Alternative Methods to Current In Vivo Procedures to Address the 3Rs Tenet in Rabies Proficiency Testing
Abstract
:1. Introduction
2. Hypothesis and Significance
3. Examples from the (Recent) Past
4. Candidate Cell-Based Technologies and Risk Analysis
5. Assessing Molecular Diagnostic Capabilities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the Global Burden of Endemic Canine Rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Organisation mondiale de la Santé. Rabies vaccines: WHO position paper—April 2018—Vaccins antirabiques: Note de synthèse de l’OMS—avril 2018. Wkly. Epidemiol. Rec. Relevé Épidémiologique Hebd. 2018, 93, 201–219. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations; World Organisation for Animal Health. Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030: United Against Rabies Collaboration: First Annual Progress Report: Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Minghui, R.; Stone, M.; Semedo, M.H.; Nel, L. New global strategic plan to eliminate dog-mediated rabies by 2030. Lancet Glob. Health 2018, 6, e828–e829. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations; World Organisation for Animal Health. Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151383-8. [Google Scholar]
- World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2018: OIE Terrestrial Manual 2018; Office International des Epizooties: Paris, France, 2018. [Google Scholar]
- Djegui, F.; Gourlaouen, M.; Coetzer, A.; Adjin, R.; Tohozin, R.; Leopardi, S.; Mauti, S.; Akpo, Y.; Gnanvi, C.; Nel, L.H.; et al. Capacity Building Efforts for Rabies Diagnosis in Resource-Limited Countries in Sub-Saharan Africa: A Case Report of the Central Veterinary Laboratory in Benin (Parakou). Front. Vet. Sci. 2022, 8, 769114. [Google Scholar] [CrossRef] [PubMed]
- Gourlaouen, M.; Angot, A.; Mancin, M.; Bebay, C.; Soumaré, B.; Ellero, F.; Zecchin, B.; Leopardi, S.; De Battisti, C.; Terregino, C.; et al. An inter-laboratory trial as a tool to increase rabies diagnostic capabilities of Sub-Saharan African Veterinary laboratories. PLoS Negl. Trop. Dis. 2020, 14, e0008010. [Google Scholar] [CrossRef] [Green Version]
- Clavijo, A.; Freire de Carvalho, M.H.; Orciari, L.A.; Velasco-Villa, A.; Ellison, J.A.; Greenberg, L.; Yager, P.A.; Green, D.B.; Vigilato, M.A.; Cosivi, O.; et al. An inter- laboratory proficiency testing exercise for rabies diagnosis in Latin America and the Caribbean. PLoS Negl. Trop. Dis. 2017, 11, e0005427. [Google Scholar] [CrossRef] [PubMed]
- Robardet, E.; Picard-Meyer, E.; Andrieu, S.; Servat, A.; Cliquet, F. International interlaboratory trials on rabies diagnosis: An overview of results and variation in reference diagnosis techniques (fluorescent antibody test, rabies tissue culture infection test, mouse inoculation test) and molecular biology techniques. J. Virol. Methods 2011, 177, 15–25. [Google Scholar] [CrossRef]
- World Health Organization; Rupprecht, C.E.; Fooks, A.R.; Abela-Ridder, B. Laboratory Techniques in Rabies; World Health Organization: Geneva, Switzerland, 2018; Volume 1, ISBN 978-92-4-151515-3. [Google Scholar]
- Flecknell, P. Replacement, reduction and refinement. ALTEX 2002, 19, 73–78. [Google Scholar] [PubMed]
- Duong, V.; Tarantola, A.; Ong, S.; Mey, C.; Choeung, R.; Ly, S.; Bourhy, H.; Dussart, P.; Buchy, P. Laboratory diagnostics in dog-mediated rabies: An overview of performance and a proposed strategy for various settings. Int. J. Infect. Dis. 2016, 46, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Seligmann, E.B. Laboratory techniques in rabies: The NIH test for potency. Monogr. Ser. World Health Organ. 1973, 23, 279–286. [Google Scholar]
- Poston, R.; Hill, R.; Allen, C.; Casey, W.; Gatewood, D.; Levis, R.; Mallet, L.; Smith, D.; Srinivas, G.; Stirling, C.; et al. Achieving scientific and regulatory success in implementing non-animal approaches to human and veterinary rabies vaccine testing: A NICEATM and IABS workshop report. Biologicals 2019, 60, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.; Groß-Albenhausen, E.; Jaeger, O.; Milcke, L. The antibody-binding-test, a useful method for quantitative determination of inactivated rabies virus antigen. J. Biol. Stand. 1981, 9, 81–89. [Google Scholar] [CrossRef]
- Fitzgerald, E.A.; Needy, C.F. Use of the single radial immunodiffusion test as a replacement for the NIH mouse potency test for rabies vaccine. Dev. Biol. Stand. 1986, 64, 73–79. [Google Scholar] [PubMed]
- Stokes, W.; McFarland, R.; Kulpa-Eddy, J.; Gatewood, D.; Levis, R.; Halder, M.; Pulle, G.; Kojima, H.; Casey, W.; Gaydamaka, A.; et al. Report on the international workshop on alternative methods for human and veterinary rabies vaccine testing: State of the science and planning the way forward. Biologicals 2012, 40, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Morgeaux, S.; Poirier, B.; Ragan, C.I.; Wilkinson, D.; Arabin, U.; Guinet-Morlot, F.; Levis, R.; Meyer, H.; Riou, P.; Shaid, S.; et al. Replacement of in vivo human rabies vaccine potency testing by in vitro glycoprotein quantification using ELISA—Results of an international collaborative study. Vaccine 2017, 35, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Akkermans, A.; Chapsal, J.-M.; Coccia, E.M.; Depraetere, H.; Dierick, J.-F.; Duangkhae, P.; Goel, S.; Halder, M.; Hendriksen, C.; Levis, R.; et al. Animal testing for vaccines. Implementing replacement, reduction and refinement: Challenges and priorities. Biologicals 2020, 68, 92–107. [Google Scholar] [CrossRef]
- Moreira, W.C.; Machado, N.D.S.; Freitas, J.F.D.S.; De Almeida, A.E.C.C.; De Moura, W.C. Alternative potency tests for quality control of immunobiologicals: A critical review of the validation approach. Vigil. Sanit. Debate Soc. Ciênc. Tecnol. 2020, 8, 48–61. [Google Scholar] [CrossRef]
- Krämer, B.; Bruckner, L.; Daas, A.; Milne, C. Collaborative study for validation of a serological potency assay for rabies vaccine (inactivated) for veterinary use. Pharmeuropa Bio Sci. Notes 2010, 2010, 37–55. [Google Scholar]
- Jorfi, M.; D’Avanzo, C.; Kim, D.Y.; Irimia, D. Three-Dimensional Models of the Human Brain Development and Diseases. Adv. Healthc. Mater. 2018, 7, 1700723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humpel, C. Organotypic brain slice cultures: A review. Neuroscience 2015, 305, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Mayer, D.; Fischer, H.; Schneider, U.; Heimrich, B.; Schwemmle, M. Borna Disease Virus Replication in Organotypic Hippocampal Slice Cultures from Rats Results in Selective Damage of Dentate Granule Cells. J. Virol. 2005, 79, 11716–11723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salick, M.R.; Wells, M.F.; Eggan, K.; Kaykas, A. Modelling Zika Virus Infection of the Developing Human Brain In Vitro Using Stem Cell Derived Cerebral Organoids. J. Vis. Exp. 2017, 127, 56404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloker, L.; Yurttas, C.; Lauer, U. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virotherapy 2018, 7, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Wernike, K.; Freuling, C.M.; Müller, T.; Aylan, O.; Brochier, B.; Cliquet, F.; Vázquez-Morón, S.; Hostnik, P.; Huovilainen, A.; et al. A step forward in molecular diagnostics of lyssaviruses—results of a ring trial among European laboratories. PLoS ONE 2013, 8, e58372. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorzan, M.; Gourlaouen, M.; Leopardi, S.; De Benedictis, P. Alternative Methods to Current In Vivo Procedures to Address the 3Rs Tenet in Rabies Proficiency Testing. Viruses 2022, 14, 1698. https://doi.org/10.3390/v14081698
Zorzan M, Gourlaouen M, Leopardi S, De Benedictis P. Alternative Methods to Current In Vivo Procedures to Address the 3Rs Tenet in Rabies Proficiency Testing. Viruses. 2022; 14(8):1698. https://doi.org/10.3390/v14081698
Chicago/Turabian StyleZorzan, Maira, Morgane Gourlaouen, Stefania Leopardi, and Paola De Benedictis. 2022. "Alternative Methods to Current In Vivo Procedures to Address the 3Rs Tenet in Rabies Proficiency Testing" Viruses 14, no. 8: 1698. https://doi.org/10.3390/v14081698
APA StyleZorzan, M., Gourlaouen, M., Leopardi, S., & De Benedictis, P. (2022). Alternative Methods to Current In Vivo Procedures to Address the 3Rs Tenet in Rabies Proficiency Testing. Viruses, 14(8), 1698. https://doi.org/10.3390/v14081698