Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Z.; Zhan, J.; Chen, L.; Chen, H.; Cheng, S. Global, Regional, and National Dengue Burden from 1990 to 2017: A Systematic Analysis Based on the Global Burden of Disease Study 2017. EClinicalMedicine 2021, 32, 100712. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.P.; Farrar, J.J.; van Vinh Chau, N.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef]
- World Health Organization. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 2 December 2022).
- Grange, L.; Simon-Loriere, E.; Sakuntabhai, A.; Gresh, L.; Paul, R.; Harris, E. Epidemiological Risk Factors Associated with High Global Frequency of Inapparent Dengue Virus Infections. Front. Immunol. 2014, 5, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endy, T.P.; Anderson, K.B.; Nisalak, A.; Yoon, I.-K.; Green, S.; Rothman, A.L.; Thomas, S.J.; Jarman, R.G.; Libraty, D.H.; Gibbons, R.V. Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. PLoS Negl. Trop. Dis. 2011, 5, e975. [Google Scholar] [CrossRef] [PubMed]
- Rigau-Pérez, J.G.; Clark, G.G.; Gubler, D.J.; Reiter, P.; Sanders, E.J.; Vance Vorndam, A. Dengue and Dengue Haemorrhagic Fever. Lancet 1998, 352, 971–977. [Google Scholar] [CrossRef]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Jain, S.; Mittal, A.; Sharma, S.K.; Upadhyay, A.D.; Pandey, R.M.; Sinha, S.; Soneja, M.; Biswas, A.; Jadon, R.S.; Kakade, M.B.; et al. Predictors of Dengue-Related Mortality and Disease Severity in a Tertiary Care Center in North India. Open Forum Infect. Dis. 2017, 4, ofx056. [Google Scholar] [CrossRef]
- Teixeira, M.G.; Paixão, E.S.; Costa, M.D.C.N.; Cunha, R.V.; Pamplona, L.; Dias, J.P.; Figueiredo, C.A.; Figueiredo, M.A.A.; Blanton, R.; Morato, V.; et al. Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study. PLoS Negl. Trop. Dis. 2015, 9, e0003812. [Google Scholar] [CrossRef]
- ABUALAMAH, W.A.; BANNI, H.S.; ALMASMOUM, H.A.; ALLOHIBI, Y.A.; SAMARIN, H.M.; BAFAIL, M.A. Determining Risk Factors for Dengue Fever Severity in Jeddah City, a Case-Control Study (2017). Polish J. Microbiol. 2020, 69, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Hsu, J.P.; Yeo, T.W.; Leo, Y.S.; Lye, D.C. Diabetes, Cardiac Disorders and Asthma as Risk Factors for Severe Organ Involvement among Adult Dengue Patients: A Matched Case-Control Study. Sci. Rep. 2017, 7, 39872. [Google Scholar] [CrossRef]
- Chiu, Y.-Y.; Lin, C.-Y.; Yu, L.-S.; Wang, W.-H.; Huang, C.-H.; Chen, Y.-H. The Association of Obesity and Dengue Severity in Hospitalized Adult Patients. J. Microbiol. Immunol. Infect. 2022, in press. [CrossRef]
- Zulkipli, M.S.; Rampal, S.; Bulgiba, A.; Peramalah, D.; Jamil, N.; See, L.L.C.; Zaki, R.A.; Omar, S.F.S.; Dahlui, M. Is There Any Association between Body Mass Index and Severity of Dengue Infection? Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 764–771. [Google Scholar] [CrossRef]
- Tan, V.P.K.; Ngim, C.F.; Lee, E.Z.; Ramadas, A.; Pong, L.Y.; Ng, J.I.; Hassan, S.S.; Ng, X.Y.; Dhanoa, A. The Association between Obesity and Dengue Virus (DENV) Infection in Hospitalised Patients. PLoS ONE 2018, 13, e0200698. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global Burden of Obesity in 2005 and Projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity Induces a Phenotipic Switch in Adipose Tissue Macrophage Polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory Links between Obesity and Metabolic Disease. J. Clin. Investig. 2011, 121, 2111–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, G.; Liccardi, A.; Graziadio, C.; Barrea, L.; Muscogiuri, G.; Colao, A. Obesity and Infectious Diseases: Pathophysiology and Epidemiology of a Double Pandemic Condition. Int. J. Obes. 2022, 46, 449–465. [Google Scholar] [CrossRef]
- de Matos, M.A.; Garcia, B.C.C.; Vieira, D.V.; de Oliveira, M.F.A.; Costa, K.B.; Aguiar, P.F.; de Castro Magalhães, F.; Brito-Melo, G.A.; Amorim, F.T.; Rocha-Vieira, E. High-Intensity Interval Training Reduces Monocyte Activation in Obese Adults. Brain. Behav. Immun. 2019, 80, 818–824. [Google Scholar] [CrossRef] [PubMed]
- de Matos, M.A.; Duarte, T.C.; Ottone, V.D.O.; Sampaio, P.F.D.M.; Costa, K.B.; de Oliveira, M.F.A.; Moseley, P.L.; Schneider, S.M.; Coimbra, C.C.; Brito-Melo, G.E.; et al. The Effect of Insulin Resistance and Exercise on the Percentage of CD16+ Monocyte Subset in Obese Individuals. Cell Biochem. Funct. 2016, 34, 209–216. [Google Scholar] [CrossRef]
- Krinninger, P.; Ensenauer, R.; Ehlers, K.; Rauh, K.; Stoll, J.; Krauss-Etschmann, S.; Hauner, H.; Laumen, H. Peripheral Monocytes of Obese Women Display Increased Chemokine Receptor Expression and Migration Capacity. J. Clin. Endocrinol. Metab. 2014, 99, 2500–2509. [Google Scholar] [CrossRef] [Green Version]
- Poitou, C.; Dalmas, E.; Renovato, M.; Benhamo, V.; Hajduch, F.; Abdennour, M.; Kahn, J.F.; Veyrie, N.; Rizkalla, S.; Fridman, W.H.; et al. CD14dimCD16+and CD14+CD16+monocytes in Obesity and during Weight Loss: Relationships with Fat Mass and Subclinical Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2322–2330. [Google Scholar] [CrossRef] [Green Version]
- Papathanassoglou, E.; El-Haschimi, K.; Li, X.C.; Matarese, G.; Strom, T.; Mantzoros, C. Leptin Receptor Expression and Signaling in Lymphocytes: Kinetics During Lymphocyte Activation, Role in Lymphocyte Survival, and Response to High Fat Diet in Mice. J. Immunol. 2006, 176, 7745–7752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldefie-Chezet, F.; Poulin, A.; Tridon, A.; Sion, B.; Vasson, M.P. Leptin: A Potential Regulator of Polymorphonuclear Neutrophil Bactericidal Action? J. Leukoc. Biol. 2001, 69, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, I.; Arroyo-Camarena, Ú.D.; Martínez-Reyes, C.P.; Gómez-Arauz, A.Y.; Dueñas-Andrade, Y.; Hernández-Ruiz, J.; Béjar, Y.L.; Zaga-Clavellina, V.; Morales-Montor, J.; Terrazas, L.I.; et al. Human Monocytes and Macrophages Undergo M1-Type Inflammatory Polarization in Response to High Levels of Glucose. Immunol. Lett. 2016, 176, 81–89. [Google Scholar] [CrossRef]
- Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4. J. Biol. Chem. 2001, 276, 16683–16689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frydrych, L.M.; Bian, G.; O’Lone, D.E.; Ward, P.A.; Delano, M.J. Obesity and Type 2 Diabetes Mellitus Drive Immune Dysfunction, Infection Development, and Sepsis Mortality. J. Leukoc. Biol. 2018, 104, 525–534. [Google Scholar] [CrossRef]
- Frasca, D.; Blomberg, B.B. The Impact of Obesity and Metabolic Syndrome on Vaccination Success. Vaccines Older Adults Curr. Pract. Future Oppor. 2020, 43, 86–97. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geloneze, B.; Tambascia, M.A. Avaliação Laboratorial e Diagnóstico Da Resistência Insulínica. Arq. Bras. Endocrinol. Metabol. 2006, 50, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeles, R.D.; McPhail, M.J.; Sowter, D.; Antoniades, C.G.; Vergis, N.; Vijay, G.K.M.; Xystrakis, E.; Khamri, W.; Shawcross, D.L.; Ma, Y.; et al. CD14, CD16 and HLA-DR Reliably Identifies Human Monocytes and Their Subsets in the Context of Pathologically Reduced HLA-DR Expression by CD14(Hi)/CD16(Neg) Monocytes: Expansion of CD14(Hi)/CD16(Pos) and Contraction of CD14(Lo)/CD16(Pos) Monocytes in A. Cytometry. A 2012, 81, 823–834. [Google Scholar] [CrossRef]
- Duong, V.; Lambrechts, L.; Paul, R.E.; Ly, S.; Lay, R.S.; Long, K.C.; Huy, R.; Tarantola, A.; Scott, T.W.; Sakuntabhai, A.; et al. Asymptomatic Humans Transmit Dengue Virus to Mosquitoes. Proc. Natl. Acad. Sci. USA 2015, 112, 14688–14693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan American Health Association Dengue.
- Brito, A.F.; Machado, L.C.; Oidtman, R.J.; Siconelli, M.J.L.; Tran, Q.M.; Fauver, J.R.; Carvalho, R.D.D.O.; Dezordi, F.Z.; Pereira, M.R.; de Castro-Jorge, L.A.; et al. Lying in Wait: The Resurgence of Dengue Virus after the Zika Epidemic in Brazil. Nat. Commun. 2021, 12, 2619. [Google Scholar] [CrossRef]
- Castillo, J.A.; Giraldo, D.M.; Hernandez, J.C.; Smit, J.M.; Rodenhuis-Zybert, I.A.; Urcuqui-Inchima, S. Regulation of Innate Immune Responses in Macrophages Differentiated in the Presence of Vitamin D and Infected with Dengue Virus 2. PLoS Negl. Trop. Dis. 2021, 15, e0009873. [Google Scholar] [CrossRef]
- Wan, S.-W.; Wu-Hsieh, B.A.; Lin, Y.-S.; Chen, W.-Y.; Huang, Y.; Anderson, R. The Monocyte-Macrophage-Mast Cell Axis in Dengue Pathogenesis. J. Biomed. Sci. 2018, 25, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheshwari, D.; Saini, K.; Singh, P.; Singla, M.; Nayak, K.; Aggarwal, C.; Chawla, Y.M.; Bajpai, P.; Kaur, M.; Gunisetty, S.; et al. Contrasting Behavior between the Three Human Monocyte Subsets in Dengue Pathophysiology. iScience 2022, 25, 104384. [Google Scholar] [CrossRef]
- Naranjo-Gómez, J.S.; Castillo, J.A.; Rojas, M.; Restrepo, B.N.; Diaz, F.J.; Velilla, P.A.; Castaño, D. Different Phenotypes of Non-Classical Monocytes Associated with Systemic Inflammation, Endothelial Alteration and Hepatic Compromise in Patients with Dengue. Immunology 2019, 156, 147–163. [Google Scholar] [CrossRef]
- Marinho, C.F.; Azeredo, E.L.; Torrentes-Carvalho, A.; Marins-Dos-Santos, A.; Kubelka, C.F.; de Souza, L.J.; Cunha, R.V.; De-Oliveira-Pinto, L.M. Down-Regulation of Complement Receptors on the Surface of Host Monocyte Even as In Vitro Complement Pathway Blocking Interferes in Dengue Infection. PLoS ONE 2014, 9, e102014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, M.A.; Harris, E. Monocyte Recruitment to the Dermis and Differentiation to Dendritic Cells Increases the Targets for Dengue Virus Replication. PLoS Pathog. 2014, 10, e1004541. [Google Scholar] [CrossRef]
Lean | Obesity | |||
---|---|---|---|---|
DENV IgM Neg | DENV IgM Pos | DENV IgM Neg | DENV IgM Pos | |
Sex (F/M) | 6/4 a | 3/2 a | 11/8 a | 8/7 a |
Age (years) | 27.6 ± 6.2 a | 26.2 ± 5.5 a | 28.6 ± 7.1 a | 26.1 ± 4.7 a |
Body mass (kg) | 62.6 ± 6.3 a | 60.5 ± 8.9 a | 94.9 ± 14.3 b | 91.8 ± 10.7 b |
Height (cm) | 166.6 ± 4.7 a | 167.6 ± 10.2 a | 166.5 ± 8.5 a | 163.0 ± 7.3 a |
BMI (kg/m2) | 22.5 ± 1.4 a | 21.5 ± 1.7 a | 34.1 ± 3.8 b | 34.5 ± 2.5 b |
Waist circumference (cm) | 75.3 ± 5.9 a | 72.1 ± 4.4 a | 99.0 ± 9.3 b | 98.6 ± 9.9 b |
Body fat (%) | 30.8 ± 8.5 a | 29.0 ± 8.1 a | 41.3 ± 6.3 b | 43.9 ± 7.0 b |
Fat mass (kg) | 18.0 ± 8.5 a | 16.4 ± 4.3 a | 36.1 ± 6.2 b | 38.7 ± 7.0 b |
Visceral fat mass (g) | 215.2 ± 177.3 a | 168.6 ± 115.2 a | 1146.5 ± 553.8 b | 1128.1 ± 565.0 b |
BFI (kg/m2) | 6.6 ± 1.7 a | 5.9 ± 1.7 a | 12.7 ± 2.1 b | 14.7 ± 3.1 c |
Fat free mass (kg) | 41.5 ± 8.5 a | 41.2 ± 9.5 a | 53.4 ± 10.3 b | 49.3 ± 8.2 b |
Lean | Obesity | |||
---|---|---|---|---|
DENV IgM Neg | DENV IgM Pos | DENV IgM Neg | DENV IgM Pos | |
Fasting glucose (mg/dL) | 81.9 ± 5.5 a | 83.7 ± 7.3 a | 84.8 ± 6.0 a | 87.2 ± 4.3 a |
Fasting insulin (µUI/mL) | 5.9 ± 0.5 a | 4.9 ± 2.9 a | 14.9 ± 8.0 b | 18.1 ± 9.3 b |
HOMA- IR (mmol.µUI/L2) | 1.2 ± 0.1 a | 1.0 ± 0.6 a | 3.1 ± 1.7 b | 3.9 ± 2.1 b |
HOMA- β (mmol.µUI/L2) | 106.2 ± 16.7 a | 110.3 ± 93.7 a | 255.2 ± 128.8 b | 264.3 ± 112.2 b |
Cholesterol (cm) | 172.3 ± 37.5 a | 161.3 ± 24.6 a | 188.5 ± 41.6 a | 162.6 ± 25.5 a |
HDL (mg/dL) | 57.7 ± 6.2 a | 62.7 ± 17.9 a | 44.9 ± 12.8 b | 41.0 ± 14.8 b |
LDL (mg/dL) | 95.9 ± 33.9 a | 76.4 ± 17.4 a | 112.6 ± 31.7 a | 109.3 ± 33.4 a |
VLDL (mg/dL) | 18.6 ± 8.9 a,b | 22.1 ± 4.5 a,b | 31.0 ± 20.6 a | 17.1 ± 5.8 b |
Triglycerides (mg/dL) | 78.5 ± 36.1 a | 93.3 ± 50.5 a,b | 144.6 ± 62.5 b | 113.4 ± 47.6 a,b |
Leptin (ng/mL) | 2.4 ± 1.1 a | 2.7 ± 0.7 a,b | 3.3 ± 0.2 b | 3.0 ± 0.3 a,b |
Lean | Obesity | |||
---|---|---|---|---|
Cell Count (Cell/mm3) | DENV IgM Neg | DENV IgM Pos | DENV IgM Neg | DENV IgM Pos |
Leukocytes | 6.04 ± 1.46 | 6.37 ± 1.71 | 6.92 ± 1.55 | 6.50 ± 1.71 |
Neutrophils | 2.99 ± 9.00 | 3.62 ± 1.13 | 3.59 ± 1.16 | 2.95 ± 0.82 |
Lymphocytes | 2.43 ± 0.81 | 2.18 ± 0.70 | 2.67 ± 0.59 | 2.69 ± 0.74 |
Monocytes | 0.37 ± 0.12 | 0.34 ± 0.03 | 0.38 ± 0.08 | 0.37 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, K.B.; Garcia, B.C.C.; Costa, M.L.B.; Pena, Y.G.; Figueiredo, E.A.B.; Ottoni, M.H.F.; Santos, J.D.; de Oliveira Ottone, V.; de Oliveira, D.B.; Rocha-Vieira, E. Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity. Viruses 2023, 15, 234. https://doi.org/10.3390/v15010234
Costa KB, Garcia BCC, Costa MLB, Pena YG, Figueiredo EAB, Ottoni MHF, Santos JD, de Oliveira Ottone V, de Oliveira DB, Rocha-Vieira E. Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity. Viruses. 2023; 15(1):234. https://doi.org/10.3390/v15010234
Chicago/Turabian StyleCosta, Karine Beatriz, Bruna Caroline Chaves Garcia, Marina Luiza Baêta Costa, Yara Gomes Pena, Eduardo Augusto Barbosa Figueiredo, Marcelo Henrique Fernandes Ottoni, Juliane Duarte Santos, Vinícius de Oliveira Ottone, Danilo Bretas de Oliveira, and Etel Rocha-Vieira. 2023. "Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity" Viruses 15, no. 1: 234. https://doi.org/10.3390/v15010234
APA StyleCosta, K. B., Garcia, B. C. C., Costa, M. L. B., Pena, Y. G., Figueiredo, E. A. B., Ottoni, M. H. F., Santos, J. D., de Oliveira Ottone, V., de Oliveira, D. B., & Rocha-Vieira, E. (2023). Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity. Viruses, 15(1), 234. https://doi.org/10.3390/v15010234