Vertical Transmission of Sindbis Virus in Culex Mosquitoes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Field Studies
2.2. Experimental Methods
2.3. SINV Detection and Specificity of the Assay
3. Results
3.1. Specificity of the Assay
3.2. Vertical Transmission in the Field
3.3. Experimental Vertical Transmission
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rosen, L. The natural history of Japanese encephalitis virus. Annu. Rev. Microbiol. 1986, 40, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, I.; Betášová, L.; Blažejová, H.; Venclíková, K.; Straková, P.; Šebesta, O.; Mendel, J.; Bakonyi, T.; Schaffner, F.; Nowotny, N.; et al. West Nile virus in overwintering mosquitoes, central Europe. Parasites Vectors 2017, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Dahl, E.; Lundkvist, Å.; Hesson, J.C. Sindbis Virus Infection in Non-Blood-Fed Hibernating Culex pipiens Mosquitoes in Sweden. Viruses 2020, 12, 1441. [Google Scholar] [CrossRef]
- Service, M.W. Observations on the ecology of some British mosquitoes. Bull. Entomol. Res. 1968, 59, 161–194. [Google Scholar] [CrossRef]
- Jaenson, T.G. Overwintering of Culex mosquitoes in Sweden and their potential as reservoirs of human pathogens. Med. Vet. Entomol. 1987, 1, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Service, M.W. The taxonomy and biology of two sympatric sibling species of Culex, C. pipiens and C. torrentium (Diptera, Culicidae). J. Zool. 1968, 156, 313–323. [Google Scholar] [CrossRef]
- Lequime, S.; Paul, R.E.; Lambrechts, L. Determinants of Arbovirus Vertical Transmission in Mosquitoes. PLoS Pathog. 2016, 12, e1005548. [Google Scholar] [CrossRef]
- Hesson, J.C.; Verner-Carlsson, J.; Larsson, A.; Ahmed, R.; Lundkvist, Å.; Lundström, J.O. Culex torrentium Mosquito Role as Major Enzootic Vector Defined by Rate of Sindbis Virus Infection, Sweden, 2009. Emerg. Infect. Dis. 2015, 21, 875–878. [Google Scholar] [CrossRef]
- Lundström, J.O.; Hesson, J.C.; Schäfer, M.L.; Östman, Ö.; Semmler, T.; Bekaert, M.; Weidmann, M.; Lundkvist, Å.; Pfeffer, M. Sindbis virus polyarthritis outbreak signalled by virus prevalence in the mosquito vectors. PLoS Negl. Trop. Dis. 2019, 13, e0007702. [Google Scholar] [CrossRef]
- Kurkela, S.; Helve, T.; Vaheri, A.; Vapalahti, O. Arthritis and arthralgia three years after Sindbis virus infection: Clinical follow-up of a cohort of 49 patients. Scand. J. Infect. Dis. 2008, 40, 167–173. [Google Scholar] [CrossRef]
- Ling, J.; Smura, T.; Lundström, J.O.; Pettersson, J.H.; Sironen, T.; Vapalahti, O.; Lundkvist, Å.; Hesson, J.C. Introduction and Dispersal of Sindbis Virus from Central Africa to Europe. J. Virol. 2019, 93, e00620-19. [Google Scholar] [CrossRef] [PubMed]
- Lundström, J.O.; Lindström, K.M.; Olsen, B.; Dufva, R.; Krakower, D.S. Prevalence of Sindbis Virus Neutralizing Antibodies Among Swedish Passerines Indicates that Thrushes are the Main Amplifying Hosts. J. Med. Entomol. 2001, 38, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Hesson, J.C.; Lundström, J.O.; Tok, A.; Östman, Ö.; Lundkvist, Å. Temporal Variation in Sindbis Virus Antibody Prevalence in Bird Hosts in an Endemic Area in Sweden. PLoS ONE 2016, 11, e0162005. [Google Scholar] [CrossRef]
- Hesson, J.C.; Lundström, J.O.; Halvarsson, P.; Erixon, P.; Collado, A. A sensitive and reliable restriction enzyme assay to distinguish between the mosquitoes Culex torrentium and Culex pipiens. Med. Vet. Entomol. 2010, 24, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Sane, J.; Kurkela, S.; Levanov, L.; Nikkari, S.; Vaheri, A.; Vapalahti, O. Development and evaluation of a real-time RT-PCR assay for Sindbis virus detection. J. Virol. Methods 2012, 179, 185–188. [Google Scholar] [CrossRef]
- Comeau, G.; Zinna, R.A.; Scott, T.; Ernst, K.; Walker, K.; Carrière, Y.; Riehle, M.A. Vertical Transmission of Zika Virus in Aedes aegypti Produces Potentially Infectious Progeny. Am. J. Trop. Med. Hyg. 2020, 103, 876–883. [Google Scholar] [CrossRef]
- Reisen, W.K.; Kramer, L.D.; Chiles, R.E.; Wolfe, T.M.; Green, E.G. Simulated overwintering of encephalitis viruses in diapausing female Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 2002, 39, 226–233. [Google Scholar] [CrossRef]
- Wong, H.V.; Vythilingam, I.; Sulaiman, W.Y.; Lulla, A.; Merits, A.; Chan, Y.F.; Sam, I.C. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia. Am. J. Trop. Med. Hyg. 2016, 94, 182–186. [Google Scholar] [CrossRef]
- Lindsay, M.D.; Broom, A.K.; Wright, A.E.; Johansen, C.A.; Mackenzie, J.S. Ross river virus isolations from mosquitoes in arid regions of Western Australia: Implication of vertical transmission as a means of persistence of the virus. Am. J. Trop. Med. Hyg. 1993, 49, 686–696. [Google Scholar] [CrossRef]
- Fulhorst, C.F.; Hardy, J.L.; Eldridge, B.F.; Presser, S.B.; Reeves, W.C. Natural vertical transmission of Western equine encephalomyelitis virus in mosquitoes. Science 1994, 263, 676–678. [Google Scholar] [CrossRef]
- Dhileepan, K.; Azuolas, J.K.; Gibson, C.A. Evidence of vertical transmission of Ross River and Sindbis viruses (Togaviridae: Alphavirus) by mosquitoes (Diptera: Culicidae) in southeastern Australia. J. Med. Entomol. 1996, 33, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Soni, M.; Agarwal, A.; Dash, P.; Parida, M.; Gopalan, N. Vertical Transmission of Chikungunya virus in Aedes aegypti Mosquitoes from Northern India. Def. Life Sci. J. 2016, 1, 184–187. [Google Scholar] [CrossRef]
- Heath, C.J.; Grossi-Soyster, E.N.; Ndenga, B.A.; Mutuku, F.M.; Sahoo, M.K.; Ngugi, H.N.; Mbakaya, J.O.; Siema, P.; Kitron, U.; Zahiri, N.; et al. Evidence of transovarial transmission of Chikungunya and Dengue viruses in field-caught mosquitoes in Kenya. PLoS Negl. Trop Dis. 2020, 14, e0008362. [Google Scholar] [CrossRef]
- Mourya, D.T. Absence of transovarial transmission of chikungunya virus in Aedes aegypti & Ae. albopictus mosquitoes. Indian J. Med. Res. 1987, 85, 593–595. [Google Scholar] [PubMed]
- Vazeille, M.; Mousson, L.; Failloux, A.B. Failure to demonstrate experimental vertical transmission of the epidemic strain of Chikungunya virus in Aedes albopictus from La Réunion Island, Indian Ocean. Mem Inst. Oswaldo Cruz. 2009, 104, 632–635. [Google Scholar] [CrossRef]
- Bellini, R.; Medici, A.; Calzolari, M.; Bonilauri, P.; Cavrini, F.; Sambri, V.; Angelini, P.; Dottori, M. Impact of chikungunya virus on Aedes albopictus females and possibility of vertical transmission using the actors of the 2007 outbreak in Italy. PLoS ONE 2012, 7, e28360. [Google Scholar] [CrossRef] [PubMed]
- Chompoosri, J.; Thavara, U.; Tawatsin, A.; Boonserm, R.; Phumee, A.; Sangkitporn, S.; Siriyasatien, P. Vertical transmission of Indian Ocean Lineage of chikungunya virus in Aedes aegypti and Aedes albopictus mosquitoes. Parasit. Vectors 2016, 9, 227. [Google Scholar] [CrossRef]
- Agarwal, A.; Dash, P.K.; Singh, A.K.; Sharma, S.; Gopalan, N.; Rao, P.V.; Parida, M.M.; Reiter, P. Evidence of experimental vertical transmission of emerging novel ECSA genotype of Chikungunya Virus in Aedes aegypti. PLoS Negl. Trop Dis. 2014, 8, e2990. [Google Scholar] [CrossRef]
- Anderson, J.F.; Main, A.J. Importance of Vertical and Horizontal Transmission of West Nile Virus by Culex pipiens in the Northeastern United States. J. Infec. Dis. 2006, 194, 1577–1579. [Google Scholar] [CrossRef]
- Reisen, W.K.; Fang, Y.; Lothrop, H.D.; Martinez, V.M.; Wilson, J.; Oconnor, P.; Carney, R.; Cahoon-Young, B.; Shafii, M.; Brault, A.C. Overwintering of West Nile virus in Southern California. J. Med. Entomol. 2006, 43, 344–355. [Google Scholar] [CrossRef]
- Anderson, J.F.; Main, A.J.; Cheng, G.; Ferrandino, F.J.; Fikrig, E. Horizontal and vertical transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes NY99 and WN02 by Culex tarsalis. Am. J. Trop Med. Hyg. 2012, 86, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Nelms, B.M.; Fechter-Leggett, E.; Carroll, B.D.; Macedo, P.; Kluh, S.; Reisen, W.K. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J. Med. Entomol. 2013, 50, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, J.; Jia, M.; Joyce, J.D.; Moore, G.A.; Ovissipour, R.; Bertke, A.S. Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated Temperature. Foods 2021, 10, 1005. [Google Scholar] [CrossRef] [PubMed]
- Despres, H.W.; Mills, M.G.; Shirley, D.J.; Schmidt, M.M.; Huang, M.L.; Roychoudhury, P.; Jerome, K.R.; Greninger, A.L.; Bruce, E.A. Measuring infectious SARS-CoV-2 in clinical samples reveals a higher viral titer:RNA ratio for Delta and Epsilon vs. Alpha variants. Proc. Natl. Acad. Sci. USA 2022, 119, e2116518119. [Google Scholar] [CrossRef]
- Charrel, R.N.; Brault, A.C.; Gallian, P.; Lemasson, J.J.; Murgue, B.; Murri, S.; Pastorino, B.; Zeller, H.; de Chesse, R.; de Micco, P.; et al. Evolutionary relationship between Old World West Nile virus strains: Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology 2003, 315, 381–388. [Google Scholar] [CrossRef]
- Reisen, W.K.; Wheeler, S.S. Overwintering of West Nile Virus in the United States. J. Med. Entomol. 2019, 56, 1498–1507. [Google Scholar] [CrossRef]
- Arias-Goeta, C.; Moutailler, S.; Mousson, L.; Zouache, K.; Thiberge, J.M.; Caro, V.; Rougeon, F.; Failloux, A.B. Chikungunya virus adaptation to a mosquito vector correlates with only few point mutations in the viral envelope glycoprotein. Infect. Genet. Evol. 2014, 24, 116–126. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Chen, R.; Yun, R.; Rossi, S.L.; Plante, K.S.; Guerbois, M.; Forrester, N.; Perng, G.C.; Sreekumar, E.; Leal, G.; et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 2014, 5, 4084. [Google Scholar] [CrossRef]
- Zouache, K.; Failloux, A.B. Insect-pathogen interactions: Contribution of viral adaptation to the emergence of vector-borne diseases, the example of chikungunya. Curr. Opin. Insect Sci. 2015, 10, 14–21. [Google Scholar] [CrossRef]
- Ovenden, J.R.; Mahon, R.J. Venereal transmission of Sindbis virus between individuals of Aedes australis (Diptera: Culicidae). J. Med. Entomol. 1984, 21, 292–295. [Google Scholar] [CrossRef]
- Mavale, M.; Parashar, D.; Sudeep, A.; Gokhale, M.; Ghodke, Y.; Geevarghese, G.; Arankalle, V.; Mishra, A.C. Venereal transmission of chikungunya virus by Aedes aegypti mosquitoes (Diptera: Culicidae). Am. J. Trop Med. Hyg. 2010, 83, 1242–1244. [Google Scholar] [CrossRef] [PubMed]
F0 Female ID 1 | Egg Rafts Hatched | Number of F1 Adults | Age of F1 | Number of SINV-Positive F1 Adults | Sex of Infected F1 Adults 2 |
---|---|---|---|---|---|
B2 | yes | 3 | 20–27 days | 0 | NA |
B6 | no | NA | 20–27 days | NA | NA |
B18 | yes | 10 | 20–27 days | 0 | NA |
B20 | no | NA | 20–27 days | NA | NA |
B22 | yes | 3 | 20–27 days | 0 | NA |
B24 | no | NA | 20–27 days | NA | NA |
B31 | yes | 7 | 20–27 days | 0 | 0 |
1 | yes | 7 | 0–2 days | 1 | F |
2 | no | NA | 0–2 days | NA | NA |
3 | yes | 5 | 0–2 days | 3 | 2F, 1M |
4 | yes | 3 | 0–2 days | 1 | F |
8 | no | NA | 0–2 days | NA | NA |
12 | no | NA | 0–2 days | NA | NA |
16 | no | NA | 0–2 days | NA | NA |
17 | yes | 30 | 0–2 days | 3 | 2F, 1M |
18 | no | NA | 0–2 days | NA | NA |
20 | yes | 10 | 0–2 days | 5 | 4F, 1M |
22 | yes | 6 | 0–2 days | 1 | M |
23 | yes | 6 | 0–2 days | 2 | 1F,1M |
Pool ID 1 | Number of F0 Females | Number of Females with ConfirmedSINV Infection | Number of Egg Rafts 2 | Number of F1 Adults |
---|---|---|---|---|
1B | 16 | 16 | ≈6 | 9 |
2 | 25 | 16 | ≈4 | 25 |
3 | 25 | 23 | ≈5 | 30 |
4 | 26 | 25 | ≈5 | 52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahl, E.; Öborn, L.; Sjöberg, V.; Lundkvist, Å.; Hesson, J.C. Vertical Transmission of Sindbis Virus in Culex Mosquitoes. Viruses 2022, 14, 1915. https://doi.org/10.3390/v14091915
Dahl E, Öborn L, Sjöberg V, Lundkvist Å, Hesson JC. Vertical Transmission of Sindbis Virus in Culex Mosquitoes. Viruses. 2022; 14(9):1915. https://doi.org/10.3390/v14091915
Chicago/Turabian StyleDahl, Emma, Linnea Öborn, Viktoria Sjöberg, Åke Lundkvist, and Jenny C. Hesson. 2022. "Vertical Transmission of Sindbis Virus in Culex Mosquitoes" Viruses 14, no. 9: 1915. https://doi.org/10.3390/v14091915
APA StyleDahl, E., Öborn, L., Sjöberg, V., Lundkvist, Å., & Hesson, J. C. (2022). Vertical Transmission of Sindbis Virus in Culex Mosquitoes. Viruses, 14(9), 1915. https://doi.org/10.3390/v14091915