus evolution: Translating evolutionary insights into better disease management. Phytopathology 2011, 101, 1136–1148. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Belouzard, S.; Whittaker, G.R. Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J. Biol. Chem. 2008, 283, 6418–6427. [Google Scholar] [CrossRef] [Green Version]
- Backovic, M.; Jardetzky, T.S. Class III viral membrane fusion proteins. Curr. Opin. Struct. Biol. 2009, 19, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Backovic, M.; Jardetzky, T.S. Class III viral membrane fusion proteins. Adv. Exp. Med. Biol. 2011, 950, 91–101. [Google Scholar] [CrossRef]
- Rey, F.A.; Lok, S.M. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell 2018, 172, 1319–1334. [Google Scholar] [CrossRef]
- Martin, K.M.; Dietzgen, R.G.; Wang, R.; Goodin, M.M. Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. J. Gen. Virol. 2012, 93, 906–914. [Google Scholar] [CrossRef]
- Cureton, D.K.; Massol, R.H.; Saffarian, S.; Kirchhausen, T.L.; Whelan, S.P.J. Vesicular Stomatitis Virus Enters Cells through Vesicles Incompletely Coated with Clathrin That Depend upon Actin for Internalization. PLoS Pathog. 2009, 5, e1000394. [Google Scholar] [CrossRef] [Green Version]
- Johannsdottir, H.K.; Mancini, R.; Kartenbeck, J.; Amato, L.; Helenius, A. Host cell factors and functions involved in vesicular stomatitis virus entry. J. Virol. 2009, 83, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Rücker, P.; Wieninger, S.A.; Ullmann, G.M.; Sticht, H. pH-dependent molecular dynamics of vesicular stomatitis virus glycoprotein G. Proteins Struct. Funct. Bioinform. 2012, 80, 2601–2613. [Google Scholar] [CrossRef]
- Nikolic, J.; Belot, L.; Raux, H.; Legrand, P.; Gaudin, Y.; Albertini, A.A. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kotwal, G.J.; Buller, R.M.L.; Wunner, W.H.; Pringle, C.R.; Ghosh, H.P. Role of glycosylation in transport of vesicular stomatitis virus envelope glycoprotein. A new class of mutant defective in glycosylation and transport of G protein. J. Biol. Chem. 1986, 261, 8936–8943. [Google Scholar] [CrossRef]
- Wojczyk, B.S.; Takahashi, N.; Levy, M.T.; Andrews, D.W.; Abrams, W.R.; Wunner, W.H.; Spitalnik, S.L. N-glycosylation at one rabies virus glycoprotein sequon influences N-glycan processing at a distant sequon on the same molecule. Glycobiology 2005, 15, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Bowden, T.A.; Wilson, I.A.; Crispin, M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Et Biophys. Acta—Gen. Subj. 2019, 1863, 1480–1497. [Google Scholar] [CrossRef]
- Roche, S.; Rey, F.A.; Gaudin, Y.; Bressanelli, S. Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 2007, 315, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Noguchi, K.; Nonaka, D.; Morita, M.; Yasuda, A.; Kawazato, H.; Nishizono, A. Addition of a single N-glycan to street rabies virus glycoprotein enhances virus production. J. Gen. Virol. 2013, 94, 270–275. [Google Scholar] [CrossRef]
LNYV Subgroup | Isolate Name | Accession Number | Similarity with LNYV-SI AU2 (%) | Similarity with LYMoV (%) | ||
---|---|---|---|---|---|---|
nt | aa | nt | aa | |||
SI | SF1 | ON799199 | 94.8 | 98.4 | 56.5 | 49.8 |
SF3 | ON799201 | 94.8 | 98.4 | 56.5 | 49.8 | |
WHG1 | ON799202 | 94.9 | 98.4 | 56.4 | 49.8 | |
WHG2 | ON799203 | 94.9 | 98.4 | 56.4 | 49.8 | |
WHG3 | ON799204 | 95 | 98.4 | 56.5 | 49.8 | |
WHG4 | ON799205 | 95 | 98.4 | 56.5 | 49.8 | |
WHG5 | ON799206 | 94.9 | 98.2 | 56.5 | 49.8 | |
RPO1 | ON799195 | 93.9 | 97.8 | 56.5 | 50 | |
RPO2 | ON799196 | 94.2 | 97.7 | 56.5 | 49.8 | |
RPO3 | ON799197 | 94.2 | 98.2 | 56.6 | 50.2 | |
RPO4 | ON799198 | 94.1 | 98 | 56.3 | 50 | |
RPE2 | ON799193 | 93.8 | 97.8 | 56.5 | 50.2 | |
RPC1 | ON799189 | 93.9 | 97.5 | 56.6 | 50.4 | |
RPC2 | ON799190 | 94.1 | 98 | 56.4 | 50 | |
HV14 | ON799185 | 94 | 97.3 | 56.2 | 49.6 | |
SII | SF2 | ON799200 | 83.2 | 94.2 | 55.3 | 49.8 |
RPE1 | ON799192 | 83 | 94.2 | 55.2 | 49.8 | |
RPE3 | ON799194 | 83 | 94.2 | 55.3 | 49.8 | |
RPC3 | ON799191 | 83 | 94 | 55.3 | 49.8 | |
HV18 | ON799186 | 83 | 93.6 | 55 | 49.6 |
Sample | aa Position | Sequence | Potential | Likely Glycosylation |
---|---|---|---|---|
LNYV-SI AU2 | 3 | NHSV | 0.4867 | - |
217 | NSTT | 0.4546 | - | |
248 | NDSK | 0.5548 | + | |
LNYV-SI HV33 (NZ6) | 3 | NHSV | 0.4863 | - |
217 | NSTT | 0.521 | + | |
248 | NDSK | 0.5546 | + | |
LNYV-SII HV19 (NZ1) | 3 | NHSV | 0.4864 | - |
217 | NSTT | 0.4656 | - | |
248 | NDSK | 0.6124 | + | |
LNYV-SII HV19 (NZ1) DIII mutant (E244D, S247A) | 3 | NHSV | 0.4863 | - |
217 | NSTT | 0.4654 | - | |
248 | NDSK | 0.5547 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabowo, E.Y.; Valmonte-Cortes, G.R.; Darling, T.L.; Buckley, E.; Duxbury, M.; Seale, B.; Higgins, C.M. Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups? Viruses 2022, 14, 1574. https://doi.org/10.3390/v14071574
Prabowo EY, Valmonte-Cortes GR, Darling TL, Buckley E, Duxbury M, Seale B, Higgins CM. Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups? Viruses. 2022; 14(7):1574. https://doi.org/10.3390/v14071574
Chicago/Turabian StylePrabowo, Eko Y., Gardette R. Valmonte-Cortes, Toni Louise Darling, Elizabeth Buckley, Mark Duxbury, Brent Seale, and Colleen M. Higgins. 2022. "Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups?" Viruses 14, no. 7: 1574. https://doi.org/10.3390/v14071574
APA StylePrabowo, E. Y., Valmonte-Cortes, G. R., Darling, T. L., Buckley, E., Duxbury, M., Seale, B., & Higgins, C. M. (2022). Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups? Viruses, 14(7), 1574. https://doi.org/10.3390/v14071574