The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Assessment of Risk of Bias
2.6. Statistical Analysis
3. Results
3.1. Search Results and Characteristics of the Included Studies
3.2. Primary Outcome
3.3. Safety Outcomes
3.4. Network Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.C.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Ko, W.C.; Hsueh, P.R. Global epidemiology of coronavirus disease 2019 (COVID-19): Disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int. J. Antimicrob. Agents 2020, 55, 105946. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://covid19.who.int/ (accessed on 13 June 2022).
- Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020, 53, 404–412. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/management/ (accessed on 12 May 2022.).
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; Hung, S.H.; Lai, C.C.; Wang, C.Y.; Chen, C.H. The impact of neutralizing monoclonal antibodies on the outcomes of COVID-19 outpatients: A systematic review and meta-analysis of randomized controlled trials. J. Med. Virol. 2022, 94, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Westendorf, K.; Žentelis, S.; Wang, L.; Foster, D.; Vaillancourt, P.; Wiggin, M.; Lovett, E.; van der Lee, R.; Hendle, J.; Pustilnik, A.; et al. LY-CoV1404 (be.e.ebtelovimab) potently neutralizes SARS-CoV-2 variants. BioRxiv 2022, 39, 110812. [Google Scholar]
- Kreuzberger, N.; Hirsch, C.; Chai, K.L.; Tomlinson, E.; Khosravi, Z.; Popp, M.; Neidhardt, M.; Piechotta, V.; Salomon, S.; Valk, S.J.; et al. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 9, Cd013825. [Google Scholar]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.england.nhs.uk/coronavirus/documents/c1603-interim-clinical-commissioning-policy-antivirals-or-neutralising-monoclonal-antibodies-for-non-hospitalised-patients-with-covid-19-version-5/ (accessed on 12 May 2022.).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rücker, G.; Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med. Res. Methodol. 2015, 15, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Paxlovid in Reducing Severe COVID-19 and Mortality in High Risk Patients. Clin. Infect. Dis. 2022, ciac443. [Google Scholar] [CrossRef]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of molnupiravir and nirmatrelvir/ritonavir against mortality, hospitalization, and in-hospital outcomes among community-dwelling, ambulatory COVID-19 patients during the BA.2.2 wave in Hong Kong: An observational study. MedRxiv 2022. [Google Scholar] [CrossRef]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.H.; Lai, C.C.; Chang, S.P.; Lu, L.C.; Hung, S.H.; Lin, W.T. Favipiravir-based treatment for outcomes of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Expert Rev. Clin. Pharmacol. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.K.; Chen, C.Y.; Chen, W.C.; Lai, C.C.; Hung, S.H.; Lin, W.T. Effect of sofosbuvir-based treatment on clinical outcomes of patients with COVID-19: A systematic review and meta-analysis of randomised controlled trials. Int. J. Antimicrob. Agents 2022, 59, 106545. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, S.; Anandaradje, A.; Shivabasappa, S.; Melepurakkal Sadanandan, D.; Nair, N.S.; George, M. Efficacy of pharmacological interventions in COVID-19: A network meta-analysis. Br. J. Clin. Pharmacol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, D.C.; Li, S.; Lei, Y.H.; Wei, J.; Huang, L.Y. Meta-analysis of arbidol versus lopinavir/ritonavir in the treatment of coronavirus disease 2019. J. Med. Virol. 2022, 94, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.A.; Eron, J.J., Jr.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 2022, 14, eabl7430. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05011513 (accessed on 25 May 2022).
- Ritchie, H.E.; Mathieu, L.; Rodés-Guirao, C.; Appel, C.; Giattino, E.; Ortiz-Ospina, J.; Hasell, B.; Macdonald, D.; Roser, B.M. Coronavirus (COVID-19) Vaccinations. 2020. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 29 July 2022).
Study | Design | Period | Site | Subjects | Timing | Study Drug | Comparator | No of Patients under Randomization | Primary Outcome | |
---|---|---|---|---|---|---|---|---|---|---|
Study Group | Control Group | |||||||||
Gottlieb et al., 2022 | Phase 3, double-blind, randomized, placebo-controlled trial | From 18 September 2020, through 8 April 2021 | 64 sites in the United States, Spain, Denmark, and the United Kingdom | Nonhospitalized, unvaccinated patients with COVID-19 who had at least one risk factor for disease progression | within 7 days after the onset of signs or symptoms | intravenous remdesivir (200 mg on day 1 and 100 mg on days 2 and 3) | Placebo | 279 | 283 | COVID-19–related hospitalization or death from any cause by day 28 |
Hammond et al., 2022 | Phase 2–3, double-blind, randomized, placebo-controlled trial | Between 16 July and 9 December 2021 | 343 sites in multination | Nonhospitalized, unvaccinated adults with COVID-19 who were at high risk for progression to severe disease | within 5 days after the onset of signs or symptoms | 300 mg of nirmatrelvir plus 100 mg of ritonavir, every 12 h for 5 days | Placebo | 1120 | 1126 | COVID-19–related hospitalization or death from any cause through day 28 |
Jayk Bernal et al., 2022 | Phase 3, double-blind, randomized, placebo-controlled trial | Between 6 May 2021 and 4 November 2021 | 107 sites in 20 countries | Nonhospitalized, unvaccinated adults with mild-to-moderate, laboratory-confirmed COVID-19 and at least one risk factor for severe COVID-19 illness | within 5 days after the onset of signs or symptoms | molnupiravir (800 mg) orally twice daily for 5 days | Placebo | 716 | 717 | hospitalization or death through day 29 |
Antiviral Agents * | Nirmatrelvir Plus Ritonavir | Remdesivir | Molnupiravir | Placebo |
---|---|---|---|---|
Nirmatrelvir plus ritonavir | 0.89 (0.17–4.69) | 0.17 (0.07–0.39) | 0.12 (0.06–0.24) | |
Remdesivir | 1.12 (0.21–5.88) | 0.19 (0.04–0.89) | 0.13 (0.03–0.57)) | |
Molnupiravir | 5.85 (2.54–13.46) | 5.22 (1.13–24.22) | 0.67 (0.46–0.99) | |
Placebo | 8.68 (4.15–18.17) | 7.75 (1.76–34.22) | 1.48 (1.01–2.18) |
Antiviral Agents | p-Score * |
---|---|
Nirmatrelvir + ritonavir | 0.8510 |
Remdesivir | 0.8087 |
Molnupiravir | 0.3317 |
Placebo | 0.0086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, C.-C.; Wang, Y.-H.; Chen, K.-H.; Chen, C.-H.; Wang, C.-Y. The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Viruses 2022, 14, 1706. https://doi.org/10.3390/v14081706
Lai C-C, Wang Y-H, Chen K-H, Chen C-H, Wang C-Y. The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Viruses. 2022; 14(8):1706. https://doi.org/10.3390/v14081706
Chicago/Turabian StyleLai, Chih-Cheng, Ya-Hui Wang, Kuang-Hung Chen, Chao-Hsien Chen, and Cheng-Yi Wang. 2022. "The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials" Viruses 14, no. 8: 1706. https://doi.org/10.3390/v14081706
APA StyleLai, C.-C., Wang, Y.-H., Chen, K.-H., Chen, C.-H., & Wang, C.-Y. (2022). The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Viruses, 14(8), 1706. https://doi.org/10.3390/v14081706