Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators
Abstract
:1. Epidemiology
1.1. Symptoms
1.2. Transmission Routes
1.3. Prevalence
2. Etiology
2.1. Genome
2.2. Virion Structure and Protein Function
2.3. Pathogenic Mechanism
3. Interspecies Transmission
3.1. Host Range
Genus/Species | Country/Region | Reference |
---|---|---|
Aethina tumida | America | [79] |
Ancistrocerus auctus | France | [77] |
Andrena vaga | Belgium | [81] |
Blattella germanica | America | [79] |
Bombus atratus | Colombia | [74] |
Bombus ternarius | America | [34] |
Bombus terrestris | France | [77] |
Bombus pascuorum | ||
Bombus ruderatus | ||
Bombus hortorum | Slovenia | [76] |
Bombus humilis | France | [77] |
Bombus ignitus | Korea | [82] |
Bombus impatiens | America | [80] |
Bombus sylvarum | Slovenia | [76] |
Bombus vagans | America | [79] |
Camponotus spp. | ||
Eristalis tenax | Britain | [83] |
Eristalis arbustorum | ||
Eucera pruinosa | America | [80] |
Eucera spp. | France | [77] |
Forficula auricularia | America | [79] |
Galleria mellonella | ||
Halictidae sp. | France | [77] |
Halictus fulvipes | ||
Halictus tectus | ||
Hoplitis adunca | ||
Lasioglossum crassepunctatum | ||
Lasioglossum malachurum | ||
Lasioglossum pauperatum | ||
Lasioglossum pauxillum | ||
Megachile albisecta | ||
Nomada distinguenda | ||
Polistes metricus | America | [34] |
Polistes dominula | France | [77] |
Scolia flavifrons | ||
Vespula vulgaris | America | [34] |
Xylocopa violacea | France | [77] |
Xylocopa virginica | America | [79] |
3.2. Phylogenetic Classification
4. Diagnostic Method
4.1. Clinical Diagnosis
4.2. Laboratory Identification Methods
5. Prevention and Control
5.1. Colony Management
5.2. RNA Interference
5.3. Antibody Treatment
5.4. Herbal Medicines
Herb | References |
---|---|
Indigowoad Root (Radix Isatidis) | [129,130,131,132] |
Cyrtomium Rhizome (Rhizoma Cyrtomii) | [133,134,135,136,137] |
Honeysuckle Flower (Flos Lonicerae) | [130,133,137,138] |
Barbed Skullcap Herb (Herba Scutellariae Barbatae) | [87,129,130] |
Liquorice Root (Radix Glycyrrhizae) | [131,135,137,138] |
Polygoni Cuspidati Rhizoma (Polygonum Cuspidatum) | [130,133,136] |
Mongolian Dandelion Herb (Herba Taraxaci) | [135,137,139] |
Slender Dutchmanspipe Root (Radix Aristolochiae) | [131,135,136] |
Cassia Twig (Ramulus Cimnamomi) | [129,131,137] |
Pericarpium Papaveris (Papaver somniferum) | [133,135,136] |
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Klatt, B.K.; Holzschuh, A.; Westphal, C.; Clough, Y.; Smit, I.; Pawelzik, E.; Tscharntke, T. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B Boil. Sci. 2014, 281, 20132440. [Google Scholar] [CrossRef]
- van der Zee, R.; Pisa, L.; Andonov, S.; Brodschneider, R.; Charriere, J.D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; Gajda, A.; et al. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 2009-10. J. Apic. Res. 2012, 51, 91–114. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015-2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef]
- White, G.F. Sacbrood, a Disease of Bees; US Department of Agriculture: Washington, DC, USA, 1913.
- Bailey, L.; Gibbs, A.; Woods, R. Sacbrood virus of the larval honey bee (Apis mellifera Linnaeus). Virology 1964, 23, 425–429. [Google Scholar] [CrossRef]
- Choe, S.E.; Nguyen, T.T.D.; Hyun, B.H.; Noh, J.H.; Lee, H.S.; Lee, C.H.; Kang, S.W. Genetic and phylogenetic analysis of South Korean sacbrood virus isolates from infected honey bees (Apis cerana). Vet. Microbiol. 2012, 157, 32–40. [Google Scholar] [CrossRef]
- Ellis, J.D.; Munn, P.A. The worldwide health status of honey bees. Bee World 2005, 86, 88–101. [Google Scholar] [CrossRef]
- Freiberg, M.; De Jong, D.; Message, D.; Cox-Foster, D. First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil. Genet. Mol. Res. 2012, 11, 3310–3314. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Nicolaisen, M.; Kryger, P. Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 2008, 39, 310–314. [Google Scholar] [CrossRef]
- Steinhauer, N.; Kulhanek, K.; Antunez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.P.; vanEngelsdorp, D. Drivers of colony losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef]
- Gong, H.; Chen, X.; Chen, Y.; Hu, F.; Zhang, J.; Lin, Z.; Yu, J.; Zheng, H. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera. Appl. Environ. Microb. 2016, 82, 2256–2262. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.A.; Shah, T.A. Thai sacbrood disease of Apis cerana. Indian Bee J. 1988, 50, 110–112. [Google Scholar]
- Thu, H.T.; Lien, N.T.K.; Linh, M.T.; Le, T.H.; Hoa, N.T.; Thai, P.H.; Reddy, K.E.; Yoo, M.S.; Kim, Y.H.; Cho, Y.S.; et al. Prevalence of bee viruses among Apis cerana populations in Vietnam. J. Apic. Res. 2016, 55, 379–385. [Google Scholar] [CrossRef]
- Verma, L.R.; Rana, B.S.; Verma, S. Observations on Apis cerana colonies surviving from Thai sacbrood virus infestation. Apidologie 1990, 21, 169–174. [Google Scholar] [CrossRef]
- Yoon, B.S. Incidence of honeybee disease in Korea 2009. J. Apic. 2009, 24, 273–278. [Google Scholar]
- Huang, W.F.; Mehmood, S.; Huang, S.K.; Chen, Y.W.; Ko, C.Y.; Su, S. Phylogenetic analysis and survey of Apis cerana strain of Sacbrood virus (AcSBV) in Taiwan suggests a recent introduction. J. Invertebr. Pathol. 2017, 146, 36–40. [Google Scholar] [CrossRef]
- Ball, B.V.; Bailey, L. Viruses; A. I. Root Company: Medina, OH, USA, 1997; pp. 11–31. [Google Scholar]
- Hitchcock, J.D. Transmissin of sacbrood disease to individual honey bee larvae. J. Econ. Entomol. 1966, 59, 1154–1156. [Google Scholar] [CrossRef]
- Nguyen, N.T.B.; Le, T.H. Complete genome sequence of sacbrood virus strain SBM2, isolated from the honeybee Apis cerana in Vietnam. Genome Announc. 2013, 1, e00076-00012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Prevention and control of Chinese sacbrood virus. Chin. Livest. Poult. Breed. 2018, 14, 143–144. [Google Scholar]
- Bailey, L. Recent research on honey bee viruses. Bee World 1975, 56, 55–64. [Google Scholar] [CrossRef]
- Chen, Y.; Siede, R. Honey bee viruses. Adv. Virus Res. 2007, 70, 33–80. [Google Scholar] [CrossRef]
- Cheng, H. Prevention and control of sacbrood disease in honeybee. Sichuan Anim. Vet. Sci. 2014, 41, 56–57. [Google Scholar]
- Kojima, Y.; Toki, T.; Morimoto, T.; Yoshiyama, M.; Kimura, K.; Kadowaki, T. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan. Microb. Ecol. 2011, 62, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.G.; Page, P.; Li, L.; Qin, Y.; Zhang, Y.Y.; Hu, F.L.; Neumann, P.; Zheng, H.Q.; Dietemann, V. Go east for better honey bee health: Apis cerana is faster at hygienic behavior than A. mellifera. PLoS ONE 2016, 11, e0162647. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.L.; Gibbs, A.J. Transpuparial transmission of Kashmir bee virus and sacbrood virus in the honeybee (Apis mellifera). Ann. Appl. Biol. 1989, 114, 1–7. [Google Scholar] [CrossRef]
- Anderson, D.L.; Giacon, H. Reduced pollen collection by honey bee (Hymenoptera: Apidae) colonies infected with Nosema apis and sacbrood virus. J. Econ. Entomol. 1992, 85, 47–51. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Toth, A.L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [Google Scholar] [CrossRef]
- Beaurepaire, A.; Piot, N.; Doublet, V.; Antunez, K.; Campbell, E.; Chantawannakul, P.; Chejanovsky, N.; Gajda, A.; Heerman, M.; Panziera, D.; et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 2020, 11, 239. [Google Scholar] [CrossRef]
- De Miranda, J.; Gauthier, L.; Ribiere, M.; Chen, Y. Honey Bee Colony Health: Challenges and Sustainable Solutions; Honey bee viruses and their effect on bee and colony health; Sammataro, D., Yoder, J.A., Eds.; CRC Press: Florida, FL, USA, 2012; pp. 71–102. ISBN 978-042-918-504-5. [Google Scholar]
- Phokasem, P.; Wang, L.H.; Panjad, P.; Tang, Y.J.; Li, J.L.; Chantawannakul, P. Differential viral distribution patterns in reproductive tissues of Apis mellifera and Apis cerana drones. Front. Vet. Sci. 2021, 8, 608700. [Google Scholar] [CrossRef]
- Prodelalova, J.; Moutelikova, R.; Titera, D. Multiple virus infections in Western honeybee (Apis mellifera L.) ejaculate used for instrumental insemination. Viruses 2019, 11, 306. [Google Scholar] [CrossRef]
- Jin, L.; Mehmood, S.; Zhang, G.; Song, Y.; Su, S.; Huang, S.; Huang, H.; Zhang, Y.; Geng, H.; Huang, W. Visualizing sacbrood virus of honey bees via transformation and coupling with enhanced green fluorescent protein. Viruses 2020, 12, 224. [Google Scholar] [CrossRef]
- Singh, R.; Levitt, A.L.; Rajotte, E.G.; Holmes, E.C.; Ostiguy, N.; Vanengelsdorp, D.; Lipkin, W.I.; Depamphilis, C.W.; Toth, A.L.; Cox-Foster, D.L. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 2010, 5, e14357. [Google Scholar] [CrossRef] [PubMed]
- Yongsawas, R.; Chaimanee, V.; Pettis, J.S.; Boncristiani, H.F.; Lopez, D.; In-on, A.; Chantawannakul, P.; Disayathanoowat, T. Impact of sacbrood virus on larval microbiome of Apis mellifera and Apis cerana. Insects 2020, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Drescher, N.; Klein, A.M.; Neumann, P.; Yanez, O.; Leonhardt, S.D. Inside honeybee hives: Impact of natural propolis on the ectoparasitic mite Varroa destructor and viruses. Insects 2017, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Chantawannakul, P.; Ward, L.; Boonham, N.; Brown, M. A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J. Invertebr. Pathol. 2006, 91, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Cui, L.; Ostiguy, N.; Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005, 86, 2281–2289. [Google Scholar] [CrossRef]
- Wang, S.; Chen, G.; Lin, Z.; Wu, Y.; Hu, F.; Zheng, H. Occurrence of multiple honeybee viruses in the ectoparasitic mites Varroa spp. in Apis cerana colonies. J. Invertebr. Pathol. 2019, 166, 107225. [Google Scholar] [CrossRef]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the front line: Quantitative virus dynamics in honey bee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Nai, Y.S.; Ko, C.Y.; Hsu, P.S.; Tsai, W.S.; Chen, Y.W.; Hsu, M.H.; Sung, I.H. The seasonal detection of AcSBV (Apis cerana sacbrood virus) prevalence in Taiwan. J. Asia-Pac. Entomol. 2018, 21, 417–422. [Google Scholar] [CrossRef]
- Bailey, L.; Ball, B.; Perry, J.N. The prevalence of viruses of honey bees in Britain. Ann. Appl. Biol. 1981, 97, 109–118. [Google Scholar] [CrossRef]
- Cavigli, I.; Daughenbaugh, K.F.; Martin, M.; Lerch, M.; Banner, K.; Garcia, E.; Brutscher, L.M.; Flenniken, M.L. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 2016, 47, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, Y.; Deng, J.; Wen, Z.; Wang, S.; Chen, Y.; Hu, F.; Zheng, H. Seasonal variation of viral infections between the eastern honey bee (Apis cerana) and the western honey bee (Apis mellifera). Microbiologyopen 2021, 10, e1162. [Google Scholar] [CrossRef] [PubMed]
- Faurot-Daniels, C.; Glenny, W.; Daughenbaugh, K.F.; McMenamin, A.J.; Burkle, L.A.; Flenniken, M.L. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE 2020, 15, e0237544. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Evans, J.D.; Rose, R.; Zhao, Y.; Li, Z.; Li, J.; Huang, S.; Heerman, M.; Rodriguez-Garcia, C.; et al. The phylogeny and pathogenesis of sacbrood virus (SBV) infection in European honey bees, Apis mellifera. Viruses 2019, 11, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, A.C.; Schroeder, D.C. The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales) infecting Apis mellifera L. populations. Virol. J. 2008, 5, 10. [Google Scholar] [CrossRef]
- King, A.M.Q.; Adams, M.J.; Lefkowitz, E.J.; Carstens, E.B. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Chang, J.; Chang, Z.; Ko, C.; Chen, Y.; Nai, Y. Genomic Sequencing and comparison of sacbrood viruses from Apis cerana and Apis mellifera in Taiwan. Pathogens 2021, 10, 14. [Google Scholar] [CrossRef]
- Fei, D.; Zhang, H.; Diao, Q.; Jiang, L.; Wang, Q.; Zhong, Y.; Fan, Z.; Ma, M. Codon optimization, expression in Escherichia coli, and immunogenicity of recombinant Chinese sacbrood virus (CSBV) structural proteins VP1, VP2, and VP3. PLoS ONE 2015, 10, e0134423. [Google Scholar] [CrossRef]
- Ghosh, R.C.; Ball, B.V.; Willcocks, M.M.; Carter, M.J. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J. Gen. Virol. 1999, 80, 1541–1549. [Google Scholar] [CrossRef]
- Prochazkova, M.; Fuzik, T.; Skubnik, K.; Moravcova, J.; Ubiparip, Z.; Pridal, A.; Plevka, P. Virion structure and genome delivery mechanism of sacbrood honeybee virus. Proc. Natl. Acad. Sci. USA 2018, 115, 7759–7764. [Google Scholar] [CrossRef]
- Lee, P.E.; Furgala, B. Electron microscopy of sacbrood virus in situ. Virology 1965, 25, 387–392. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Q.; Ma, Z.; Zhang, J.; Huang, W.; Zhang, X. Studies on purification, crystallization and structure of Chinese sacbrood virus. J. Chin. Electron Microsc. Soc. 1998, 17, 3. [Google Scholar]
- Zhang, J.; Feng, J.; Liang, Y.; Chen, D.; Zhou, Z.; Zhang, Q.; Lu, X. Three-dimensional structure of the Chinese sacbrood bee virus. Sci. China Ser. C 2001, 44, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, C. Screening and Mechanism Viral Suppressors of RNAi in the Chinese Sacbrood Virus; Jinzhou Medical University: Jinzhou, China, 2021. [Google Scholar]
- Zhang, X.; Fei, D.; Sun, L.; Li, M.; Ma, Y.; Wang, C.; Huang, S.; Ma, M. Identification of the novel host protein interacting with the structural protein VP1 of Chinese sacbrood virus by yeast two-hybrid screening. Front. Microbiol. 2019, 10, 2192. [Google Scholar] [CrossRef]
- Bull, J.C.; Ryabov, E.V.; Prince, G.; Mead, A.; Zhang, C.J.; Baxter, L.A.; Pell, J.K.; Osborne, J.L.; Chandler, D. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathog. 2012, 8, e1003083. [Google Scholar] [CrossRef]
- Evans, J.D.; Aronstein, K.; Chen, Y.P.; Hetru, C.; Imler, J.L.; Jiang, H.; Kanost, M.; Thompson, G.J.; Zou, Z.; Hultmark, D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006, 15, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.A. The immune response of Drosophila. Nature 2003, 426, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Danihlik, J.; Aronstein, K.; Petrivalsky, M. Antimicrobial peptides: A key component of honey bee innate immunity Physiology, biochemistry, and chemical ecology. J. Apic. Res. 2015, 54, 123–136. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Xu, S.; Hou, C.; Xu, J.; Zhao, D.; Chen, Y. Antiviral Activities of a Medicinal Plant Extract Against Sacbrood Virus in Honeybees. Virol. J. 2021, 18, 83. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.H.; Guo, J.; Tang, Y.J.; Chen, Y.P.; Wu, J.; Li, J.L. Chinese Sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection. J. Invertebr. Pathol. 2017, 150, 63–69. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Zhuang, M.; Wang, L.; Li, K.; Yao, J.; Yang, H.; Huang, J.; Hao, Y.; Ying, F.; et al. Transcriptome profiling reveals a novel mechanism of antiviral immunity upon sacbrood virus infection in honey bee larvae (Apis cerana). Front. Microbiol. 2021, 12, 615893. [Google Scholar] [CrossRef]
- McMenamin, A.J.; Parekh, F.; Lawrence, V.; Flenniken, M.L. Investigating virus-host interactions in cultured primary honey bee cells. Insects 2021, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, L.; Feng, M.; Fang, Y.; Li, J. An integrated proteomics reveals pathological mechanism of honeybee (Apis cerana) sacbrood disease. J. Proteome Res. 2013, 12, 1881–1897. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.Q.; Li, Y.; Li, X.Q.; Wang, C.C.; Ma, Z.G.; Wang, L.L.; Fan, X.D.; Li, Z.; Huang, D.Y.; Xu, J.S.; et al. Lipidomic profiling reveals distinct differences in sphingolipids metabolic pathway between healthy Apis cerana cerana larvae and Chinese sacbrood disease. Insects 2021, 12, 703. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, H.; Shen, S.; Yang, S.; Yang, D.; Deng, S.; Hou, C. Identification of immune response to sacbrood virus infection in Apis cerana under natural condition. Front. Genet. 2020, 11, 587509. [Google Scholar] [CrossRef] [PubMed]
- Ryabov, E.V.; Fannon, J.M.; Moore, J.D.; Wood, G.R.; Evans, D.J. The Iflaviruses sacbrood virus and deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ 2016, 4, e1591. [Google Scholar] [CrossRef] [Green Version]
- Amiri, E.; Herman, J.J.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. Infect Genet. Evol. 2020, 85, 104558. [Google Scholar] [CrossRef]
- Allen, M.; Ball, B. The incidence and world distribution of honey bee viruses. Bee World 1996, 77, 141–162. [Google Scholar] [CrossRef]
- Furst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef]
- Gamboa, V.; Ravoet, J.; Brunain, M.; Smagghe, G.; Meeus, I.; Figueroa, J.; Riano, D.; de Graaf, D.C. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. Pathol. 2015, 129, 36–39. [Google Scholar] [CrossRef]
- Salvarrey, S.; Antunez, K.; Arredondo, D.; Plischuk, S.; Revainera, P.; Maggi, M.; Invernizzi, C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS ONE 2021, 16, e0249842. [Google Scholar] [CrossRef]
- Toplak, I.; Simenc, L.; Ocepek, M.P.; Bevk, D. Determination of genetically identical strains of four honeybee viruses in bumblebee positive samples. Viruses 2020, 12, 1310. [Google Scholar] [CrossRef]
- Dalmon, A.; Dievart, V.; Thomasson, M.; Fouque, R.; Vaissiere, B.E.; Guilbaud, L.; Le Conte, Y.; Henry, M. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 2021, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, A.G.; Hendrix, S.D.; Scavo, N.A.; Carrillo-Tripp, J.; Harris, M.A.; Wheelock, M.J.; O’Neal, M.E.; Toth, A.L. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 2016, 11, e0166190. [Google Scholar] [CrossRef] [PubMed]
- Levitt, A.L.; Singh, R.; Cox-Foster, D.L.; Rajotte, E.; Hoover, K.; Ostiguy, N.; Holmes, E.C. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 2013, 176, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Fearon, M.L.; Tibbetts, E.A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology 2021, 102, e03305. [Google Scholar] [CrossRef] [PubMed]
- Ravoet, J.; De Smet, L.; Meeus, I.; Smagghe, G.; Wenseleers, T.; de Graaf, D.C. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 2014, 122, 55–58. [Google Scholar] [CrossRef]
- Choi, Y.S.; Lee, M.Y.; Hong, I.P.; Kim, N.S.; Kim, H.K.; Byeon, K.H.; Yoon, H. Detection of honey bee virus from bumblebee (Bombus terrestris and Bombus ignitus). Korean J. Apic. 2010, 25, 259–266. [Google Scholar]
- Bailes, E.J.; Deutsch, K.R.; Bagi, J.; Rondissone, L.; Brown, M.J.F.; Lewis, O.T. First detection of bee viruses in hoverfly (syrphid) pollinators. Biol. Lett. 2018, 14, 20180001. [Google Scholar] [CrossRef]
- Choe, S.E.; Nguyen, L.T.K.; Noh, J.H.; Kweon, C.H.; Reddy, K.E.; Koh, H.B.; Chang, K.Y.; Kang, S.W. Analysis of the complete genome sequence of two Korean sacbrood viruses in the Honey bee, Apis mellifera. Virology 2012, 432, 155–161. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H.; Xu, J.; Wu, J.; Getachew, A.; Tu, Y.; Guo, Z.; Jin, H.; Xu, S. Purification of Chinese sacbrood virus (CSBV), gene cloning and prokaryotic expression of its structural protein VP1. Mol. Biotechnol. 2018, 60, 901–911. [Google Scholar] [CrossRef]
- Kalayci, G.; Cagirgan, A.A.; Pekmez, K.; Ozkan, B.; Kaplan, M. Molecular detection and phylogenetic analysis of the honeybee (Apis mellifera) sacbrood virus in Turkey. Turk. J. Vet. Anim. Sci. 2019, 43, 551–554. [Google Scholar] [CrossRef]
- Xia, X.; Zhou, B.; Wei, T. Complete genome of Chinese sacbrood virus from Apis cerana and analysis of the 3C-like cysteine protease. Virus Genes 2015, 50, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.K.; Anderson, D.L. A novel strain of sacbrood virus of interest to world apiculture. J. Invertebr. Pathol. 2014, 118, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.E.; Yoo, M.S.; Kim, Y.H.; Kim, N.H.; Ramya, M.; Jung, H.N.; Thao, L.T.B.; Lee, H.S.; Kang, S.W. Homology differences between complete sacbrood virus genomes from infected Apis mellifera and Apis cerana honeybees in Korea. Virus Genes 2016, 52, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, X.; Xu, Z.; Han, R.; Chen, J. Differential gene transcription in honeybee (Apis cerana) larvae challenged by Chinese sacbrood virus (CSBV). Sociobiology 2013, 60, 413–415. [Google Scholar] [CrossRef]
- Rana, R.; Bana, B.S.; Kaushal, N.; Kumar, D.; Kaundal, P.; Rana, K.; Khan, M.A.; Gwande, S.J.; Sharma, H.K. Identification of sacbrood virus disease in honeybee, Apis mellifera L. by using ELISA and RT-PCR techniques. Indian J. Biotechnol. 2011, 10, 274–284. [Google Scholar]
- Yanez, O.; Zheng, H.Q.; Su, X.L.; Hu, F.L.; Neumann, P.; Dietemann, V. Potential for virus transfer between the honey bees Apis mellifera and A. cerana. J. Apic. Res. 2015, 54, 179–191. [Google Scholar] [CrossRef]
- Sun, L.; Li, M.; Fei, D.; Hu, Y.; Ma, M. Chinese sacbrood virus infection in Apis mellifera, Shandong, China, 2016. Virus Res. 2017, 242, 96–99. [Google Scholar] [CrossRef]
- Ko, C.Y.; Chiang, Z.L.; Liao, R.J.; Chang, Z.T.; Chang, J.C.; Kuo, T.Y.; Chen, Y.W.; Nai, Y.S. Dynamics of Apis cerana sacbrood virus (AcSBV) prevalence in Apis cerana (Hymenoptera: Apidae) in northern Taiwan and demonstration of its infection in Apis mellifera (Hymenoptera: Apidae). J. Econ. Entomol. 2019, 112, 2055–2066. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, P.; Ma, M.; Li, M.; Yang, S. Predication of spatial structure and B cell epitope of VP1 protein of Chinese sacbrood virus LN-QY Strain. Chin. J. Biol. 2011, 24, 280–284. [Google Scholar]
- Chang, J.C.; Chang, Z.T.; Ko, C.Y.; Yang, C.C.S.; Chen, Y.W.; Nai, Y.S. Sacbrood viruses cross-infection between Apis cerana and Apis mellifera: Rapid detection, viral dynamics, evolution and spillover risk assessment. J. Invertebr. Pathol. 2021, 186, 107687. [Google Scholar] [CrossRef] [PubMed]
- Forsgren, E. European foulbrood in honey bees. J. Invertebr. Pathol. 2010, 103, S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Genersch, E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Fu, L.Z.; Ren, Q.; Ji, C.; Wang, J. Establishment and application of a specific semi-nested RT-PCR assay for the detection of Chinese bee (Apis sinensis) sacbrood virus. Prog. Vet. Med. 2009, 30, 39–42. [Google Scholar]
- Shen, M.; Yang, X.; Cox-Foster, D.; Cui, L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 2005, 342, 141–149. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Sun, L.; Fei, D.; Yue, J.; Jin, H.; Ma, M. Preparation and identification of monoclonal antibodies against Chinese sacbrood bee virus(CSBV). Chin. J. Virol. 2017, 33, 914–919. [Google Scholar]
- Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef]
- Grabensteiner, E.; Bakonyi, T.; Ritter, W.; Pechhacker, H.; Nowotny, N. Development of a multiplex RT-PCR for the simultaneous detection of three viruses of the honeybee (Apis mellifera L.): Acute bee paralysis virus, black queen cell virus and sacbrood virus. J. Invertebr. Pathol. 2007, 94, 222–225. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Mehmood, S.; Wang, Z.; Hou, C.; Li, Z. Updating sacbrood virus quantification PCR method using a TaqMan-MGB probe. Vet. Sci. 2021, 8, 63. [Google Scholar] [CrossRef]
- Blanchard, P.; Ribiere, M.; Celle, O.; Lallemand, P.; Schurr, F.; Olivier, V.; Iscache, A.L.; Faucon, J.P. Evaluation of a real-time two-step RT-PCR assay for quantitation of chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J. Virol. Methods 2007, 141, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. [Google Scholar] [CrossRef] [PubMed]
- Kukielka, D.; Perez, A.M.; Higes, M.; Bulboa, M.D.; Sanchez-Vizcaino, J.M. Analytical sensitivity and specificity of a RT-PCR for the diagnosis and characterization of the spatial distribution of three Apis mellifera viral diseases in Spain. Apidologie 2008, 39, 607–617. [Google Scholar] [CrossRef]
- Kukielka, D.; Sanchez-Vizcaino, J.M. One-step real-time quantitative PCR assays for the detection and field study of sacbrood honeybee and acute bee paralysis viruses. J. Virol. Methods 2009, 161, 240–246. [Google Scholar] [CrossRef]
- Sguazza, G.H.; Reynaldi, F.J.; Galosi, C.M.; Pecoraro, M.R. Simultaneous detection of bee viruses by multiplex PCR. J. Virol. Methods 2013, 194, 102–106. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.A.; Barker, I.; Boonham, N. Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl. Environ. Microb. 2007, 73, 5386. [Google Scholar] [CrossRef]
- Li, Y.; Ma, M.; Song, Y.; Li, Y. Development of helicase-dependent amplification method for detection of Chinese sacbrood virus. Chin. J. Biol. 2014, 27, 267–271. [Google Scholar]
- Bartlett, L.J.; Boots, M.; Brosi, B.J.; de Roode, J.C.; Delaplane, K.S.; Hernandez, C.A.; Wilfert, L. Persistent effects of management history on honeybee colony virus abundances. J. Invertebr. Pathol. 2021, 179, 107520. [Google Scholar] [CrossRef]
- Zheng, H.; Cao, L.; Huang, S.; Neumann, P.; Hu, F. Current Status of the Beekeeping Industry in China, in Asian Beekeeping in the 21st Century; Chantawannakul, P., Williams, G., Neumann, P., Chantawannakul, P., Williams, G., Neumann, P., Eds.; Springer: Singapore, 2018; pp. 129–158. [Google Scholar]
- Liu, Y.; Dong, K.; Zhang, L.; He, S. Comparisons on the weights and sizes of eggs before and after the queen of Apis cerana cerana caged. Apic. China 2012, 63, 18–20. [Google Scholar]
- Jovanovic, N.M.; Glavinic, U.; Delic, B.; Vejnovic, B.; Aleksic, N.; Mladjan, V.; Stanimirovic, Z. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev. Vet. Med. 2021, 190, 105322. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, Y.; Song, H.; Yang, J.; Luo, Q. Cloning and phylogeny evolution analysis of sacbrood virus gene CSBV-BJ/2010 in Chinese honeybee (Apis cerana cerana). J. Shanghai Jiaotong Univ. Agric. Sci. 2011, 29, 44–48. [Google Scholar]
- Fung, E.; Hill, K.; Hogendoorn, K.; Glatz, R.V.; Napier, K.R.; Bellgard, M.I.; Barrero, R.A. De novo assembly of honey bee RNA viral genomes by tapping into the innate insect antiviral response pathway. J. Invertebr. Pathol. 2018, 152, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, I.; Shi, X.H.; McFarlane, M.; Watson, M.; Blomstrom, A.L.; Skelton, J.K.; Kohl, A.; Elliott, R.M.; Schnettler, E. The antiviral RNAi response in vector and non-vector cells against orthobunyaviruses. PLoS Negl. Trop. Dis. 2017, 11, e0005272. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Xu, X.; Zhao, H.; Yang, S.; Wang, X.; Zhao, D.; Diao, Q.; Hou, C. Diverse factors affecting efficiency of RNAi in honey bee viruses. Front. Genet. 2018, 9, 384. [Google Scholar] [CrossRef] [PubMed]
- Brutscher, L.M.; Flenniken, M.L. RNAi and antiviral defense in the honey bee. J. Immunol. Res. 2015, 2015, 941897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Han, R. The high-throughput production of dsRNA against sacbrood virus for use in the honey bee Apis cerana (Hymenoptera: Apidae). Virus Genes 2016, 52, 698–705. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yan, X.; Han, R. Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference. Curr. Microbiol. 2010, 61, 422–428. [Google Scholar] [CrossRef]
- Velez, A.M.; Jurzenski, J.; Matz, N.; Zhou, X.G.; Wang, H.C.; Ellis, M.; Siegfried, B.D. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees, Apis mellifera L. Chemosphere 2016, 144, 1083–1090. [Google Scholar] [CrossRef]
- Nunes, F.M.F.; Aleixo, A.C.; Barchuk, A.R.; Bomtorin, A.D.; Grozinger, C.M.; Simoes, Z.L.P. Non-target effects of green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) used in honey bee RNA interference (RNAi) assays. Insects 2013, 4, 90–103. [Google Scholar] [CrossRef]
- Huan, C.; Hai, J.; Jia, Z.; Hui, Z.; Xin, Q. Study and application the hyperimmunnized yolk antibodies of TGEV and PEDV in piglets. Chin. Anim. Husb. Vet. Med. 2012, 39, 173–175. [Google Scholar]
- Sarker, S.A.; Pant, N.; Juneja, L.R.; Hammarstrom, L. Successful treatment of rotavirus-induced diarrhoea in suckling mice with egg yolk immunoglobulin. J. Health Popul. Nutr. 2007, 25, 465–468. [Google Scholar] [PubMed]
- Sun, L.; Li, M.; Fei, D.; Diao, Q.; Wang, J.; Li, L.; Ma, M. Preparation and application of egg yolk antibodies against Chinese sacbrood virus infection. Front. Microbiol. 2018, 9, 1814. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Prevention and treatment of sacbrood virus. Sichuan Anim. Vet. Sci. 2014, 41, 56–57. [Google Scholar]
- Deng, W.; Ma, X.; Wu, T.; Liu, T.; Han, J. Observation on the effect of compound herbal medicine “Zhongnangxiao” on the control of sacbrood disease in Apis cerana. Hubei J. Anim. Vet. Sci. 2021, 42, 5–7. [Google Scholar]
- Hu, Y. Chinese herbal medicine is effective in treating sacbrood disease. Apic. China 2017, 68, 32. [Google Scholar]
- Xu, S. Suggestions on the prevention and control measures of sacbrood disease in Apis cerana. Apic. China 2012, 63, 65. [Google Scholar]
- Chen, R. Prevention and cure methods of sacbrood disease in Apis cerana. J. Bee 2013, 33, 36. [Google Scholar]
- Fan, H. Prevention and cure of sacbrood virus in Apis cerana. J. Bee 2013, 64, 31. [Google Scholar]
- Jian, X. Active prevention and control of sacbrood disease in Apis cerana. Apic. China 2013, 64, 28. [Google Scholar]
- Ren, J. Prevention and control of sacbrood disease in Apis cerana. Guizhou J. Anim. Husb. Vet. Med. 2014, 38, 49–50. [Google Scholar]
- Yang, J. Integrated prevention and treatment of sacbrood disease in Apis cerana. Gansu Anim. Husb. Vet. 2015, 45, 75–76. [Google Scholar]
- Zhang, J.; Ma, J. Occurrence and prevention of sacbrood disease in honeybee. Mod. Anim. Husb. Sci. Technol. 2007, 9, 105–106. [Google Scholar]
- Chen, Z. Study on the prevention and control of a Chinese herbal medicine formula for sacbrood disease in Apis cerana. Hunan J. Anim. Sci. Vet. Med. 2021, 3, 33–34. [Google Scholar]
- Adjlane, N.; Dainat, B.; Gauthier, L.; Dietemann, V. Atypical viral and parasitic pattern in Algerian honey bee subspecies Apis mellifera intermissa and A.m. sahariensis. Apidologie 2016, 47, 631–641. [Google Scholar] [CrossRef]
- Molineri, A.; Giacobino, A.; Pacini, A.; Cagnolo, N.B.; Fondevila, N.; Ferrufino, C.; Merke, J.; Orellano, E.; Bertozzi, E.; Masciangelo, G.; et al. Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies. Prev. Vet. Med. 2017, 140, 106–115. [Google Scholar] [CrossRef]
- Roberts, J.M.K.; Anderson, D.L.; Durr, P.A. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci. Rep. 2017, 7, 6925. [Google Scholar] [CrossRef]
- Berenyi, O.; Bakonyi, T.; Derakhshifar, I.; Koglberger, H.; Nowotny, N. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microb. 2006, 72, 2414–2420. [Google Scholar] [CrossRef]
- Matheson, A. World bee health update. Bee World 1995, 76, 31–39. [Google Scholar] [CrossRef]
- Matthijs, S.; De Waele, V.; Vandenberge, V.; Verhoeven, B.; Evers, J.; Brunain, M.; Saegerman, C.; De Winter, P.J.J.; Roels, S.; de Graaf, D.C.; et al. Nationwide screening for bee viruses and parasites in Belgian honey bees. Viruses 2020, 12, 890. [Google Scholar] [CrossRef]
- Matheson, A. World bee health report. Bee World 1993, 74, 176–212. [Google Scholar] [CrossRef]
- Shumkova, R.; Neov, B.; Sirakova, D.; Georgieva, A.; Gadjev, D.; Teofanova, D.; Radoslavov, G.; Bouga, M.; Hristov, P. Molecular detection and phylogenetic assessment of six honeybee viruses in Apis mellifera L. colonies in Bulgaria. PeerJ 2018, 6, e5077. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Fournier, V.; Giovenazzo, P. The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) pollination on honey bee (Apis mellifera L.) colony health status. PLoS ONE 2020, 15, e0227970. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Vargas, M.; Gerding, M.; Navarro, H.; Antunez, K. Viral infection and Nosema ceranae in honey bees (Apis mellifera) in Chile. J. Apicult. Res. 2012, 51, 285–287. [Google Scholar] [CrossRef]
- Meng, Y.P.; Yu, X.Y.; Huang, Q.; Zhang, L.Z.; Wu, X.B.; Wang, Z.L.; Yan, W.Y. Genetic and phylogenetic analysis of the honey bee sacbrood virus from jiangxi isolates. J. Asia-Pac. Entomol. 2022, 25, 101847. [Google Scholar] [CrossRef]
- Tibata, V.M.; Sanchez, A.; Palmer-Young, E.; Junca, H.; Solarte, V.M.; Madella, S.; Ariza, F.; Figueroa, J.; Corona, M. Africanized honey bees in Colombia exhibit high prevalence but low level of infestation of Varroa mites and low prevalence of pathogenic viruses. PLoS ONE 2021, 16, e0244906. [Google Scholar] [CrossRef]
- Matheson, A. World bee health update 1996. Bee World 1996, 77, 45–51. [Google Scholar] [CrossRef]
- Gajger, I.T.; Kolodziejek, J.; Bakonyi, T.; Nowotny, N. Prevalence and distribution patterns of seven different honeybee viruses in diseased colonies: A case study from Croatia. Apidologie 2014, 45, 701–706. [Google Scholar] [CrossRef]
- Luis, A.R.; Garcia, C.A.Y.; Invernizzi, C.; Branchiccela, B.; Pineiro, A.M.P.; Morfi, A.P.; Zunino, P.; Antunez, K. Nosema ceranae and RNA viruses in honey bee populations of Cuba. J. Apicult. Res. 2020, 59, 468–471. [Google Scholar] [CrossRef]
- Amiri, E.; Meixner, M.; Nielsen, S.L.; Kryger, P. Four categories of viral infection describe the health status of honey bee colonies. PLoS ONE 2015, 10, e0140272. [Google Scholar] [CrossRef]
- Bravi, M.E.; Avalos, J.; Rosero, H.; Maldonado, G.; Reynaldi, F.J.; Genchi-Garcia, M.L. Molecular detection of honeybee viruses in Ecuador. Span. J. Agric. Res. 2020, 18, e05SC02. [Google Scholar] [CrossRef]
- Hussein, M.H. A review of beekeeping in Arab countries. Bee World 2000, 81, 56–71. [Google Scholar] [CrossRef]
- Anderson, D.L. Pests and pathogens of the honeybee (Apis mellifera L.) in Fiji. J. Apicult. Res. 1990, 29, 53–59. [Google Scholar] [CrossRef]
- D’Alvise, P.; Seeburger, V.; Gihring, K.; Kieboom, M.; Hasselmann, M. Seasonal dynamics and co-occurrence patterns of honey bee pathogens revealed by high-throughput RT-qPCR analysis. Ecol. Evol. 2019, 9, 10241–10252. [Google Scholar] [CrossRef]
- Hatjina, F.; Tsoktouridis, G.; Bouga, M.; Charistos, L.; Evangelou, V.; Avtzis, D.; Meeus, I.; Brunain, M.; Smagghe, G.; de Graaf, D.C. Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study. J. Invertebr. Pathol. 2011, 108, 131–134. [Google Scholar] [CrossRef]
- Tapaszti, Z.; Forgach, P.; Bakonyi, T.; Rusvai, M. Occurrence of viral diseases of honey bee (Apis melifera L.) in Hungarian apiaries. Magy. Állatorvosok Lapja 2010, 132, 119–125. [Google Scholar]
- Rana, B.S.; Rana, R. Detection of sacbrood virus and the incidence of sacbrood disease in Apis mellifera colonies in the North-Western Himalayas. J. Apicult. Res. 2008, 47, 58–62. [Google Scholar] [CrossRef]
- Moharrami, M.; Modirrousta, H. Molecular identification of six honeybee viruses in Iranian apiaries. Arch. Razi. Inst. 2018, 73, 311–318. [Google Scholar] [CrossRef]
- Soroker, V.; Hetzroni, A.; Yakobson, B.; David, D.; David, A.; Voet, H.; Slabezki, Y.; Efrat, H.; Levski, S.; Kamer, Y.; et al. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 2011, 42, 192–199. [Google Scholar] [CrossRef]
- Bordin, F.; Zulian, L.; Granato, A.; Caldon, M.; Colamonico, R.; Toson, M.; Trevisan, L.; Biasion, L.; Mutinelli, F. Presence of known and emerging honey bee pathogens in apiaries of veneto region (northeast of Italy) during spring 2020 and 2021. Appl. Sci. 2022, 12, 2134. [Google Scholar] [CrossRef]
- Kitamura, Y.; Odoi, J.O.; Nagai, M.; Asai, T. Prevalence of honeybee viruses in Apis mellifera in Gifu prefecture of Japan. J. Vet. Med. Sci. 2021, 83, 1948–1951. [Google Scholar] [CrossRef]
- Ongus, J.R.; Fombong, A.T.; Irungu, J.; Masiga, D.; Raina, S. Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. Int. J. Trop. Insect. Sc. 2018, 38, 58–70. [Google Scholar] [CrossRef]
- Choe, S.E.; Lien, T.K.N.; Noh, J.H.; Koh, H.B.; Jean, Y.H.; Kweon, C.H.; Kang, S.W. Prevalence and distribution of six bee viruses in Korean Apis cerana populations. J. Invertebr. Pathol. 2012, 109, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Blazyte-Cereskiene, L.; Skrodenyte-Arbaciauskiene, V.; Radziute, S.; Cepulyte-Rakauskiene, R.; Apsegaite, V.; Buda, V. A three-year survey of honey bee viruses in Lithuania. J. Apicult. Res. 2016, 55, 176–184. [Google Scholar] [CrossRef]
- Clermont, A.; Pasquali, M.; Eickermann, M.; Kraus, F.; Hoffmann, L.; Beyer, M. Virus status, varroa levels, and survival of 20 managed honey bee colonies monitored in Luxembourg between the summer of 2011 and the spring of 2013. J. Apic. Sci. 2015, 59, 59–73. [Google Scholar] [CrossRef]
- Guzman-Novoa, E.; Hamiduzzaman, M.M.; Espinosa-Montano, L.G.; Correa-Benitez, A.; Anguiano-Baez, R.; Ponce-Vazquez, R. First detection of four viruses in honey bee (Apis mellifera) workers with and without deformed wings and Varroa destructor in Mexico. J. Apicult. Res. 2012, 51, 342–346. [Google Scholar] [CrossRef]
- Tsevegmid, K.; Neumann, P.; Yanez, O. The honey bee pathosphere of Mongolia: European viruses in central Asia. PLoS ONE 2016, 11, e0151164. [Google Scholar] [CrossRef] [Green Version]
- Afechtal, M.; Mounir, M.; Djelouah, K.; Saponari, M.; Abou Kubaa, R. A small scale survey in Morocco revealed the presence of four honey bee viruses. J. Apicult. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Grabensteiner, E.; Ritter, W.; Carter, M.J.; Davison, S.; Pechhacker, H.; Kolodziejek, J.; Boecking, O.; Derakhshifar, I.; Moosbeckhofer, R.; Licek, E.; et al. Sacbrood virus of the honeybee (Apis mellifera): Rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin. Diagn. Lab. Immun. 2001, 8, 93–104. [Google Scholar] [CrossRef]
- Todd, J.H.; De Miranda, J.R.; Ball, B.V. Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor. Apidologie 2007, 38, 354–367. [Google Scholar] [CrossRef]
- Blanchard, P.; Guillot, S.; Antunez, K.; Koglberger, H.; Kryger, P.; de Miranda, J.R.; Franco, S.; Chauzat, M.P.; Thiery, R.; Ribiere, M. Development and validation of a real-time two-step RT-qPCR TaqMan (R) assay for quantitation of Sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies. J. Virol. Methods 2014, 197, 7–13. [Google Scholar] [CrossRef]
- Yanez, O.; Tejada, G.; Neumann, P. First detection of viruses in africanized honey bees from Peru. Virol. Sin. 2014, 29, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Boecking, O. Sealing up and non-removal of diseased and Varroa jacobsoni infested drone brood cells is part of the hygienic behaviour in Apis. Cerana. J. Apicult. Res. 1999, 38, 159–168. [Google Scholar] [CrossRef]
- Zinatullina, Z.Y.; Dolnikova, T.Y.; Domatskaya, T.F.; Domatsky, A.N. Monitoring diseases of honey bees (Apis mellifera) in Russia. Ukr. J. Ecol. 2018, 8, 106–112. [Google Scholar]
- Cirkovic, D.; Stevanovic, J.; Glavinic, U.; Aleksic, N.; Djuric, S.; Aleksic, J.; Stanimirovic, Z. Honey bee viruses in Serbian colonies of different strength. PeerJ 2018, 6, e5887. [Google Scholar] [CrossRef] [PubMed]
- Simenc, L.; Knific, T.; Toplak, I. The comparison of honeybee viral loads for six honeybee viruses (ABPV, BQCV, CBPV, DWV, LSV3 and SBV) in healthy and clinically affected honeybees with TaqMan quantitative real-time RT-PCR assays. Viruses 2021, 13, 1340. [Google Scholar] [CrossRef]
- Locke, B.; Forsgren, E.; de Miranda, J.R. Increased tolerance and resistance to virus infections: A possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PLoS ONE 2014, 9, e99998. [Google Scholar] [CrossRef]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Predictive markers of honey bee colony collapse. PLoS ONE 2012, 7, e32151. [Google Scholar] [CrossRef]
- Barhoum, H.S.; Alrouz, H.A.; Mouhanna, A.M. Survey of honeybee viruses in Syria. Asian J. Agric. Biol. 2017, 5, 257–262. [Google Scholar]
- Sanpa, S.; Chantawannakul, P. Survey of six bee viruses using RT-PCR in Northern Thailand. J. Invertebr. Pathol. 2009, 100, 116–119. [Google Scholar] [CrossRef]
- Kalayci, G.; Cagirgan, A.A.; Kaplan, M.; Pekmez, K.; Beyazit, A.; Ozkan, B.; Yesiloz, H.; Arslan, F. The role of viral and parasitic pathogens affected by colony losses in Turkish apiaries. Kafkas Univ. Vet. Fak. 2020, 26, 671–677. [Google Scholar] [CrossRef]
- Kajobe, R.; Marris, G.; Budge, G.; Laurenson, L.; Cordoni, G.; Jones, B.; Wilkins, S.; Cuthbertson, A.G.S.; Brown, M.A. First molecular detection of a viral pathogen in Ugandan honey bees. J. Invertebr. Pathol. 2010, 104, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Shybanov, S.; Kharina, A.; Stakhurska, O.; Snihur, G.; Kompanets, T. Detection of honey bee viruses on the territory of Ukraine. AGROFOR 2017, 2, 140–146. [Google Scholar] [CrossRef]
- Baker, A.; Schroeder, D. Occurrence and genetic analysis of picorna-like viruses infecting worker bees of Apis mellifera L. populations in Devon, South West England. J. Invertebr. Pathol. 2008, 98, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Anido, M.; Branchiccela, B.; Castelli, L.; Harriet, J.; Campa, J.; Zunino, P.; Antunez, K. Prevalence and distribution of honey bee pests and pathogens in Uruguay. J. Apicult. Res. 2015, 54, 532–540. [Google Scholar] [CrossRef]
- Haddad, N.; Al-Gharaibeh, M.; Nasher, A.; Anaswah, E.; Alammari, Y.; Horth, L. Scientific note: Molecular detection of pathogens in unhealthy colonies of Apis mellifera jemenitica. Apidologie 2018, 49, 84–88. [Google Scholar] [CrossRef]
- Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microb. 2004, 70, 7185–7191. [Google Scholar] [CrossRef]
- Locke, B.; Forsgren, E.; Fries, I.; de Miranda, J.R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microb. 2012, 78, 227–235. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zhao, Y.; Hammond, J.; Hsu, H.T.; Evans, J.; Feldlaufer, M. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J. Invertebr. Pathol. 2004, 87, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.M.; Evans, J.D.; Robinson, G.E.; Berenbaum, M.R. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 2009, 106, 14790–14795. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Cao, L.; Feng, Y.; Chen, Y.; Chen, G.; Zheng, H. Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses 2022, 14, 1871. https://doi.org/10.3390/v14091871
Wei R, Cao L, Feng Y, Chen Y, Chen G, Zheng H. Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses. 2022; 14(9):1871. https://doi.org/10.3390/v14091871
Chicago/Turabian StyleWei, Ruike, Lianfei Cao, Ye Feng, Yanping Chen, Gongwen Chen, and Huoqing Zheng. 2022. "Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators" Viruses 14, no. 9: 1871. https://doi.org/10.3390/v14091871
APA StyleWei, R., Cao, L., Feng, Y., Chen, Y., Chen, G., & Zheng, H. (2022). Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses, 14(9), 1871. https://doi.org/10.3390/v14091871