Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Characteristics and Sample Details
2.2. Peptide Microarray
2.3. Data Acquisition
2.4. Data Analysis
3. Results
3.1. Proteome-Wide Immunogenic Response for IgA and IgG
3.2. Severity-Based Epitopes
3.3. Response to Mutant Peptides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Bauchner, H.; Fontanarosa, P.B. Excess Deaths and the Great Pandemic of 2020. JAMA 2020, 324, 1504–1505. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020.
- Wu, X.; Fu, B.; Chen, L.; Feng, Y. Serological Tests Facilitate Identification of Asymptomatic SARS-CoV-2 Infection in Wuhan, China. J. Med. Virol. 2020, 92, 1795–1796. [Google Scholar] [CrossRef] [PubMed]
- Tahamtan, A.; Ardebili, A. Real-Time RT-PCR in COVID-19 Detection: Issues Affecting the Results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef]
- Aggarwal, S.; Acharjee, A.; Mukherjee, A.; Baker, M.S.; Srivastava, S. Role of Multiomics Data to Understand Host–Pathogen Interactions in COVID-19 Pathogenesis. J. Proteome Res. 2021, 20, 1107–1132. [Google Scholar] [CrossRef] [PubMed]
- Ahern, D.J.; Ai, Z.; Ainsworth, M.; Allan, C.; Allcock, A.; Angus, B.; Ansari, M.A.; Arancibia-Cárcamo, C.V.; Aschenbrenner, D.; Attar, M.; et al. A Blood Atlas of COVID-19 Defines Hallmarks of Disease Severity and Specificity. Cell 2022, 185, 916–938.e58. [Google Scholar] [CrossRef]
- Messner, C.B.; Demichev, V.; Wendisch, D.; Michalick, L.; White, M.; Freiwald, A.; Textoris-Taube, K.; Vernardis, S.I.; Egger, A.-S.; Kreidl, M. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72.e15. [Google Scholar] [CrossRef]
- Suvarna, K.; Biswas, D.; Pai, M.G.; Acharjee, A.; Bankar, R.; P, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury, M.; et al. Proteomics and Machine Learning Approaches Reveal a Set of Prognostic Markers for COVID-19 Severity with Drug Re-Purposing Potential. Front. Physiol. 2021, 12, 652799. [Google Scholar] [CrossRef]
- Acharjee, A.; Stephen Kingsly, J.; Kamat, M.; Kurlawala, V.; Chakraborty, A.; Vyas, P.; Vaishnav, R.; Srivastava, S. Rise of the SARS-CoV-2 Variants: Can Proteomics Be the Silver Bullet? Expert Rev. Proteomics 2022, 19, 197–212. [Google Scholar] [CrossRef]
- Yadav, R.; Acharjee, A.; Salkar, A.; Bankar, R.; Palanivel, V.; Agrawal, S.; Shastri, J.; Sabnis, S.V.; Srivastava, S. Mumbai Mayhem of COVID-19 Pandemic Reveals Important Factors That Influence Susceptibility to Infection. EClinicalMedicine 2021, 35, 100841. [Google Scholar] [CrossRef] [PubMed]
- Baric, R.S. Emergence of a Highly Fit SARS-CoV-2 Variant. N. Engl. J. Med. 2020, 383, 2684–2686. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. Alarming COVID Variants Show Vital Role of Genomic Surveillance. Nature 2021, 589, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A.; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; Peixoto, P.d.S.; Kraemer, M.U.G.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite High Seroprevalence. The Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, M.; Verma, A.; Halder, A.; Acharjee, A. NGS Technologies for Detection of SARS-CoV-2 Strains and Mutations. In Multi-Pronged Omics Technologies to Understand COVID-19; Srivastava, S., Ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-322078-7. [Google Scholar]
- John, G.; Sahajpal, N.S.; Mondal, A.K.; Ananth, S.; Williams, C.; Chaubey, A.; Rojiani, A.M.; Kolhe, R. Next-Generation Sequencing (NGS) in COVID-19: A Tool for SARS-CoV-2 Diagnosis, Monitoring New Strains and Phylodynamic Modeling in Molecular Epidemiology. Curr. Issues Mol. Biol. 2021, 43, 845–867. [Google Scholar] [CrossRef]
- Lee, K.; Ko, H.L.; Lee, E.-Y.; Park, H.-J.; Kim, Y.S.; Kim, Y.-S.; Cho, N.-H.; Park, M.-S.; Lee, S.-M.; Kim, J.; et al. Development of a Diagnostic System for Detection of Specific Antibodies and Antigens against Middle East Respiratory Syndrome Coronavirus. Microbiol. Immunol. 2018, 62, 574–584. [Google Scholar] [CrossRef]
- He, Q.; Chong, K.H.; Hee Chng, H.; Leung, B.; Ee Ling, A.; Wei, T.; Chan, S.-W.; Eong Ooi, E.; Kwang, J. Development of a Western Blot Assay for Detection of Antibodies against Coronavirus Causing Severe Acute Respiratory Syndrome. Clin. Diagn. Lab. Immunol. 2004, 11, 417–422. [Google Scholar] [CrossRef]
- Frisch-Niggemeyer, W. A Solid-Phase Radioimmunoassay for Quantitative Measurement of Class-Specific Antibodies against Tick-Borne Encephalitis Virus. J. Virol. Methods 1982, 3, 319–328. [Google Scholar] [CrossRef]
- de Alwis, R.; de Silva, A.M. Measuring Antibody Neutralization of Dengue Virus (DENV) Using a Flow Cytometry-Based Technique. In Dengue: Methods and Protocols; Padmanabhan, R., Vasudevan, S.G., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; pp. 27–39. ISBN 978-1-4939-0348-1. [Google Scholar]
- Anderson, S.; Wakeley, P.; Wibberley, G.; Webster, K.; Sawyer, J. Development and Evaluation of a Luminex Multiplex Serology Assay to Detect Antibodies to Bovine Herpes Virus 1, Parainfluenza 3 Virus, Bovine Viral Diarrhoea Virus, and Bovine Respiratory Syncytial Virus, with Comparison to Existing ELISA Detection Methods. J. Immunol. Methods 2011, 366, 79–88. [Google Scholar] [CrossRef]
- Bihani, S.; Aggarwal, S.; Acharjee, A. COVID-19 Pathogenesis and Host Immune Response. In Multi-Pronged Omics Technologies to Understand COVID-19; Srivastava, S., Ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-322078-7. [Google Scholar]
- Acharjee, A.; Barapanda, A.; Ren, J.; Yu, X. Protein Microarrays for COVID-19 Research: Biomarker Discovery, Humoral Response and Vaccine Targets. In Multi-Pronged Omics Technologies to Understand COVID-19; Srivastava, S., Ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-322078-7. [Google Scholar]
- Davies, D.H.; Liang, X.; Hernandez, J.E.; Randall, A.; Hirst, S.; Mu, Y.; Romero, K.M.; Nguyen, T.T.; Kalantari-Dehaghi, M.; Crotty, S.; et al. Profiling the Humoral Immune Response to Infection by Using Proteome Microarrays: High-Throughput Vaccine and Diagnostic Antigen Discovery. Proc. Natl. Acad. Sci. USA 2005, 102, 547–552. [Google Scholar] [CrossRef]
- Natesan, M.; Ulrich, R.G. Protein Microarrays and Biomarkers of Infectious Disease. Int. J. Mol. Sci. 2010, 11, 5165–5183. [Google Scholar] [CrossRef]
- Li, S.; Song, G.; Bai, Y.; Song, N.; Zhao, J.; Liu, J.; Hu, C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front. Immunol. 2021, 12, 645632. [Google Scholar] [CrossRef] [PubMed]
- Holenya, P.; Lange, P.J.; Reimer, U.; Woltersdorf, W.; Panterodt, T.; Glas, M.; Wasner, M.; Eckey, M.; Drosch, M.; Hollidt, J.-M.; et al. Peptide Microarray-Based Analysis of Antibody Responses to SARS-CoV-2 Identifies Unique Epitopes with Potential for Diagnostic Test Development. Eur. J. Immunol. 2021, 51, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Y.; Zhang, H.; Wang, W.; Yang, X.; Qi, H.; Li, H.; Men, D.; Zhou, J.; Tao, S. SARS-CoV-2 Proteome Microarray for Global Profiling of COVID-19 Specific IgG and IgM Responses. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Musicò, A.; Frigerio, R.; Mussida, A.; Barzon, L.; Sinigaglia, A.; Riccetti, S.; Gobbi, F.; Piubelli, C.; Bergamaschi, G.; Chiari, M.; et al. SARS-CoV-2 Epitope Mapping on Microarrays Highlights Strong Immune-Response to N Protein Region. Vaccines 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.; Heiss, K.; Mahendran, Y.; Casilag, F.; Kurth, F.; Sander, L.E.; Wendtner, C.-M.; Hoechstetter, M.A.; Müller, M.A.; Sekul, R.; et al. SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Front. Immunol. 2021, 12, 629185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, X.; Zhang, X.; Hou, X.; Liang, T.; Wang, D.; Teng, F.; Dai, J.; Duan, H.; Guo, S.; et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent. Sci. 2020, 6, 2238–2249. [Google Scholar] [CrossRef]
- Darnell, M.E.R.; Subbarao, K.; Feinstone, S.M.; Taylor, D.R. Inactivation of the Coronavirus That Induces Severe Acute Respiratory Syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 85–91. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Silver, J.; Oshlack, A.; Holmes, M.; Diyagama, D.; Holloway, A.; Smyth, G.K. A Comparison of Background Correction Methods for Two-Colour Microarrays. Bioinformatics 2007, 23, 2700–2707. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of Microarray Data Using Z Score Transformation. J. Mol. Diagn. 2003, 5, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, X.; Chen, Y.; Wang, D.; Zhang, D.; Yan, S.; Wang, H.; Xiao, M.; Liang, T.; Li, H.; et al. Dynamic Landscape Mapping of Humoral Immunity to SARS-CoV-2 Identifies Non-Structural Protein Antibodies Associated with the Survival of Critical COVID-19 Patients. Signal Transduct. Target. Ther. 2021, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zeng, W.; He, H.; Zhao, D.; Jiang, D.; Zhou, P.; Cheng, L.; Li, Y.; Ma, X.; Jin, T. Serum IgA, IgM, and IgG Responses in COVID-19. Cell. Mol. Immunol. 2020, 17, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody Response to SARS-CoV-2 Infection in Humans: A Systematic Review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef]
- Farrera-Soler, L.; Daguer, J.-P.; Barluenga, S.; Vadas, O.; Cohen, P.; Pagano, S.; Yerly, S.; Kaiser, L.; Vuilleumier, N.; Winssinger, N. Identification of Immunodominant Linear Epitopes from SARS-CoV-2 Patient Plasma. PLoS ONE 2020, 15, e0238089. [Google Scholar] [CrossRef]
- Cerutti, G.; Guo, Y.; Zhou, T.; Gorman, J.; Lee, M.; Rapp, M.; Reddem, E.R.; Yu, J.; Bahna, F.; Bimela, J.; et al. Potent SARS-CoV-2 Neutralizing Antibodies Directed against Spike N-Terminal Domain Target a Single Supersite. Cell Host Microbe 2021, 29, 819–833.e7. [Google Scholar] [CrossRef]
- Shah, P.; Canziani, G.A.; Carter, E.P.; Chaiken, I. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front. Immunol. 2021, 12, 637651. [Google Scholar] [CrossRef]
- Jaimes, J.A.; André, N.M.; Chappie, J.S.; Millet, J.K.; Whittaker, G.R. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J. Mol. Biol. 2020, 432, 3309–3325. [Google Scholar] [CrossRef]
- Ladner, J.T.; Henson, S.N.; Boyle, A.S.; Engelbrektson, A.L.; Fink, Z.W.; Rahee, F.; D’ambrozio, J.; Schaecher, K.E.; Stone, M.; Dong, W.; et al. Epitope-Resolved Profiling of the SARS-CoV-2 Antibody Response Identifies Cross-Reactivity with Endemic Human Coronaviruses. Cell Rep. Med. 2021, 2, 100189. [Google Scholar] [CrossRef]
- Lai, S.-C.; Chong, P.C.-S.; Yeh, C.-T.; Liu, L.S.-J.; Jan, J.-T.; Chi, H.-Y.; Liu, H.-W.; Chen, A.; Wang, Y.-C. Characterization of Neutralizing Monoclonal Antibodies Recognizing a 15-Residues Epitope on the Spike Protein HR2 Region of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J. Biomed. Sci. 2005, 12, 711–727. [Google Scholar] [CrossRef]
- Nguyen-Contant, P.; Embong, A.K.; Kanagaiah, P.; Chaves, F.A.; Yang, H.; Branche, A.R.; Topham, D.J.; Sangster, M.Y. S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. mBio 2020, 11, e01991-20. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015. Available online: https://pymol.org/2/ (accessed on 25 November 2022).
- Amrun, S.N.; Lee, C.Y.-P.; Lee, B.; Fong, S.-W.; Young, B.E.; Chee, R.S.-L.; Yeo, N.K.-W.; Torres-Ruesta, A.; Carissimo, G.; Poh, C.M.; et al. Linear B-Cell Epitopes in the Spike and Nucleocapsid Proteins as Markers of SARS-CoV-2 Exposure and Disease Severity. eBioMedicine 2020, 58, 102911. [Google Scholar] [CrossRef]
- Thoms, M.; Buschauer, R.; Ameismeier, M.; Koepke, L.; Denk, T.; Hirschenberger, M.; Kratzat, H.; Hayn, M.; Mackens-Kiani, T.; Cheng, J.; et al. Structural Basis for Translational Shutdown and Immune Evasion by the Nsp1 Protein of SARS-CoV-2. Science 2020, 369, 1249–1255. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Wu, W.; Chen, Z. Structure and Function of N-Terminal Zinc Finger Domain of SARS-CoV-2 NSP2. Virol. Sin. 2021, 36, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Heidepriem, J.; Dahlke, C.; Kobbe, R.; Santer, R.; Koch, T.; Fathi, A.; Seco, B.M.S.; Ly, M.L.; Schmiedel, S.; Schwinge, D.; et al. Longitudinal Development of Antibody Responses in COVID-19 Patients of Different Severity with ELISA, Peptide, and Glycan Arrays: An Immunological Case Series. Pathog. Basel Switz. 2021, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zheng, Y.; Zeng, X.; He, B.; Cheng, W. Structural Biology of SARS-CoV-2: Open the Door for Novel Therapies. Signal Transduct. Target. Ther. 2022, 7, 1–28. [Google Scholar] [CrossRef]
- Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of Coronaviruses: Structures and Functions of a Large Multi-Domain Protein. Antiviral Res. 2018, 149, 58–74. [Google Scholar] [CrossRef]
- Serrano, P.; Johnson, M.A.; Almeida, M.S.; Horst, R.; Herrmann, T.; Joseph, J.S.; Neuman, B.W.; Subramanian, V.; Saikatendu, K.S.; Buchmeier, M.J.; et al. Nuclear Magnetic Resonance Structure of the N-Terminal Domain of Nonstructural Protein 3 from the Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2007, 81, 12049–12060. [Google Scholar] [CrossRef]
- Hachim, A.; Kavian, N.; Cohen, C.A.; Chin, A.W.H.; Chu, D.K.W.; Mok, C.K.P.; Tsang, O.T.Y.; Yeung, Y.C.; Perera, R.A.P.M.; Poon, L.L.M.; et al. ORF8 and ORF3b Antibodies Are Accurate Serological Markers of Early and Late SARS-CoV-2 Infection. Nat. Immunol. 2020, 21, 1293–1301. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Li, Y.; Huang, F.; Luo, B.; Yuan, Y.; Xia, B.; Ma, X.; Yang, T.; Yu, F.; et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through down-Regulating MHC-Ι. Proc. Natl. Acad. Sci. USA 2021, 118, e2024202118. [Google Scholar] [CrossRef]
- Shrock, E.; Fujimura, E.; Kula, T.; Timms, R.T.; Lee, I.-H.; Leng, Y.; Robinson, M.L.; Sie, B.M.; Li, M.Z.; Chen, Y.; et al. Viral Epitope Profiling of COVID-19 Patients Reveals Cross-Reactivity and Correlates of Severity. Science 2020, 370, eabd4250. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.E. Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020–January 12, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 95–99. [Google Scholar] [CrossRef] [PubMed]
Protein Name | Seroconverted Epitope | Discrimination Status |
---|---|---|
NSP1 | GEIPVAYRKVLLRKNGN | Non-significant α |
NSP1 | LKSFDLGDELGTDPYEDFQENWN | IgG β |
NSP2 | GAYTRYVDNNFCGPDGYPLEC; NIVGDFKLNEEIAII; LDWLEEKFKEGVEFLRDGWEIVKFI | IgG |
NSP3 | QPVSELLTPLGIDLDEWSMATYYLFDESGEFKL; SAALQPEEEQEEDWLDDDSQQ | Non-significant |
NSP3 | MYCSFYPPDEDEEEGDCEEEEFEPSTQYEYGTEDDYQ; RTNVYLAVFDKNLYD; GIKIQEGVVDYGARFYFYT; FYVLPNDDTLRVEAFEYYH; TLRVEAFEYYHTTDPSFLGRY; IELKFNPPALQDAYY; AGEAANFCALILAYC; GVVCTEIDPKLDNYY; TFFPDLNGDVVAIDY; ITEEVGHTDLMAAYV; SYFAVHFISNSWLMWLI | IgG |
NSP3 | TLEETKFLTENLLLYIDINGN; LKHGTFTCASEYTGN; VLGLAAIMQLFFSYF | IgG/IgA λ |
NSP4 | DTCFANKHADFDTWF; FATSACVLAAECTIF; EGSVRVVTTFDSEYCRH; VSFSTFEEAALCTFLLN | IgG |
NSP5 | QVTCGTTTLNGLWLDDVVYCPRH; LNGSCGSVGFNIDYDCVSFCYMHHMEL; LAWLYAAVINGDRWF; NGRTILGSALLEDEF; ILGSALLEDEFTPFDVVRQ | IgG |
NSP6 | LVQSTQWSLFFFLYE; MFLARGIVFMCVEYC; RGIVFMCVEYCPIFF; CLLNRYFRLTLGVYDYL; LTLGVYDYLVSTQEFRY | IgG |
NSP8 | NTCDGTTFTYASALWEI | IgG |
NSP9 | TTQTACTDDNALAYY | IgG |
NSP9 | VLGSLAATVRLQAGN | Non-significant |
NSP12 | TGTSTDVVYRAFDIYND; FQEKDEDDNLIDSYFVV;TKYTMADLVYALRHFDEGNCD; QTVKPGNFNKDFYDF; FFFAQDGNAAISDYDYYRYNL; ARLYYDSMSYEDQDALFAY; RLYECLYRNRDVDTDFVNEFYAY; HFSMMILSDDAVVCF | IgG |
NSP12 | NCDTLKEILVTYNCCDDDYFNKKDWYDFVEN; ADKYVRNLQHRLYECLY; FCSQHTMLVKQGDDYVYLPYP; MLTNDNTSRYWEPEFYEAMYTPHTVLQ | Non-significant |
NSP12 | QTTPGSGVPVVDSYY; PLTKHPNQEYADVFHLYLQYI | IgG/IgA |
NSP13 | ACIRRPFLCCKCCYD; DVTDVTQLYLGGMSYYC; FNAIATCDWTNAGDYIL; TQTVDSSQGSEYDYVIF | IgG |
NSP13 | VNALPETTADIVVFDEISM; CPAEIVDTVSALVYD | Non-significant |
NSP14 | SDTYACWHHSIGFDYVYNPFMIDVQQWGF; WGFTGNLQSNHDLYC; HECFVKRVDWTIEYPII | IgG |
NSP14 | EYPIIGDELKINAAC; AQPCSDKAYKIEELFYS; IEELFYSYATHSDKFTD; ATHSDKFTDGVCLFWNC | Non-significant |
NSP15 | NLGVDIAANTVIWDY; TVFFDGRVDGQVDLFRN; QMEIDFLELAMDEFIERYK; LAMDEFIERYKLEGYAFEH; KLEGYAFEHIVYGDFSH; LAKRFKESPFELEDF; GSSKCVCSVIDLLLDDFVEIIKS; VKVTIDYTEISFMLW | IgG |
NSP16 | PTGTLLVDSDLNDFV; TEHSWNADLYKLMGHFAWW | Non-significant |
NSP16 | PIQLSSYSLFDMSKF | IgG |
Spike | TQDLFLPFFSNVTWF; CEFQFCNDPFLGVYY; FRVYSSANNCTFEYV; KNLREFVFKNIDGYFKI; AGCLIGAEHVNNSYECDIP; DPLQPELDSFKEELDKYFK; LNESLIDLQELGKYEQY;DLQELGKYEQYIKWPWYIW; KGCCSCGSCCKFDEDDSEP | IgG |
Spike | DTTDAVRDPQTLEILDI | Non-significant |
Membrane Glycoprotein | LEQWNLVIGFLFLTW | IgG |
Nucleocapsid | WFTALTQHGKEDLKF; IRGGDGKMKDLSPRWYFYY; GSSRGTSPARMAGNGGDAALALLLLDR | IgG |
Orf3a | YSHLLLVAAGLEAPFLYLY; WKCRSKNPLLYDANYFLCW; YDANYFLCWHTNCYDYCIPYN; VKDCVVLHSYFTSDYYQLY | IgG |
Orf6 | IMRTFKVSIWNLDYI | IgG |
Orf7a | ILFLALITLATCELYHYQECVRG | IgG |
Orf8 | KLGSLVVRCSFYEDFLEYHDVRVVLDF | IgG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharjee, A.; Ray, A.; Salkar, A.; Bihani, S.; Tuckley, C.; Shastri, J.; Agrawal, S.; Duttagupta, S.; Srivastava, S. Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray. Viruses 2023, 15, 248. https://doi.org/10.3390/v15010248
Acharjee A, Ray A, Salkar A, Bihani S, Tuckley C, Shastri J, Agrawal S, Duttagupta S, Srivastava S. Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray. Viruses. 2023; 15(1):248. https://doi.org/10.3390/v15010248
Chicago/Turabian StyleAcharjee, Arup, Arka Ray, Akanksha Salkar, Surbhi Bihani, Chaitanya Tuckley, Jayanthi Shastri, Sachee Agrawal, Siddhartha Duttagupta, and Sanjeeva Srivastava. 2023. "Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray" Viruses 15, no. 1: 248. https://doi.org/10.3390/v15010248
APA StyleAcharjee, A., Ray, A., Salkar, A., Bihani, S., Tuckley, C., Shastri, J., Agrawal, S., Duttagupta, S., & Srivastava, S. (2023). Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray. Viruses, 15(1), 248. https://doi.org/10.3390/v15010248