New Isolation of Ponticelli III Virus (Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sandf Fly Trapping and Identification
2.2. Virus Isolation on Cell Cultures
2.3. Virus Detection and Sequencing
2.4. Phylogenetic Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Plyusnin, A.; Beaty, B.J.; Elliott, R.M.; Goldback, R.; Kormelink, R.; Lundkvist, A. Family Bunyaviridae. In Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier: London, UK, 2011; pp. 725–741. [Google Scholar]
- Horne, K.M.; VanLandingham, D.L. Bunyavirus-Vector Interactions. Viruses 2014, 6, 4373–4397. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Amarasinghe, G.K.; Anthony, S.J.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2020, 165, 3023–3072. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Hughes, H. Clinically Important Phleboviruses and Their Detection in Human Samples. Viruses 2021, 13, 1500. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, R.W.; Crépin, T.; Kolakofsky, D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr. Opin. Microbiol. 2011, 14, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Raymond, D.D.; Piper, M.E.; Gerrard, S.R.; Smith, J.L. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc. Natl. Acad. Sci. USA 2010, 107, 11769–11774. [Google Scholar] [CrossRef]
- Freiberg, A.N.; Sherman, M.B.; Morais, M.C.; Holbrook, M.R.; Watowich, S.J. Three-Dimensional Organization of Rift Valley Fever Virus Revealed by Cryoelectron Tomography. J. Virol. 2008, 82, 10341–10348. [Google Scholar] [CrossRef]
- Bouloy, M. Molecular biology of phleboviruses. In Bunyaviridae, Molecular and Cellular Biology; Plyusnin, A., Elliot, R.M., Eds.; Caister Academic Press: Norfolk, UK, 2011; pp. 95–128. [Google Scholar]
- Moriconi, M.; Rugna, G.; Calzolari, M.; Bellini, R.; Albieri, A.; Angelini, P.; Cagarelli, R.; Landini, M.P.; Charrel, R.N.; Varani, S. Phlebotomine sand fly–borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLOS Neglected Trop. Dis. 2017, 11, e0005660. [Google Scholar] [CrossRef]
- Ayhan, N.; López-Roig, M.; Monastiri, A.; Charrel, R.; Serra-Cobo, J. Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test. Viruses 2021, 13, 88. [Google Scholar] [CrossRef]
- Depaquit, J.; Grandadam, M.; Fouque, F.; Andry, P.; Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Eurosurveillance 2010, 15, 19507. [Google Scholar] [CrossRef]
- Elliott, R.M.; Brennan, B. Emerging phleboviruses. Curr. Opin. Virol. 2014, 5, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Killick-Kendrick, R. The biology and control of Phlebotomine sandflies. Clin. Dermatol. 1999, 17, 279–289. [Google Scholar] [CrossRef]
- Daoudi, M.; Calzolari, M.; Boussaa, S.; Bonilauri, P.; Torri, D.; Romeo, G.; Lelli, D.; Lavazza, A.; Hafidi, M.; Dottori, M.; et al. Identification of Toscana virus in natural population of sand flies (Diptera: Psychodidae) from Moroccan leishmaniasis foci. J. Infect. Public Health 2022, 15, 406–411. [Google Scholar] [CrossRef]
- Papa, A.; Velo, E.; Bino, S. A novel phlebovirus in Albanian sandflies. Clin. Microbiol. Infect. 2011, 17, 585–587. [Google Scholar] [CrossRef]
- Anagnostou, V.; Pardalos, G.; Athanasiou-Metaxa, M.; Papa, A. Novel Phlebovirus in Febrile Child, Greece. Emerg. Infect. Dis. 2011, 17, 940–941. [Google Scholar] [CrossRef]
- Alkan, C.; Allal-Ikhlef, A.; Alwassouf, S.; Baklouti, A.; Piorkowski, G.; de Lamballerie, X.; Izri, A.; Charrel, R. Virus isolation, genetic characterization and seroprevalence of Toscana virus in Algeria. Clin. Microbiol. Infect. 2015, 21, 1040.e1–1040.e9. [Google Scholar] [CrossRef]
- Calzolari, M.; Chiapponi, C.; Bellini, R.; Bonilauri, P.; Lelli, D.; Moreno, A.; Barbieri, I.; Pongolini, S.; Lavazza, A.; Dottori, M. Isolation of three novel reassortant phleboviruses, Ponticelli I, II, III, and of Toscana virus from field-collected sand flies in Italy. Parasites Vectors 2018, 11, 84. [Google Scholar] [CrossRef]
- Ayhan, N.; Alten, B.; Ivovic, V.; Cvetkovikj, A.; Stefanovska, J.; Martinkovic, F.; Piorkowski, G.; Moureau, G.; Gould, E.A.; Pettersson, J.H.-O.; et al. Field surveys in Croatia and North Macedonia reveal two novel phleboviruses circulating in sandflies. J. Gen. Virol. 2021, 102, 001674. [Google Scholar] [CrossRef]
- Lambert, A.J.; Lanciotti, R.S. Consensus Amplification and Novel Multiplex Sequencing Method for S Segment Species Identification of 47 Viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus Genera of the Family Bunyaviridae. J. Clin. Microbiol. 2009, 47, 2398–2404. [Google Scholar] [CrossRef]
- Kampmann, M.-L.; Fordyce, S.L.; Ávila-Arcos, M.C.; Rasmussen, M.; Willerslev, E.; Nielsen, L.P.; Gilbert, M.T.P. A simple method for the parallel deep sequencing of full influenza A genomes. J. Virol. Methods 2011, 178, 243–248. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Ben Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2020, 7, veaa087. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Pond, S.L.K.; Poon, A.F.Y.; Velazquez, R.; Weaver, S.; Hepler, N.L.; Ben Murrell, B.; Shank, S.D.; Magalis, B.R.; Bouvier, D.; Nekrutenko, A.; et al. HyPhy 2.5—A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies. Mol. Biol. Evol. 2019, 37, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Verani, P.; Ciufolini, M.G.; Nicoletti, L.; Balducci, M.; Sabatinelli, G.; Coluzzi, M.; Paci, P.; Amaducci, L. Ecological and epidemiological studies of Toscana virus, an arbovirus isolated from Phlebotomus. Ann. Ist. Super Sanita 1982, 18, 397–399. [Google Scholar]
- Calisher, C.; Weinberg, A.; Muth, D.; Lazuick, J. Toscana virus infection in United States citizen returning from Italy. Lancet 1987, 329, 165–166. [Google Scholar] [CrossRef]
- Alkan, C.; Bichaud, L.; de Lamballerie, X.; Alten, B.; Gould, E.A.; Charrel, R.N. Sand fly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antivir. Res. 2013, 100, 54–74. [Google Scholar] [CrossRef]
- Percivalle, E.; Cassaniti, I.; Calzolari, M.; Lelli, D.; Baldanti, F. Thirteen Years of Phleboviruses Circulation in Lombardy, a Northern Italy Region. Viruses 2021, 13, 209. [Google Scholar] [CrossRef]
- Charrel, R.N.; Moureau, G.; Temmam, S.; Izri, A.; Marty, P.; Parola, P.; da Rosa, A.T.; Tesh, R.B.; de Lamballerie, X. Massilia Virus, A Novel Phlebovirus (Bunyaviridae) Isolated from Sandflies in the Mediterranean. Vector-Borne Zoonotic Dis. 2009, 9, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Collao, X.; De Ory, F.; Navarro, J.M.; Lipkin, I.W.; Sanbonmatsu-Gamez, S.L.; Palacios, G.; Tenorio, A.; Molina, R.; Sánchez-Seco, M.P.; Pérez-Ruiz, M.; et al. Granada Virus: A Natural Phlebovirus Reassortant of the Sandfly Fever Naples Serocomplex with Low Seroprevalence in Humans. Am. J. Trop. Med. Hyg. 2010, 83, 760–765. [Google Scholar] [CrossRef]
- Amaro, F.; Hanke, D.; Zé-Zé, L.; Alves, M.J.; Becker, S.C.; Höper, D. Genetic characterization of Arrabida virus, a novel phlebovirus isolated in South Portugal. Virus Res. 2016, 214, 19–25. [Google Scholar] [CrossRef]
- Amaro, F.; Zé-Zé, L.; Lourenço, J.; Giovanetti, M.; Becker, S.; Alves, M. Phylogenetic Analysis of Massilia phlebovirus in Portugal. Viruses 2021, 13, 1412. [Google Scholar] [CrossRef]
- Briese, T.; Calisher, C.H.; Higgs, S. Viruses of the family Bunyaviridae: Are all available isolates reassortants? Virology 2013, 446, 207–216. [Google Scholar] [CrossRef]
- Palacios, G.; Tesh, R.; da Rosa, A.T.; Savji, N.; Sze, W.; Jain, K.; Serge, R.; Guzman, H.; Guevara, C.; Nunes, M.R.T.; et al. Characterization of the Candiru Antigenic Complex (Bunyaviridae: Phlebovirus), a Highly Diverse and Reassorting Group of Viruses Affecting Humans in Tropical America. J. Virol. 2011, 85, 3811–3820. [Google Scholar] [CrossRef]
- Han, G.-Z.; Worobey, M. Homologous Recombination in Negative Sense RNA Viruses. Viruses 2011, 3, 1358–1373. [Google Scholar] [CrossRef]
- Lelli, D.; Scanferla, V.; Moreno, A.; Sozzi, E.; Ravaioli, V.; Renzi, M.; Tosi, G.; Dottori, M.; Lavazza, A.; Calzolari, M. Serological Evidence of Phleboviruses in Domestic Animals on the Pre-Apennine Hills (Northern Italy). Viruses 2021, 13, 1577. [Google Scholar] [CrossRef]
18 June 2019 | 30 July 2019 | 13 August 2019 | 27 August 2019 | 10 September 2019 | 24 September 2019 | 4 September 2020 | Total | |
---|---|---|---|---|---|---|---|---|
Phlebotomus perfiliewi | 2 | 40 | 15 | 5 | 10 | 72 | ||
Phlebotomus perniciosus | 1 | 1 | ||||||
Phlebotomus spp. | 0 | 154 | 53 | 67 | 0 | 135 * | 409 | |
Total | 3 | 194 | 68 | 5 | 77 | 0 | 135 | 482 |
Virus | Abb. | ADAV | PONTVI | PONTVII | PONTVIII | BREV | SALV | ZABAV | ARBV | MVV |
---|---|---|---|---|---|---|---|---|---|---|
Adana virus 195 | ADAV | 0.34–0.33 | 0.34–0.31 | 0.35–0.32 | 0.35–0.31 | 0.36–0.34 | 0.34–0.32 | 0.31–0.27 | 0.35–0.32 | |
Ponticelli I virus 220116–3/2013 | PONTV I | 0.19–0.04 | 0.3–0.23 | 0.29–0.22 | 0.3–0.24 | 0.32–0.26 | 0.35–0.32 | 0.37–0.36 | 0.33–0.27 | |
Ponticelli II virus 181135–8/2013 | PONTV II | 0.19–0.04 | 0.02–0 | 0.3–0.24 | 0.14–0.04 | 0.31–0.23 | 0.34–0.31 | 0.36–0.34 | 0.32–0.26 | |
Ponticelli III virus 270315/2020 | PONTV III | 0.19–0.04 | 0.02–0 | 0.01–0 | 0.3–0.24 | 0.31–0.26 | 0.34–0.31 | 0.37–0.36 | 0.32–0.28 | |
Bregalaka virus M31 | BREV | 0.19–0.04 | 0.12–0.02 | 0.12–0.01 | 0.12–0.02 | 0.31–0.23 | 0.34–0.31 | 0.36–0.34 | 0.32–0.27 | |
Salehabad virus I–81 | SALV | 0.25–0.14 | 0.26–0.14 | 0.25–0.14 | 0.26–0.14 | 0.25–0.15 | 0.36–0.32 | 0.38–0.38 | 0.33–0.29 | |
Zaba virus C48 | ZABAV | 0.25–0.15 | 0.26–0.15 | 0.26–0.15 | 0.26–0.15 | 0.26–0.15 | 0.2–0.05 | 0.36–0.35 | 0.33–0.31 | |
Arbia virus ISS PHL18 | ARBV | 0.26–0.15 | 0.26–0.15 | 0.26–0.15 | 0.26–0.15 | 0.26–0.15 | 0.23–0.1 | 0.23–0.11 | 0.36–0.35 | |
Medjerda Valley virus T131 | MVV | 0.26–0.14 | 0.25–0.15 | 0.25–0.14 | 0.25–0.14 | 0.25–0.14 | 0.23–0.1 | 0.23–0.1 | 0.19–0.04 | |
Alcube virus S20 | ACBV | 0.27–0.15 | 0.26–0.16 | 0.26–0.16 | 0.26–0.16 | 0.26–0.16 | 0.24–0.11 | 0.24–0.11 | 0.24–0.11 | 0.23–0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoudi, M.; Romeo, G.; Marzani, K.; Petrella, A.; Bonilauri, P.; Lelli, D.; Boumezzough, A.; Boussaa, S.; Dottori, M.; Calzolari, M. New Isolation of Ponticelli III Virus (Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy. Viruses 2023, 15, 422. https://doi.org/10.3390/v15020422
Daoudi M, Romeo G, Marzani K, Petrella A, Bonilauri P, Lelli D, Boumezzough A, Boussaa S, Dottori M, Calzolari M. New Isolation of Ponticelli III Virus (Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy. Viruses. 2023; 15(2):422. https://doi.org/10.3390/v15020422
Chicago/Turabian StyleDaoudi, Mohamed, Giuseppe Romeo, Katia Marzani, Angelica Petrella, Paolo Bonilauri, Davide Lelli, Ali Boumezzough, Samia Boussaa, Michele Dottori, and Mattia Calzolari. 2023. "New Isolation of Ponticelli III Virus (Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy" Viruses 15, no. 2: 422. https://doi.org/10.3390/v15020422
APA StyleDaoudi, M., Romeo, G., Marzani, K., Petrella, A., Bonilauri, P., Lelli, D., Boumezzough, A., Boussaa, S., Dottori, M., & Calzolari, M. (2023). New Isolation of Ponticelli III Virus (Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy. Viruses, 15(2), 422. https://doi.org/10.3390/v15020422