A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings
Abstract
:1. Introduction
2. Methods
2.1. Literature Review
2.2. Data Extraction
3. Results
3.1. Treatment-Emergent Resistance by Regimen
3.1.1. Dolutegravir/Lamivudine/Abacavir (DTG/3TC/ABC)
3.1.2. Dolutegravir/Lamivudine (DTG/3TC) or Dolutegravir/Rilpivirine (DTG/RPV)
3.1.3. Tenofovir Disoproxil Fumarate/Lamivudine/Dolutegravir (TLD)
3.2. Risk Factors for Treatment-Emergent Resistance
3.2.1. DTG Monotherapy
3.2.2. Prior Virologic Failure
3.2.3. Heavily Treatment-Experienced Populations
3.2.4. Suboptimal Adherence
3.3. Treatment-Emergent Resistance in People Living with HIV-2
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European AIDS Clinical Society. Guidelines Version 12.0. Available online: https://www.eacsociety.org/guidelines/eacs-guidelines/ (accessed on 31 October 2023).
- Chastain, D.; Badowski, M.; Huesgen, E.; Pandit, N.S.; Pallotta, A.; Michienzi, S. Optimizing antiretroviral therapy in treatment-experienced patients living with HIV: A critical review of switch and simplification strategies. An opinion of the HIV Practice and Research Network of the American College of Clinical Pharmacy. J. Int. Assoc. Provid. AIDS Care 2019, 18, 2325958219867325. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Bedimo, R.; Hoy, J.F.; Landovitz, R.J.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.A.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 recommendations of the International Antiviral Society-USA Panel. JAMA 2023, 329, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Nickel, K.; Halfpenny, N.J.A.; Snedecor, S.J.; Punekar, Y.S. Comparative efficacy, safety and durability of dolutegravir relative to common core agents in treatment-naïve patients infected with HIV-1: An update on a systematic review and network meta-analysis. BMC Infect. Dis. 2021, 21, 222. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Evitt, L.; Mariolis, I.; Di Giambenedetto, S.; d’Arminio Monforte, A.; Casado, J.; Cabello Úbeda, A.; Hocqueloux, L.; Allavena, C.; Barber, T.; et al. HIV treatment with the two-drug regimen dolutegravir plus lamivudine in real-world clinical practice: A systematic literature review. Infect. Dis. Ther. 2021, 10, 2051–2070. [Google Scholar] [CrossRef]
- Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Available online: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv (accessed on 5 October 2023).
- Vitoria, M.; Hill, A.; Ford, N.; Doherty, M.; Clayden, P.; Venter, F.; Ripin, D.; Flexner, C.; Domanico, P.L. The transition to dolutegravir and other new antiretrovirals in low-income and middle-income countries: What are the issues? AIDS 2018, 32, 1551–1561. [Google Scholar] [CrossRef]
- de Salazar, A.; Viñuela, L.; Fuentes, A.; Teyssou, E.; Charpentier, C.; Lambert-Niclot, S.; Serrano-Conde, E.; Pingarilho, M.; Fabeni, L.; De Monte, A.; et al. Transmitted drug resistance to integrase-based first-line human immunodeficiency virus antiretroviral regimens in Mediterranean Europe. Clin. Infect. Dis. 2023, 76, 1628–1635. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, X.; Deng, X.; Wei, S.; Liu, J.; Ma, J.; Zhao, Q.; Huo, Y. Prevalence of integrase strand transfer inhibitor (INSTIs) resistance mutations in Henan Province, China (2018–2020). Infection 2021, 49, 1195–1202. [Google Scholar] [CrossRef]
- McClung, R.P.; Oster, A.M.; Bañez Ocfemia, M.C.; Saduvala, N.; Heneine, W.; Johnson, J.A.; Hernandez, A.L. Transmitted drug resistance among human immunodeficiency virus (HIV)-1 diagnoses in the United States, 2014–2018. Clin. Infect. Dis. 2022, 74, 1055–1062. [Google Scholar] [CrossRef]
- Tzou, P.L.; Rhee, S.-Y.; Descamps, D.; Clutter, D.S.; Hare, B.; Mor, O.; Grude, M.; Parkin, N.; Jordan, M.R.; Bertagnolio, S.; et al. WHO HIVResNet Working Groups. Integrase strand transfer inhibitor (INSTI)-resistance mutations for the surveillance of transmitted HIV-1 drug resistance. J. Antimicrob. Chemother. 2020, 75, 170–182. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2022 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2022, 30, 559–574. [Google Scholar]
- World Health Organization. HIV Drug Resistance Report. 2021. Available online: https://www.who.int/publications/i/item/9789240038608 (accessed on 31 October 2023).
- Raffi, F.; Jaeger, H.; Quiros-Roldan, E.; Albrecht, H.; Belonosova, E.; Gatell, J.M.; Baril, J.-G.; Domingo, P.; Brennan, C.; Almond, S.; et al. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2013, 13, 927–935. [Google Scholar] [CrossRef]
- Walmsley, S.; Baumgarten, A.; Berenguer, J.; Felizarta, F.; Florence, E.; Khuong-Josses, M.-A.; Kilby, J.M.; Lutz, T.; Podzamczer, D.; Portilla, J.; et al. Brief report: Dolutegravir plus abacavir/lamivudine for the treatment of HIV-1 infection in antiretroviral therapy-naive patients: Week 96 and week 144 results from the SINGLE randomized clinical trial. J. Acquir. Immune Defic. Syndr. 2015, 70, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.-M.; Clotet, B.; van Lunzen, J.; Lazzarin, A.; Cavassini, M.; Henry, K.; Kulagin, V.; Givens, N.; de Oliveira, C.F.; Brennan, C.; et al. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV 2015, 2, e127–e136. [Google Scholar] [CrossRef] [PubMed]
- Dooley, K.E.; Kaplan, R.; Mwelase, N.; Grinsztejn, B.; Ticona, E.; Lacerda, M.; Sued, O.; Belonosova, E.; Ait-Khaled, M.; Angelis, K.; et al. International Study of Patients with HIV on Rifampicin ING study group. Dolutegravir-based antiretroviral therapy for patients coinfected with tuberculosis and human immunodeficiency virus: A multicenter, noncomparative, open-label, randomized trial. Clin. Infect. Dis. 2020, 70, 549–556. [Google Scholar] [PubMed]
- Orrell, C.; Hagins, D.P.; Belonosova, E.; Porteiro, N.; Walmsley, S.; Falcó, V.; Man, C.Y.; Aylott, A.; Buchanan, A.M.; Wynne, B.; et al. Fixed-dose combination dolutegravir, abacavir, and lamivudine versus ritonavir-boosted atazanavir plus tenofovir disoproxil fumarate and emtricitabine in previously untreated women with HIV-1 infection (ARIA): Week 48 results from a randomised, open-label, non-inferiority, phase 3b study. Lancet HIV 2017, 4, e536–e546. [Google Scholar] [PubMed]
- Cahn, P.; Sierra Madero, J.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Three-year durable efficacy of dolutegravir plus lamivudine in antiretroviral therapy-naive adults with HIV-1 infection. AIDS 2022, 36, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Rolle, C.-P.; Berhe, M.; Singh, T.; Ortiz, R.; Wurapa, A.; Ramgopal, M.; Jayaweera, D.T.; Leone, P.A.; Matthews, J.E.; Cupo, M.; et al. Sustained virologic suppression with dolutegravir/lamivudine in a test-and-treat setting through 48 weeks. Open Forum Infect. Dis. 2023, 10, ofad101. [Google Scholar] [CrossRef] [PubMed]
- Trottier, B.; Lake, J.E.; Logue, K.; Brinson, C.; Santiago, L.; Brennan, C.; Koteff, J.A.; Wynne, B.; Hopking, J.; Granier, C.; et al. Dolutegravir/abacavir/lamivudine versus current ART in virally suppressed patients (STRIIVING): A 48-week, randomized, non-inferiority, open-label, phase IIIb study. Antivir. Ther. 2017, 22, 295–305. [Google Scholar] [CrossRef]
- van Wyk, J.; Orkin, C.; Rubio, R.; Bogner, J.; Baker, D.; Khuong-Josses, M.-A.; Parks, D.; Angelis, K.; Kahl, L.P.; Matthews, J.; et al. Brief report: Durable suppression and low rate of virologic failure 3 years after switch to dolutegravir + rilpivirine 2-drug regimen: 148-week results from the SWORD-1 and SWORD-2 randomized clinical trials. J. Acquir. Immune Defic. Syndr. 2020, 85, 325–330. [Google Scholar] [CrossRef]
- Osiyemi, O.; De Wit, S.; Ajana, F.; Bisshop, F.; Portilla, J.; Routy, J.P.; Wyen, C.; Ait-Khaled, M.; Leone, P.; Pappa, K.A.; et al. Efficacy and safety of switching to dolutegravir/lamivudine versus continuing a tenofovir alafenamide-based 3- or 4-drug regimen for maintenance of virologic suppression in adults living with human immunodeficiency virus type 1: Results through week 144 from the phase 3, noninferiority TANGO randomized trial. Clin. Infect. Dis. 2022, 75, 975–986. [Google Scholar]
- Llibre, J.M.; Brites, C.; Cheng, C.-Y.; Osiyemi, O.; Galera, C.; Hocqueloux, L.; Maggiolo, F.; Degen, O.; Taylor, S.; Blair, E.; et al. Efficacy and safety of switching to the 2-drug regimen dolutegravir/lamivudine versus continuing a 3- or 4-drug regimen for maintaining virologic suppression in adults living with human immunodeficiency virus 1 (HIV-1): Week 48 results from the phase 3, noninferiority SALSA randomized trial. Clin. Infect. Dis. 2023, 76, 720–729. [Google Scholar] [PubMed]
- Wang, R.; Horton, J.; Joshi, A.; Gebremedhin, N.; Wynne, B.; Griffith, S.; Underwood, M. Low level of virologic failure and resistance in ART-experienced, integrase inhibitor-naive participants receiving dolutegravir (DTG) and nucleoside reverse transcriptase inhibitors (NRTIs) combined regimens: 10-year follow-up in the SAILING study. In Proceedings of the 24th International AIDS Conference, Montreal, QU, Canada, 29 July–2 August 2022. Poster EPB158. [Google Scholar]
- Castagna, A.; Maggiolo, F.; Penco, G.; Wright, D.; Mills, A.; Grossberg, R.; Molina, J.-M.; Chas, J.; Durant, J.; Moreno, S.; et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J. Infect. Dis. 2014, 210, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Kaplan, R.; Losso, M.; Brites, C.; Wang, R.; Underwood, M.; Hopking, J.; Aboud, M.; Sievers, J. Efficacy of second-line dolutegravir plus 2 nucleoside reverse transcriptase inhibitors by baseline nucleoside reverse transcriptase inhibitor resistance and nucleoside reverse transcriptase inhibitor use in the DAWNING study. Antivir. Ther. 2022, 27, 13596535221077487. [Google Scholar] [CrossRef]
- Ackerman, P.; Wilkin, T.; Pierce, A.; Chabria, S.; Wang, M.; Clark, A.; Lataillade, M. Clinical impact of antiretroviral agents used in optimized background therapy with fostemsavir in heavily treatment-experienced adults with HIV-1: Exploratory analyses of the phase 3 BRIGHTE study. In Proceedings of the 11th IAS Conference on HIV Science, Virtual, 18–21 July 2021. Poster PEB155. [Google Scholar]
- Brody, J.K.; Taylor, J.; Biello, K.; Bazzi, A.R. Towards equity for people who inject drugs in HIV prevention drug trials. Int. J. Drug Policy 2021, 96, 103284. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.E.; Heitzeg, M.M. Sex, age, race and intervention type in clinical studies of HIV cure: A systematic review. AIDS Res. Hum. Retroviruses 2015, 31, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.S.; Hunter, J.R.; Camargo, M.; Dias, D.; Galinskas, J.; Nassar, I.; de Lima, I.B.; Caldeira, D.B.; Sucupira, M.C.; Schechter, M. Dolutegravir-associated resistance mutations after first-line treatment failure in Brazil. BMC Infect. Dis. 2023, 23, 347. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.; Abadie, M.; Mpango, L.; Nyapokoto, C.M.; Mthethwa, N. HIV drug resistance trends among 251 treatment experienced children and young adults (0–24 years). In Proceedings of the 12th IAS Conference on HIV Science, Brisbane, Australia, 23–26 July 2023. Poster EPB0260. [Google Scholar]
- Marcelin, A.-G.; Soulié, C.; Wirden, M.; Charpentier, C.; Descamps, D.; Calvez, V. 3-Year analysis of emergent resistance-associated mutations at first- or second-line HIV-1 virologic failure with second generation INSTIs in 2- and 3-drug regimens (Virostar study). In Proceedings of the 19th European AIDS Conference, Warsaw, Poland, 18–21 October 2023. Poster eP.B1.025. [Google Scholar]
- Marom, R.; Zaltz, N.; Ziv-Baran, T.; Levinson, T.; Tau, L.; Girshengorn, S.; Ahsanov, S.; Matus, N.; Adler, A.; Turner, D. Drug resistance mutations conferring resistance to integrase inhibitors among people living with HIV in Tel Aviv, between the years 2010–2020: Prevalence and risk factors. In Proceedings of the 19th European AIDS Conference, Warsaw, Poland, 18–21 October 2023. Poster eP.B1.010. [Google Scholar]
- Armenia, D.; Santoro, M.M.; Charpentier, C.; Bertoli, A.; Forbici, F.; Calvez, V.; Descamps, D.; Ceccherini-Silberstein, F.; Marcelin, A.-G.; Flandre, P. Evaluation of integrase resistance in individuals who failed a regimen containing dolutegravir in French and Italian clinical settings. J. Antimicrob. Chemother. 2023, 78, 1415–1422. [Google Scholar] [CrossRef]
- Castagna, A.; Ferrara, M.; Galli, L.; Comi, L.; Sterrantino, G.; Cenderello, G.; Zaccarelli, M.; Focà, E.; Roncadori, A.; Lazzarin, A.; et al. Long-term efficacy of dolutegravir in treatment-experienced subjects failing therapy with HIV-1 integrase strand inhibitor-resistant virus. J. Antimicrob. Chemother. 2018, 73, 177–182. [Google Scholar]
- Deschanvres, C.; Reynes, J.; Lamaury, I.; Rey, D.; Palich, R.; Bani-Sadr, F.; Robineau, O.; Duvivier, C.; Hocqueloux, L.; Cuzin, L.; et al. Dolutegravir-based dual maintenance regimens combined with lamivudine/emtricitabine or rilpivirine: Risk of virological failure in a real-life setting. J. Antimicrob. Chemother. 2021, 77, 196–204. [Google Scholar] [CrossRef]
- Landman, R.; Marcelin, A.G.; Bennani, M.; Philippe, C.; Kousignian, P.; Finkielsztejn, L.; Roustand, L.; Nachbaur, G.; Pourcher, V. COPEDOL: A two-year observational study in pretreated HIV-1-infected patients switching to a dolutegravir-based regimen. Infect. Dis. Now. 2022, 52, 93–100. [Google Scholar] [CrossRef]
- Palmier, E.; De Miguel, R.; Montejano, R.; Busca, C.; Micán, R.; Ramos, L.; Cadiñanos, J.; Serrano, L.; Bernardino, J.I.; Pérez-Valero, I.; et al. Three-year efficacy of switching to dolutegravir plus lamivudine: A real-world study. HIV Med. 2023, 24, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Tebano, G.; Soulié, C.; Schneider, L.; Blanc, C.; Agher, R.; Seang, S.; Valantin, M.A.; Palich, R.; Tubiana, R.; Peytavin, G.; et al. Long-term follow-up of HIV-infected patients on dolutegravir monotherapy. J. Antimicrob. Chemother. 2020, 75, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Schramm, B.; Temfack, E.; Descamps, D.; Nicholas, S.; Peytavin, G.; Bitilinyu-Bangoh, J.E.; Storto, A.; Lê, M.P.; Abdi, B.; Ousley, J.; et al. Viral suppression and HIV-1 drug resistance 1 year after pragmatic transitioning to dolutegravir first-line therapy in Malawi: A prospective cohort study. Lancet HIV 2022, 9, e544–e553. [Google Scholar] [CrossRef]
- Bowman, C.; Ambrose, A.; Kanitkar, T.; Flores, K.; Simoes, P.; Hart, J.; Hunter, A.; Akodu, J.; Barber, T.J. Real world use of dolutegravir two drug regimens. AIDS 2023, 37, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Lepik, K.J.; Harrigan, P.R.; Yip, B.; Wang, L.; Robbins, M.A.; Zhang, W.W.; Toy, J.; Akagi, L.; Lima, V.D.; Guillemi, S.; et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS 2017, 31, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Seatla, K.K.; Maruapula, D.; Choga, W.T.; Ntsipe, T.; Mathiba, N.; Mogwele, M.; Kapanda, M.; Nkomo, B.; Ramaabya, D.; Makhema, J.; et al. HIV-1 subtype C drug resistance mutations in heavily treated patients failing integrase strand transfer inhibitor-based regimens in Botswana. Viruses 2021, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, N.; Ismail, N.; Magule, C.; Hussein, C.; Meque, I.; Couto, A.; Nhangave, A.; Muteerwa, A.; Bonou, M.; Ramos, A.; et al. HIV drug resistance profile in clients experiencing treatment failure after the transition to a dolutegravir-based, first-line antiretroviral treatment regimen in Mozambique. In Proceedings of the 12th IAS Conference on HIV Science, Brisbane, Australia, 23–26 July 2023. Poster LBEPB16. [Google Scholar]
- Abdullahi, A.; Kida, I.M.; Maina, U.A.; Ibrahim, A.H.; Mshelia, J.; Wisso, H.; Adamu, A.; Onyemata, J.E.; Edun, M.; Yusuph, H.; et al. Limited emergence of resistance to integrase strand transfer inhibitors (INSTIs) in ART-experienced participants failing dolutegravir-based antiretroviral therapy: A cross-sectional analysis of a Northeast Nigerian cohort. J. Antimicrob. Chemother. 2023, 78, 2000–2007. [Google Scholar] [CrossRef]
- Gil, H.; Delgado, E.; Benito, S.; Moreno-Lorenzo, M.; Thomson, M.M.; Spanish Group for the Study of Antiretroviral Drug Resistance. Factors associated with HIV-1 resistance to integrase strand transfer inhibitors in Spain: Implications for dolutegravir-containing regimens. Front. Microbiol. 2022, 13, 1051096. [Google Scholar] [CrossRef]
- Loosli, T.; Hossmann, S.; Ingle, S.M.; Okhai, H.; Kusejko, K.; Mouton, J.; Bellecave, P.; van Sighem, A.; Stecher, M.; d’Arminio Monforte, A.; et al. HIV-1 drug resistance in people on dolutegravir-based antiretroviral therapy: A collaborative cohort analysis. Lancet HIV 2023, 20, e733–e741. [Google Scholar] [CrossRef]
- Oldenbuettel, C.; Wolf, E.; Ritter, A.; Noe, S.; Heldwein, S.; Pascucci, R.; Wiese, C.; Von Krosigk, A.; Jaegel-Guedes, E.; Jaeger, H.; et al. Dolutegravir monotherapy as treatment de-escalation in HIV-infected adults with virological control: DoluMono cohort results. Antivir. Ther. 2017, 22, 169–172. [Google Scholar] [CrossRef]
- Rojas, J.; Blanco, J.L.; Marcos, M.A.; Lonca, M.; Tricas, A.; Moreno, L.; Gonzalez-Cordon, A.; Torres, B.; Mallolas, J.; Garcia, F.; et al. Dolutegravir monotherapy in HIV-infected patients with sustained viral suppression. J. Antimicrob. Chemother. 2016, 71, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Scutari, R.; Alteri, C.; Vicenti, I.; Di Carlo, D.; Zuccaro, V.; Incardona, F.; Borghi, V.; Bezenchek, A.; Andreoni, M.; Antinori, A.; et al. Evaluation of HIV-1 integrase resistance emergence and evolution in patients treated with integrase inhibitors. J. Glob. Antimicrob. Resist. 2020, 20, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Steegen, K.; van Zyl, G.; Letsoalo, E.; Claassen, M.; Hans, L.; Carmona, S. Resistance in patients failing integrase strand transfer inhibitors: A call to replace raltegravir with dolutegravir in third-line treatment in South Africa. Open Forum Infect. Dis. 2019, 6, ofz377. [Google Scholar] [CrossRef] [PubMed]
- Requena, S.; Trevino, A.; Cabezas, T.; Garcia-Delgado, R.; Amengual, M.J.; Lozano, A.B.; Peñaranda, M.; Fernández, J.M.; Soriano, V.; de Mendoza, C.; et al. Drug resistance mutations in HIV-2 patients failing raltegravir and influence on dolutegravir response. J. Antimicrob. Chemother. 2017, 72, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Parczewski, M.; Jabłonowska, E.; Wójcik-Cichy, K.; Zhyvytsia, D.; Witak-Jędra, M.; Leszczyszyn-Pynka, M.; Aksak-Wąs, B.; Siwak, E.; Cielniak, I.; Olczak, A.; et al. Clinical perspective on human immunodeficiency virus care of Ukrainian war refugees in Poland. Clin. Infect. Dis. 2023, 76, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Chieffo, G.; Ghosn, J.; Krivine, A.; Salmon, D. Clinical outcome of heavily treatment-experienced HIV-1 patients harbouring a virus resistant to integrase inhibitors: A French cohort study. In Proceedings of the 16th European AIDS Conference, Milan, Italy, 25–27 October 2017. Poster PE6/12. [Google Scholar]
- López Brull, Á.; Téllez, R.; Cerdá Montagud, A.; Calabia, O.; Llorente, P.; Martín García, I.; Cabello, A.; Górgolas, M. Integrase inhibitor resistance mutations: Cohort of HIV-1 patients at the Jiménez Díaz Foundation Hospital. In Proceedings of the 11th GeSIDA National Congress, Toledo, Spain, 10–13 December 2019. [Google Scholar]
- Nagel, K.E.; Novitsky, V.; Aung, S.; Solomon, M.; Won, C.; Brotherton, A.; Howison, M.; Gillani, F.S.; Kantor, R. HIV-1 drug resistance in patients failing integrase strand transfer inhibitor-based regimens in Rhode Island, USA. Open Forum Infect. Dis. 2022, 9 (Suppl. S2), S545. [Google Scholar] [CrossRef]
- Nithianathan, V.; Singh, G.K.J.; Bower, M.; Nelson, M. Emerging patterns of integrase inhibitor resistance. HIV Med. 2013, 14 (Suppl. S2), 24. [Google Scholar]
- Pulido, F.; Matarranz, M.; García-Muñoz, C.; Hernando, A.; Bisbal, O.; Lagarde, M.; Domínguez-Domínguez, L.; Rubio, R. Incidence of dolutegravir (DTG) discontinuations in a real-life cohort (HIV-DOC). In Proceedings of the 8th GeSIDA National Congress, Donostia-San Sebastián, Spain, 29 November–2 December 2016. [Google Scholar]
- Viciana, I.; García Pérez, C.; González-Domenech, C.M.; Gómez-Ayerbe, C.; Bardón, P.; Palacios, R.; Castaño, M.; del Arco, A.; Téllez, F.; Clavijo, E.; et al. Prevalence of integrase inhibitor resistance mutation in patients with therapeutic failure. In Proceedings of the HIV Drug Therapy Glasgow 2018, Glasgow, UK, 28–31 October 2018. Poster P300. [Google Scholar]
- Wiesmann, F.; Maennling, A.; Naeth, G.; Braun, P.; Knechten, H. Development of second generation integrase inhibitor resistance over the last six years in Germany. In Proceedings of the HIV Drug Therapy Glasgow 2022, Glasgow, UK, 23–26 October 2022. Poster 221. [Google Scholar]
- Kamori, D.; Barabona, G.; Rugemalila, J.; Maokola, W.; Masoud, S.S.; Mizinduko, M.; Sabasaba, A.; Ruhago, G.; Sambu, V.; Mushi, J.; et al. Emerging integrase strand transfer inhibitor drug resistance mutations among children and adults on ART in Tanzania: Findings from a national representative HIV drug resistance survey. J. Antimicrob. Chemother. 2023, 78, 779–787. [Google Scholar] [CrossRef]
- Katlama, C.; Soulié, C.; Caby, F.; Denis, A.; Blanc, C.; Schneider, L.; Valantin, M.-A.; Tubiana, R.; Kirstetter, M.; Valdenassi, E.; et al. Dolutegravir as monotherapy in HIV-1-infected individuals with suppressed HIV viraemia. J. Antimicrob. Chemother. 2016, 71, 2646–2650. [Google Scholar] [CrossRef]
- Letang, E.; Priest, J.; Di Giambenedetto, S.; d’Arminio Monforte, A.; Casado, J.; Cabello-Úbeda, A.; Hocqueloux, L.; Allavena, C.; Barber, T.J.; Jha, D.; et al. Effectiveness and tolerability of the 2-drug regimen dolutegravir plus lamivudine in people with HIV-1: A systematic literature review of real-world evidence from clinical practice. In Proceedings of the BHIVA Spring Conference 2022, Manchester, UK, 20–22 April 2022. Poster P023. [Google Scholar]
- Punekar, Y.S.; Parks, D.; Joshi, M.; Kaur, S.; Evitt, L.; Chounta, V.; Radford, M.; Jha, D.; Ferrante, S.; Sharma, S.; et al. Effectiveness and safety of dolutegravir two-drug regimens in virologically suppressed people living with HIV: A systematic literature review and meta-analysis of real-world evidence. HIV Med. 2021, 22, 423–433. [Google Scholar] [CrossRef]
- Wijting, I.; Rokx, C.; Boucher, C.; van Kampen, J.; Pas, S.; de Vries-Sluijs, T.; Schurink, C.; Bax, H.; Derksen, M.; Andrinopoulou, E.R.; et al. Dolutegravir as maintenance monotherapy for HIV (DOMONO): A phase 2, randomised non-inferiority trial. Lancet HIV 2017, 4, e547–e554. [Google Scholar] [CrossRef] [PubMed]
- Bangsberg, D.R.; Kroetz, D.L.; Deeks, S.G. Adherence-resistance relationships to combination HIV antiretroviral therapy. Curr. HIV/AIDS Rep. 2007, 4, 65–72. [Google Scholar] [CrossRef] [PubMed]
- van Wyk, J.; Ajana, F.; Bisshop, F.; De Wit, S.; Osiyemi, O.; Portilla Sogorb, J.; Routy, J.-P.; Wyen, C.; Ait-Khaled, M.; Nascimento, M.C.; et al. Efficacy and safety of switching to dolutegravir/lamivudine fixed-dose 2-drug regimen vs. continuing a tenofovir alafenamide-based 3- or 4-drug regimen for maintenance of virologic suppression in adults living with human immunodeficiency virus type 1: Phase 3, randomized, noninferiority TANGO study. Clin. Infect. Dis. 2020, 71, 1920–1929. [Google Scholar] [PubMed]
- Hidalgo-Tenorio, C.; Pasquau, J.; Vinuesa, D.; Ferra, S.; Terrón, A.; SanJoaquín, I.; Payeras, A.; Martínez, O.J.; López-Ruz, M.Á.; Omar, M.; et al. DOLAVI real-life study of dolutegravir plus lamivudine in naive HIV-1 patients (48 weeks). Viruses 2022, 14, 524. [Google Scholar] [CrossRef] [PubMed]
- Kuretski, J.; Donovan, C.; Harper, G.; Merrill, D.; Mycock, K.; Oglesby, A.; Metzner, A.; Patarroyo, J. Real-world treatment experience of treatment-naïve people living with HIV who initiated treatment with single-tablet dolutegravir/lamivudine in a test and treat setting in the United States. In Proceedings of the IDWeek 2022, Washington, DC, USA, 19–23 October 2022. Poster 1279. [Google Scholar]
- Cabello-Ubeda, A.; López Bernardo de Quirós, J.C.; Martín Carbonero, L.; Sanz, J.; Vergas, J.; Mena, Á.; Torralba, M.; Hernández Segurado, M.; Pinto, A.; Tejerina, F.; et al. 48-Week effectiveness and tolerability of dolutegravir (DTG) + lamivudine (3TC) in antiretroviral-naïve adults living with HIV: A multicenter real-life cohort. PLoS ONE 2022, 17, e0277606. [Google Scholar] [CrossRef] [PubMed]
- Kabra, M.; Barber, T.J.; Allavena, C.; Marcelin, A.-G.; Di Giambenedetto, S.; Pasquau, J.; Gianotti, N.; Llibre, J.M.; Rial-Crestelo, D.; De Miguel-Buckley, R.; et al. Virologic response to dolutegravir + lamivudine in people with suppressed HIV-1 and historical M184V/I: A systematic literature review and meta-analysis. Open Forum Infect. Dis. 2023, 10, ofad526. [Google Scholar] [CrossRef] [PubMed]
- Cordova, E.; Hernandez Rendon, H.; Mingrone, V.; Martin, P.; Arevalo Calderon, G.; Ballivian, J.; Seleme, S.; Porteiro, N. Efficacy of dolutegravir plus lamivudine in treatment-naïve people living with HIV without baseline drug-resistance testing: Week 24 results of the randomized D2ARLING study. In Proceedings of the 12th IAS Conference on HIV Science, Brisbane, Australia, 23–26 July 2023. Poster TUPEB02. [Google Scholar]
- Borghetti, A.; Giacomelli, A.; Borghi, V.; Ciccullo, A.; Dusina, A.; Fabbiani, M.; Rusconi, S.; Zazzi, M.; Mussini, C.; Di Giambenedetto, S. Nucleoside reverse-transcriptase inhibitor resistance mutations predict virological failure in human immunodeficiency virus-positive patients during lamivudine plus dolutegravir maintenance therapy in clinical practice. Open Forum Infect. Dis. 2021, 8, ofab103. [Google Scholar] [CrossRef]
- Spivack, S.; Pagkalinawan, S.; Samuel, R.; Koren, D.E. HIV: How to manage heavily treatment-experienced patients. Drugs Context 2022, 11, 2021-9-1. [Google Scholar] [CrossRef]
- Aberg, J.A.; Mills, A.; Moreno, S.; Slater, J.; Prakash, M.; Clark, A. The evolution of clinical study design in heavily treatment-experienced persons with HIV: A critical review. Antivir. Ther. 2023, 28, 13596535231174774. [Google Scholar] [CrossRef]
- Lam, W.Y.; Fresco, P. Medication adherence measures: An overview. BioMed Res. Int. 2015, 2015, 217047. [Google Scholar] [CrossRef]
- Fernvik, E.; Sierra Madero, J.; Espinosa, N.; Gulminetti, R.; Hagins, D.; Tsai, H.-C.; Man, C.; Sievers, J.; Grove, R.; Zolopa, A.; et al. Impact of treatment adherence on efficacy of dolutegravir + lamivudine and dolutegravir + tenofovir disoproxil fumarate/emtricitabine: Pooled week 144 analysis of the GEMINI-1 and GEMINI-2 clinical studies. J. Acquir. Immune Defic. Syndr. 2023, 94, e9–e12. [Google Scholar] [CrossRef] [PubMed]
- Maggiolo, F.; Valenti, D.; Teocchi, R.; Comi, L.; Filippo, E.D.; Rizzi, M. Adherence to and forgiveness of 3TC/DTG in a real-world cohort. J. Int. Assoc. Provid. AIDS Care 2022, 21, 23259582221101815. [Google Scholar] [CrossRef] [PubMed]
- Byrd, K.K.; Hou, J.G.; Hazen, R.; Kirkham, H.; Suzuki, S.; Clay, P.G.; Bush, T.; Camp, N.M.; Weidle, P.J.; Delpino, A. Antiretroviral adherence level necessary for HIV viral suppression using real-world data. J. Acquir. Immune Defic. Syndr. 2019, 82, 245–251. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran Leach, E.; Lu, H.; Caballero, J.; Thomas, J.E.; Spencer, E.C.; Cook, R.L. Defining the optimal cut-point of self-reported ART adherence to achieve viral suppression in the era of contemporary HIV therapy: A cross-sectional study. AIDS Res. Ther. 2021, 18, 36. [Google Scholar] [CrossRef]
- Altice, F.; Evuarherhe, O.; Shina, S.; Carter, G.; Beaubrun, A.C. Adherence to HIV treatment regimens: Systematic literature review and meta-analysis. Patient Prefer. Adherence 2019, 13, 475–490. [Google Scholar] [CrossRef]
- Rhee, S.-Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003, 31, 298–303. [Google Scholar] [CrossRef]
- Shafer, R.W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 2006, 194 (Suppl. S1), S51–S58. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yoshinaga, T.; Seki, T.; Wakasa-Morimoto, C.; Brown, K.W.; Ferris, R.; Foster, S.A.; Hazen, R.J.; Miki, S.; Suyama-Kagitani, A.; et al. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob. Agents Chemother. 2011, 55, 813–821. [Google Scholar] [CrossRef]
- Mesplède, T.; Osman, N.; Wares, M.; Quashie, P.K.; Hassounah, S.; Anstett, K.; Han, Y.; Singhroy, D.N.; Wainberg, M.A. Addition of E138K to R263K in HIV integrase increases resistance to dolutegravir, but fails to restore activity of the HIV integrase enzyme and viral replication capacity. J. Antimicrob. Chemother. 2014, 69, 2733–2740. [Google Scholar] [CrossRef]
- Carr, A.; Mackie, N.E.; Paredes, R.; Ruxrungtham, K. HIV drug resistance in the era of contemporary antiretroviral therapy: A clinical perspective. Antivir. Ther. 2023, 28, 13596535231201162. [Google Scholar] [CrossRef]
- Richetta, C.; Subra, F.; Malet, I.; Leh, H.; Charpentier, C.; Corona, A.; Collin, G.; Descamps, D.; Deprez, E.; Parissi, V.; et al. Mutations in the 3’-PPT lead to HIV-1 replication without integration. J. Virol. 2022, 96, e0067622. [Google Scholar] [CrossRef] [PubMed]
- Malet, I.; Delelis, O.; Nguyen, T.; Leducq, V.; Abdi, B.; Morand-Joubert, L.; Calvez, V.; Marcelin, A.-G. Variability of the HIV-1 3’ polypurine tract (3’PPT) region and implication in integrase inhibitor resistance. J. Antimicrob. Chemother. 2019, 74, 3440–3444. [Google Scholar] [CrossRef] [PubMed]
- Malet, I.; Subra, F.; Charpentier, C.; Collin, G.; Descamps, D.; Calvez, V.; Marcelin, A.-G.; Delelis, O. Mutations located outside the integrase gene can confer resistance to HIV-1 integrase strand transfer inhibitors. mBio 2017, 8, e00922-17. [Google Scholar] [CrossRef] [PubMed]
Publication | DTG Regimen | People on DTG Regimen, N | GRT Results (Historical and/or Baseline), n/N (%) | People with Baseline or Historical Mutations, n/N (%) [Mutations] | VF Outcomes, n/N (%) | |||
---|---|---|---|---|---|---|---|---|
Total People with VF | GRT Availability at VF | People with Baseline Mutations and VF | People with Emergent Integrase Mutations at VF [Mutations] | |||||
DTG Monotherapy | ||||||||
Rojas et al., 2016 [50] | DTG monotherapy | 33 | 33/33 (100) | 16/33 (48) [15V, M41L, E44D, A62V, K65R, D67N, T69D, K70R, L74V, Y115F, V118I, M184V, L210W/S, T215Y/F, K219E/Q, M46I/L, I50L, L63P, A71V, G73S, V77I, L90M, A98G, K101E, K103N, V106A/I, V108I, Y181I/C, G190S] | 1/33 (3) | 1/1 (100) | 1/1 (100) | 1/1 (100) [G118R] |
Oldenbuettel et al., 2017 [49] | DTG monotherapy | 31 | NR | NR | 1/31 (3) | 1/1 (100) | NR | 1/1 (100) [Q148H, G140S] a |
Tebano et al., 2020 [40] | DTG monotherapy | 61 | 61/61 (100) | 3/25 (12) [E138K, G140S, N155H, S147G, L74I] [63] b | 3/61 (5) | 3/3 (100) | 1/3 (33) [63] | 3/3 (100) [E138K, G140A, Q148R, E92Q, N155H] |
2DR with DTG | ||||||||
Deschanvres et al., 2022 Dat’AIDS [37] | DTG/RPV or DTG + XTC | 1374 | At least 6/1374 (<1) | At least 4/1374 (<1) [K103H/N/S/T, E138K, M184V] | 45/1374 (3) | 23/45 (51) | 4/45 (9) | 2/45 (4) [N155H, L74I] |
Palmier et al., 2023 [39] | DTG/3TC | 358 | 358/358 | 17/358 (5) [M184V, K103N] c | 13/358 (4) | 9/13 (69) | 1/13 (8) | 1/13 (8) [R263K] |
Bowman et al., 2023 [42] | DTG/3TC (majority), DTG/RPV, or DTG/FTC | 561 | 56/561 (10) | 2/561 (<1) [F121Y, N155H] b | 6/561 (1) | 5/6 (83) | 0 | 1/6 (17) [T66A, G118R, E138K] |
3DR with DTG | ||||||||
Lepik et al., 2017 [43] | DTG + 3TC + ABC or DTG + TDF/FTC or TDF/3TC | 392 | 392/392 (100) d | NRTI: 31/392 (8) NNRTI: 40/392 (10) PI: 6/392 (2) INSTI: 3/392 (1) | 65/392 (17) | NR | NR | 3/65 (5) [T66I, R263K] |
Schramm et al., 2022 [41] | TLD | 1892 | 89/1892 (5) | 53/1892 (3) [M184V/I, K65R, K70E, L74V/I, Y115F, M41L, D67N, K70R, L210W, T215Y/F, K219Q/E] | 37/1762 (2) | 14/37 (38) | 4/37 (11) | 2/37 (5) [R263K, G118R] |
Diaz et al., 2023 [31] | TLD | 113 | NR | NR | 113/113 (100) e,f | 113/113 (100) | NR g | 25/113 (22) [M50I/T/M, V151A/I, L101I/V, R263K/R, G140R, G163R, T97A, L74I/M, E157Q, M154I, G118R, E138A, G149A/G, G193E] h |
Kamori et al., 2023 [62] | DTG/TDF/3TC | 82 | NR | NR | 82/82 (100) e,i | 82/82 (100) e,i | 3/82 (4) j | 7/82 (9) [Q148K, E138K, G118R, G140A, T66A, R263K, T97A, Q95Q/K] h |
Other | ||||||||
Requena et al., 2017 [53] (HIV-2) | DTG + DRV/r or DTG + ATV/r, plus 2 nucleos(t)ides | 5 | 5/5 (100) | 5/5 (100) [Y143G/C, Q91R/Q, E92E/Q, T97A/T, A119T, A153G/S, I84V, N155H] | 3/5 (60) | 3/3 (100) | 3/3 (100) | 3/3 (100) [K4R, K14R, V75A, G118R, A119T, V141I, Q148K/R, V150T, V151I, A153S, Q208H, L220F] |
Castagna et al., 2018 [36] PRESTIGIO | DTG 50 mg BID + OBT | 190 | 142/190 (75) | NNRTI: 80/142 (56) PI: 77/142 (54) INSTI: 117/142 (82) NRTI: 96/142 (68) | 48/190 (25) | 16/48 (33) k | 16/48 (33) | 9/48 (19) [T97A, E138K, L74I, G140S, Q148H, T66I] b,k |
Steegen et al., 2019 [52] | Various | 4 | NR | NR | 4/4 (100) e | NR (assumed 100) | NR | 1/4 (25) [T66A, E138K, Y143R, S147G, Q95K, T97A] h |
Scutari et al., 2020 [51] | Various | 13 | 13/13 (100) | 1/13 (8) [R263K] | All regimens: 102/107 (95) | NR | NR | 3 [N155H, G140S, Q148H, E138A, T97A, Y143H/C/R] l |
Seatla et al., 2021 [44] | Various | 24 (7 unknown, DTG- or RAL-based) | NR | NR | DTG: 24/24 (100) e DTG or RAL: 7/7 (100) e | NR | NR | 8/24 (33) [E138E/A/K/T, G140A, Q148R/K, A128T, G118R, S147G, E157Q, N155N/H/D, D232N, T66A] h |
Gil et al., 2022 [47] | Various | NR m | NR | NR | NR m | NR m | NR | 8/174 (5) [G163R/K, S230R, R263K, E157Q] h,n |
Landman et al., 2022 [38] COPEDOL | Various (including monotherapy) | 459 | NRTI: 349/459 (76) NNRTI: 350/459 (76) PI: 349/459 (76) DTG: 150/459 (33) | NRTI: 179/349 (51) NNRTI: 154/350 (44) PI: 139/349 (40) DTG: 9/150 (6) [V151L, R263K, E92Q, N155H, Q148H/K/R, L741I, G140A/C/S] | 94/440 (21) | 192/440 (44) | 14/440 (3) | 5/440 (1) [E138A/K/T, G140A/C/S, T66K + L74M, S153F, E157Q] o |
Abdullahi et al., 2023 [46] | Various | 4263 | NR | NR | 281/4263 (7) p | 33/281 (12; all DTG + 3TC + TDF) | NR | 1/281 (<1) [T66A, G118R, E138K, R263K] h |
Armenia et al., 2023 [35] | Various (including monotherapy) | 467 | NR | NR | 467/467 (100) e | 467/467 (100) e | NR | Total: 58/467 (12) INSTI-naive: n = 9 (2) g INSTI-experienced: n = 46 (10) h [N155H, R263K, E138A/K/T, S147G, E92A/Q, G140A/C/S, Q148H/R, D232N, T97A, T66A/I, G118R, L74I, V151A/I, E157Q, L74M, G163R, S153F, H51Y, P142T, Y143S, G149A] |
Loosli et al., 2023 [48] | Various (including monotherapy) | 599 | 395/599 (66) | NR | 599/599 (100) e | NR | NR | 86/599 (14) h INSTI-naive: n = 28 (5) g [T66A/I/K/R, E92G/Q, G118R, E138K, G140E/K/R/S, Y143C, S147G, Q148H/R, N155H, R263K, A49G, H51Y, Q95K, T97A, A128T, P142T, Q146L/K, E157Q, G163K/R/S, S230R, D232N] |
Parczewski et al., 2023 [54] | Various | 57.06% of 842 (all regimens) | NR | NR | n = 3 | 3/3 (100) | NR | 1/3 (33) h [E138K, Q148R, R263K] |
Congress Abstract | DTG Regimen | People on DTG Regimen, N | GRT Results (Historical and/or Baseline), n/N (%) | People with Baseline or Historical Mutations, n/N (%) [Mutations] | VF Outcomes, n/N (%) | |||
Total People with VF | GRT Availability at VF | People with Baseline Mutations and VF | People with Emergent Integrase Mutations at VF [Mutations] | |||||
2DR/3DR with DTG | ||||||||
Marcelin et al., EACS 2023 [33] | DTG + 3TC, DTG + RPV, DTG/3TC/ABC | 3219 | NR | NR | 179/3219 (6) | 179/179 (100) | NR | 3/179 (2) [G140S, Q148H, E92K, N155H] |
3DR with DTG | ||||||||
Bhatt et al., IAC 2023 [45] | TLD | 716 | NR | NR | 216/716 (30) | 167/216 (77) | NR | 35/167 (21) [G118R, N155H G140S/A/C/R, Q148H/R/K, Y143R/H/C, R263K] h |
INSTI-based regimens | ||||||||
Chieffo et al., EACS 2017 [55] | INSTI-based regimens | 40 (all regimens) | NR | EVG: 39/40 (98) b RAL: 36/40 (90) b DTG: 8/40 (20) b [N155H/N, Q148H/Q, G140A/S, T97A, Y143C/R, E138A/K, E92Q, T66I] | All regimens: 12/40 (30) q | NR (assumed 100) | NR | 2/12 (17) [NR] |
López Brull et al., GeSIDA 2019 [56] | INSTI-based regimens | 147 (all regimens) | NR | Naive (all regimens): 4/106 (4) [A128T, E157Q] | Experienced (all regimens): 41/41 (100) e | NR (assumed 100) | NR | 6/41 (15) [G118R, R263K] c |
Nagel et al., IDWeek 2022 [57] | INSTI-based regimens | 1169 (all regimens) | NR | NR | On DTG regimens: 22 All regimens: 102/1169 (9) | On DTG regimens: 22/22 (100) | NR | All INSTI regimens: 58/102 (57) [N155H, E92Q, Q148H/R, S147G, T66I/K, E138A/K/T, G140A/S, R263K, Y143R] h,m |
Wiesmann et al., HIV Glasgow 2022 [61] | Second-generation INSTI-based regimens | 2032 samples (all regimens) | NR | NR [On DTG regimens: K101R, V106I, V179A/I, M184V, R263K, E138A] | All regimens: 2032/2032 (100) e | 2032/2032 (100) f | On DTG regimens: 5 r | On DTG regimens: 4 [R263K] r |
Marom et al., EACS 2023 [34] | INSTI-based regimens | 209 (DTG-based regimens) 362 (all regimens) | NR (assumed 100) | NR | All regimens: 72/362 (20) m | NR (assumed 100) | NR | All regimens: 25/72 (35) h,m [R263K, Y143R, G140S, N155H, E92Q, E138K, S147G, Q148R, E157Q, T97A, V151I, L74M, S230R, Q146P s] |
Other/Unspecified | ||||||||
Nithianathan et al., BHIVA 2013 [58] | Unspecified | 2 | NR | NR | 1/2 (50) | 1/1 (100) | NR | 1/1 (100) [E138K, G140S, Q148H] h |
Pulido et al., GeSIDA 2016 [59] | DTG-based regimen | 307 | NR | NR; n = 1 with resistance to RAL | 3/307 (1) | NR (at least 1) | 1/3 (33) | 1/3 (33) [NR; selective for DTG] |
Viciana et al., HIV Glasgow 2018 [60] | Unspecified | 61 | NR | NR | 61/61 (100) e | NR (assumed 100) | NR | 9/61 (15) [R263K, E138K, Q148H, N155H] c,h |
Perry et al., IAC 2023 [32] | DTG- or PI-based regimen | 251 (all regimens) | NR | NR | 251/251 (100) e | INSTI region: 13/251 (5) | NR | 2/251 (1) [E138A/K, G140A, Q148R, R263K] h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henegar, C.; Letang, E.; Wang, R.; Hicks, C.; Fox, D.; Jones, B.; de Ruiter, A.; Vannappagari, V. A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings. Viruses 2023, 15, 2426. https://doi.org/10.3390/v15122426
Henegar C, Letang E, Wang R, Hicks C, Fox D, Jones B, de Ruiter A, Vannappagari V. A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings. Viruses. 2023; 15(12):2426. https://doi.org/10.3390/v15122426
Chicago/Turabian StyleHenegar, Cassidy, Emilio Letang, Ruolan Wang, Charles Hicks, Dainielle Fox, Bryn Jones, Annemiek de Ruiter, and Vani Vannappagari. 2023. "A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings" Viruses 15, no. 12: 2426. https://doi.org/10.3390/v15122426
APA StyleHenegar, C., Letang, E., Wang, R., Hicks, C., Fox, D., Jones, B., de Ruiter, A., & Vannappagari, V. (2023). A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings. Viruses, 15(12), 2426. https://doi.org/10.3390/v15122426