Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study
Abstract
:1. Background
2. Methods
2.1. Study Setting and Data Collection
2.2. Serological Analysis
2.3. COVID-19 Data Sources
2.4. Statistical Analysis
2.5. Survey Ethics
3. Results
3.1. Participants
3.2. Seroprevalence
3.3. Seroconversion, Seroresponse and Seroreversion
3.4. COVID-19 Rates, Hospitalizations and Deaths
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID-19 Cumulative Infection Collaborators. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: A statistical analysis. Lancet 2022, 399, 2351–2380. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Ito, K.; Anzai, A.; Kobayashi, T.; Piantham, C.; Rodríguez-Morales, A.J. Relative Reproduction Number of SARS-CoV-2 Omicron (B.1.1.529) Compared with Delta Variant in South Africa. J. Clin. Med. 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Rössler, A.; Riepler, L.; Bante, D.; Laer, D.; Kimpel, J. SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Persons. N. Engl. J. Med. 2022, 386, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Vanni, A.; Spinicci, M.; Capone, M.; Lamacchia, G.; Salvati, L.; Coppi, M.; Antonelli, A.; Carnasciali, A.; Farahvachi, P.; et al. SARS-CoV-2 Spike-Specific CD4+ T Cell Response Is Conserved Against Variants of Concern, Including Omicron. Front. Immunol. 2022, 13, 801431. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; Schalkwyk, C.; Govender, N.; Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022, 376, eabn4947. [Google Scholar] [CrossRef]
- Kent, S.J.; Khoury, D.S.; Reynaldi, A.; Juno, J.A.; Wheatley, A.K.; Stadler, E.; John Wherry, E.; Triccas, J.; Sasson, S.C.; Cromer, D.; et al. Disentangling the relative importance of T cell responses in COVID-19: Leading actors or supporting cast? Nat. Rev. Immunol. 2022, 22, 387–397. [Google Scholar] [CrossRef]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Moyo, S.; Amoako, D.G.; Baxter, C.; et al. Continued Emergence and Evolution of Omicron in South Africa: New BA.4 and BA.5 lineages. medRxiv 2022. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Iketani, S.; Nair, M.S.; Li, Z.; Mohri, H.; Wang, M.; Yu, J.; Bowen, A.D.; Chang, J.Y.; et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022, 608, 603–608. [Google Scholar] [CrossRef]
- Madhi, S.A.; Kwatra, G.; Myers, J.E.; Jassat, W.; Dhar, N.; Mukendi, C.K.; Nana, A.J.; Blumberg, L.; Welch, R.; Ngorima-Mabhena, N.; et al. Population Immunity and Covid-19 Severity with Omicron Variant in South Africa. N. Engl. J. Med. 2022, 386, 1314–1326. [Google Scholar] [CrossRef]
- Mutevedzi, P.C.; Kawonga, M.; Kwatra, G.; Moultrie, A.; Baillie, V.; Mabena, N.; Mathibe, M.N.; Rafuma, M.M.; Maposa, I.; Abbott, G.; et al. Estimated SARS-CoV-2 infection rate and fatality risk in Gauteng Province, South Africa: A population-based seroepidemiological survey. Int. J. Epidemiol. 2022, 51, 404–417. [Google Scholar] [CrossRef] [PubMed]
- South African National Institute for Communicable Diseases. Daily Hospital Surveillance (DATCOV) Report. Available online: https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/daily-hospital-surveillance-datcov-report/ (accessed on 12 December 2022).
- South African Medical Research Council. Report on Weekly Deaths in South Africa. Available online: https://www.samrc.ac.za/sites/default/files/files/2022-11-16/weekly12Nov2022.pdf (accessed on 12 December 2022).
- Statistics South Africa. STATISTICAL RELEASE P0302: Mid-Year Population Estimates 2020. 2021. Available online: http://www.statssa.gov.za/publications/P0302/P03022020.pdf (accessed on 12 December 2022).
- Network for Genomic Surveillance in South Africa (NGS-SA), SARS-CoV-2 Sequencing Update. Available online: https://www.nicd.ac.za/wp-content/uploads/2022/11/Update-of-SA-sequencing-data-from-GISAID-18-Nov-2022.pdf (accessed on 12 December 2022).
- Madhi, S.A.; Nunes, M.C.; Weinberg, A.; Kuwanda, L.; Hugo, A.; Jones, S.; Niekerk, N.; Ortiz, J.R.; Neuzil, K.M.; Klugman, K.P.; et al. Contribution of Serologic Assays in the Evaluation of Influenza Virus Infection Rates and Vaccine Efficacy in Pregnant Women: Report From Randomized Controlled Trials. Clin. Infect. Dis. 2017, 64, 1773–1779. [Google Scholar] [CrossRef] [Green Version]
- Cohen, C.; Kleynhans, J.; Moyes, J.; McMorrow, M.L.; Treurnicht, F.K.; Hellferscee, O.; Mathunjwa, A.; von Gottberg, A.; Wolter, N.; Martinson, N.A.; et al. Asymptomatic transmission and high community burden of seasonal influenza in an urban and a rural community in South Africa, 2017–2018 (PHIRST): A population cohort study. Lancet Glob. Health 2021, 9, e863–e874. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Walaza, S.; Treurnicht, F.K.; McMorrow, M.; Madhi, S.A.; McAnerney, J.M.; Tempia, S. In- and Out-of-hospital Mortality Associated with Seasonal and Pandemic Influenza and Respiratory Syncytial Virus in South Africa, 2009–2013. Clin. Infect. Dis. 2018, 66, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolter, N.; Buys, A.; Walaza, S.; Moyes, J.; du Plessis, M.; Mkhencele, T.; Moosa, F.; Amoako, D.; Kekana, D.; de Gouveia, L.; et al. Influenza Activity in South Africa—2021. Public Health Surveill. Bull. Vol. Natl. Inst. Commun. Dis. S. Afr. 2022, 19. Available online: https://www.nicd.ac.za/wp-content/uploads/2022/05/PUBLIC-HEALTH-SURVEILLANCE-BULLETIN-VOL19.-ISS-1-Influenza-season-South-Africa-2021-Public-Health-Surv.-Bulletin.pdf (accessed on 12 December 2022).
- Bhattacharyya, R.P.; Hanage, W.P. Challenges in Inferring Intrinsic Severity of the SARS-CoV-2 Omicron Variant. N. Engl. J. Med. 2022, 386, e14. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; Hong, V.X.; Patel, M.M.; Kahn, R.; Lipsitch, M.; Tartof, S.Y. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat. Med. 2022, 28, 1933–1943. [Google Scholar] [CrossRef]
- Halfmann, P.J.; Iida, S.; Iwatsuki-Horimoto, K.; Maemura, T.; Kiso, M.; Scheaffer, S.M.; Darling, T.L.; Joshi, A.; Loeber, S.; Singh, G.; et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 2022, 603, 687–692. [Google Scholar] [CrossRef]
- Chen, L.L.; Abdullah, S.M.U.; Chan, W.M.; Chan, B.P.; Ip, J.D.; Chu, A.W.; Lu, L.; Zhang, X.; Zhao, Y.; Chuang, V.W.; et al. Contribution of low population immunity to the severe Omicron BA.2 outbreak in Hong Kong. Nat. Commun. 2022, 13, 3618. [Google Scholar] [CrossRef]
- Mefsin, Y.M.; Chen, D.; Bond, H.S.; Lin, Y.; Cheung, J.K.; Wong, J.Y.; Ali, S.T.; Lau, E.H.Y.; Wu, P.; Leung, G.M.; et al. Epidemiology of Infections with SARS-CoV-2 Omicron BA.2 Variant, Hong Kong, January-March 2022. Emerg. Infect. Dis. 2022, 28, 1856–1858. [Google Scholar] [CrossRef]
- Keeton, R.; Tincho, M.B.; Ngomti, A.; Baguma, R.; Benede, N.; Suzuki, A.; Khan, K.; Cele, S.; Bernstein, M.; Karim, F.; et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022, 603, 488–492. [Google Scholar] [CrossRef]
- Nicolson, G. Government Ditches COVID Rules on Masks, Gatherings and Travel. Available online: https://www.dailymaverick.co.za/article/2022-06-23-government-ditches-covid-rules-on-masks-gatherings-and-travel/ (accessed on 12 December 2022).
- The National Institute for Communicable Diseases, South Africa, COVID-19 Weekly Testing Summary Week 47 of 2022. Available online: https://www.nicd.ac.za/wp-content/uploads/2022/11/COVID-19-Testing-Summary_Week-47.pdf (accessed on 12 December 2022).
- Kimura, I.; Yamasoba, D.; Tamura, T.; Nao, N.; Oda, Y.; Mitoma, S.; Ito, J.; Nasser, H.; Zahradnik, J.; Uriu, K.; et al. Virological characteristics of the novel SARS-CoV-2 Omicron variants including BA.2.12.1, BA.4 and BA.5. bioRxiv 2022. [Google Scholar] [CrossRef]
- Qu, P.; Evans, J.P.; Faraone, J.; Zheng, Y.M.; Carlin, C.; Anghelina, M.; Stevens, P.; Fernandez, S.; Jones, D.; Lozanski, G.; et al. Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. bioRxiv 2022. [Google Scholar] [CrossRef]
- South Africa National Department of Health-Electronic Vaccination Data System Public Repository. Available online: https://github.com/ndoh-evds/evds-data-analytics/tree/main/Vaccination%20Data/2022-11-14 (accessed on 12 December 2022).
- Our World in Data COVID Vaccination Data. Available online: https://ourworldindata.org/covid-vaccinations#what-share-of-the-population-has-received-at-least-one-dose-and-completed-the-initial-vaccination-protocol (accessed on 12 December 2022).
- Bergeri, I.; Whelan, M.G.; Ware, H.; Subissi, L.; Nardone, A.; Lewis, H.C.; Li, Z.; Ma, X.; Valenciano, M.; Cheng, B.; et al. Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies. PLoS Med. 2022, 19, e1004107. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Amir, O.; Freedman, L.; Alroy-Preis, S.; Ash, N.; Huppert, A.; Milo, R. Protection by a Fourth Dose of BNT162b2 against Omicron in Israel. N. Engl. J. Med. 2022, 386, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
Pre-BA.1-Dominant Wave Survey | Post-BA.1-Dominant Wave Survey | Individuals with Paired Samples from Pre-BA.1- and Post-BA.1-Dominant Wave Serosurveys and No COVID-19 Vaccination Following Pre-BA.1 Serosurvey 1 | |||||
---|---|---|---|---|---|---|---|
District | N | Seroprevalence 1 n (%; 95% CI 6) | N | Seroprevalence 2 n (%; 95% CI 6) | Seroconversion 3 n/N (%; 95% CI 6) | Seroresponse for Anti-N and/or Anti-S IgG 4 n/N (%; 95% CI 6) | Overall Serological Evidence SARS-CoV-2 Infection 5 n/N (%; 95% CI 6) |
Gauteng Province | 7010 | 5124 (73.1; 72.0–74.1) | 7510 | 6823 (90.9; 90.2–91.5) | 382/510 (74.9; 71.0–78.5) | 933/1548 (60.3; 57.8–62.7) | 1315/2058 (63.9; 61.8–65.9) |
Johannesburg District | 2468 | 1880 (76.2; 74.5–77.8) | 2630 | 2412 (91.7; 90.6–92.7) | 124/154 (80.5; 73.6–86.0) | 351/574 (61.1; 57.1–65.1) | 475/728 (65.2; 61.7–68.6) |
Ekurhuleni District | 1861 | 1382 (74.3; 72.2–76.2) | 2132 | 1982 (93.0; 91.8–94.0) | 133/167 (79.6; 72.9–85.0) | 344/529 (65; 60.9–69.0) | 477/696 (68.5; 65.0–71.9) |
Sedibeng District | 564 | 398 (70.6; 66.7–74.2) | 624 | 557 (89.3; 86.6–91.5) | 21/30 (70; 52.1–83.3) | 44/77 (57.1; 46.0–67.6) | 65/107 (60.7; 51.3–69.5) |
City of Tshwane District | 1464 | 975 (66.6; 64.1–69.0) | 1455 | 1255 (86.3; 84.4–87.9) | 72/117 (61.5; 52.5–69.9) | 137/269 (50.9; 45.0–56.8) | 209/386 (54.1; 49.2–59.1) |
West Rand | 653 | 489 (74.9; 71.4–78.1) | 669 | 617 (92.2; 89.9–94.0) | 32/42 (76.2; 61.5–86.5) | 57/99 (57.6; 47.7–66.8) | 89/141 (63.1; 54.9–70.6) |
Age group stratification | |||||||
<12 years | 753 | 423 (56.2; 52.6–59.7) | 584 | 491 (84.1; 80.9–86.8) | 53/74 (71.6; 60.5–80.6) | 82/126 (65.1; 56.4–72.8) | 135/200 (67.5; 60.7–73.6) |
12 to 17 years | 622 | 459 (73.8; 70.2–77.1) | 553 | 523 (94.6; 92.4–96.2) | 30/33 (90.9; 76.4–96.9) | 94/127 (74; 65.8–80.9) | 124/160 (77.5; 70.4–83.3) |
18 to 50 years | 4047 | 2978 (73.6; 72.2–74.9) | 4614 | 4204 (91.1; 90.3–91.9) | 210/270 (77.8; 72.4–82.3) | 495/836 (59.2; 55.8–62.5) | 705/1106 (63.7; 60.9–66.5) |
>50 years | 1588 | 1264 (79.6; 77.5–81.5) | 1739 | 1587 (91.3; 89.8–92.5) | 85/128 (66.4; 57.9–74.0) | 256/450 (56.9; 52.3–61.4) | 341/578 (59; 54.9–62.9) |
Pre-BA.1-Dominant Wave Serosurvey 1 | Post-BA.1-Dominant Wave Serosurvey | |||
---|---|---|---|---|
Category | Number Sampled N (%) | Seroprevalence 2 n (%; 95% CI 3) (%; 95% CI) | Number Sampled N (%) | Seroprevalence 2 n (%; 95% CI 3) |
All participants | 7010 | 5124 (73.1; 72.0–74.1) | 7510 | 6823 (90.9; 90.2–91.5) |
Sex | ||||
Male | 2941 (42%) | 1999 (68; 66.3–69.6) | 3096 (41.4%) | 2726 (88; 86.9–89.1) |
Female | 4065 (58%) | 3123 (76.8; 75.5–78.1) | 4390 (58.6%) | 4075 (92.8; 92.0–93.6) |
Age group–years | ||||
<12 | 753 (10.7%) | 423 (56.2; 52.6–59.7) | 584 (7.8%) | 491 (84.1; 80.9–86.8) |
12–18 | 622 (8.9%) | 459 (73.8; 70.2–77.1) | 553 (7.4%) | 523 (94.6; 92.4–96.2) |
>18 to 50 | 4047 (57.7%) | 2978 (73.6; 72.2–74.9) | 4614 (61.6%) | 4204 (91.1; 90.3–91.9) |
>50 | 1588 (22.7%) | 1264 (79.6; 77.5–81.5) | 1739 (23.2%) | 1587 (91.3; 89.8–92.5) |
Vaccination status | ||||
Not vaccinated (all age groups) | 4938 (70.4%) | 3473 (70.3; 69.0–71.6) | 4891 (65.5%) | 4377 (89.5; 88.6–90.3) |
Vaccinated | 1319 (18.8%) | 1228 (93.1; 91.6–94.3) | 1995 (26.7%) | 1918 (96.1; 95.2–96.9) |
<12 yrs | 753 (10.7%) | 423 (56.2; 52.6–59.7) | 584 (7.8%) | 491 (84.1; 80.9–86.8) |
Vaccination by age group | ||||
<12 unvaccinated | 753 (10.7%) | 423 (56.2; 52.6–59.7) | 584 (7.8%) | 491 (84.1; 80.9–86.8) |
12–18 unvaccinated | 603 (8.6%) | 443 (73.5; 69.8–76.8) | 442 (5.9%) | 412 (93.2; 90.5–95.2) |
12–18 vaccinated | 19 (0.3%) | 16 (84.2; 62.4–94.5) | 106 (1.4%) | 106 (100; 96.5–100.0) |
>18 to 50 unvaccinated | 3356 (47.9%) | 2335 (69.6; 68.0–71.1) | 3470 (46.5%) | 3109 (89.6; 88.5–90.6) |
>18 to 50 vaccinated | 691 (9.9%) | 643 (93.1; 90.9–94.7) | 1130 (15.1%) | 1082 (95.8; 94.4–96.8) |
>50 unvaccinated | 979 (14%) | 695 (71; 68.1–73.7) | 979 (13.1%) | 856 (87.4; 85.2–89.4) |
>50 vaccinated | 609 (8.7%) | 569 (93.4; 91.2–95.1) | 759 (10.2%) | 730 (96.2; 94.6–97.3) |
Reported previous COVID-19-positive test | ||||
Never tested | 5956 (85%) | 4272 (71.7; 70.6–72.9) | 7209 (96.4%) | 6547 (90.8; 90.1–91.5) |
Tested positive | 195 (2.8%) | 172 (88.2; 82.9–92.0) | 43 (0.6%) | 43 (100; 91.8–100.0) |
Tested negative | 859 (12.3%) | 680 (79.2; 76.3–81.7) | 229 (3.1%) | 207 (90.4; 85.9–93.6) |
Smoking status | ||||
Non-smoker | 4086 (58.3%) | 3172 (77.6; 76.3–78.9) | 4336 (58%) | 3986 (91.9; 91.1–92.7) |
Daily | 1115 (15.9%) | 741 (66.5; 63.6–69.2) | 1331 (17.8%) | 1173 (88.1; 86.3–89.8) |
Once or twice a week | 238 (3.4%) | 178 (74.8; 68.9–79.9) | 393 (5.3%) | 361 (91.9; 88.7–94.2) |
Occasionally | 196 (2.8%) | 151 (77; 70.7–82.4) | 278 (3.7%) | 257 (92.4; 88.7–95.0) |
<18 yrs | 1375 (19.6%) | 882 (64.1; 61.6–66.6) | 1137 (15.2%) | 1014 (89.2; 87.2–90.9) |
Comorbidities | ||||
None | 4631 (66.1%) | 3432 (74.1; 72.8–75.4) | 5233 (70%) | 4758 (90.9; 90.1–91.7) |
1 or more | 1004 (14.3%) | 810 (80.7; 78.1–83.0) | 1111 (14.9%) | 1025 (92.3; 90.5–93.7) |
<18 yrs (not assessed) | 1375 (19.6%) | 882 (64.1; 61.6–66.6) | 1137 (15.2%) | 1014 (89.2; 87.2–90.9) |
HIV status | ||||
HIV-negative | 6460 (92.2%) | 4728 (73.2; 72.1–74.3) | 6850 (91.6%) | 6232 (91; 90.3–91.6) |
HIV-positive | 550 (7.8%) | 396 (72; 68.1–75.6) | 631 (8.4%) | 565 (89.5; 86.9–91.7) |
Outcomes | Pre-BA.1-Dominant Wave Cumulative | BA.1-Dominant Wave | Omicron Sublineage Era | Total |
---|---|---|---|---|
Period of case wave | 7 March 2020 to 22 October 2021 | 23 October 2021 to 21 March 2022 | 22 March 2022 to 17 November 2022 | |
Inferred infections from serosurvey 1 | 8,391,304 (8,265,033–8,506,096) | 10,167,996 (9,803,769–10,517,047) | Not applicable | |
Cases—no. † | 926,193 | 279,829 | 135,272 | 1,341,294 |
Cumulative case rate per 100,000 population | 5957 | 1805 | 523 | 8653 |
Annualised case rate per 100,000 population | 3567 | 1080 | 313 | 5182 |
Proportion of total cumulative cases, % | 69.1 | 20.9 | 10 | 100 |
Inferred infection: recorded case ratio (95% CI) | 9.1 (8.9–9.2). | 36.3 (35.0–37.6) | Not applicable | |
Period of COVID-19 hospitalisation wave | 7 March 2020 to November 1, 2021 | 2 November 2021 to 23 March 2022 | 24 March 2022, 2022 17 November 2022 | |
Hospitalizations– no.‡ | 127,415 | 22,233 | 11,624 | 161,272 |
Cumulative hospitalisation rate per 100,000 population | 822 | 143 | 75 | 1041 |
Proportion of total cumulative hospitalisations, % | 79 | 13.8 | 7.2 | 100 |
Inferred infection: recorded hospitalisation ratio (95% CI) | 65.9 (64.9–66.8) | 457.3 (441.0–473.0) | Not applicable | |
Period of recorded COVID-19 deaths, wave | 31 March 2020 to 3 November 2021 | 4 November 2021 to 14 April 2022 | 15 April 2022 to 17 November 2022 | |
Recorded deaths in wave—no. | 27,996 | 1802 | 913 | 30,711 |
cumulative recorded death rate per 100,000 population § | 180.6 | 11.6 | 5.9 | 191.7 |
Proportion of total cumulative recorded deaths, % | 91.2 | 5.8 | 3 | 100 |
Inferred infection: recorded death ratio (95% CI) | 299.7 (295.2–303.8) | 5642.6 (5440.5–5836.3) | Not applicable | |
Infection fatality risk (IFR) for recorded deaths (%) | 0.33. | 0.02 | Not applicable | |
Period of excess deaths wave | 3 March 2020 to 27 November 2021 | 28 November 2021 to 19 March 2022 | 20 March 2022 to 17 November 2022 | |
Excess deaths in wave–no. | 56,202 | 2974 | 6753 | 65,929 |
Cumulative excess death rate per 100,000 population | 362.6 | 19.2 | 43.6 | 425 |
Proportion of total cumulative excess deaths, % | 85.3 | 4.5 | 10.2 | 100 |
Inferred infection: excess death ratio (95% CI) | 149.3 (147.1–151.3) | 3719.0 (3296.5–3536.3) | Not applicable | |
Infection fatality risk 2 (IFR) for excess deaths (%) | 0.67 | 0.03 | Not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhi, S.A.; Kwatra, G.; Myers, J.E.; Jassat, W.; Dhar, N.; Mukendi, C.K.; Blumberg, L.; Welch, R.; Izu, A.; Mutevedzi, P.C. Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study. Viruses 2023, 15, 597. https://doi.org/10.3390/v15030597
Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, Blumberg L, Welch R, Izu A, Mutevedzi PC. Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study. Viruses. 2023; 15(3):597. https://doi.org/10.3390/v15030597
Chicago/Turabian StyleMadhi, Shabir A., Gaurav Kwatra, Jonathan E. Myers, Waasila Jassat, Nisha Dhar, Christian K. Mukendi, Lucille Blumberg, Richard Welch, Alane Izu, and Portia C. Mutevedzi. 2023. "Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study" Viruses 15, no. 3: 597. https://doi.org/10.3390/v15030597
APA StyleMadhi, S. A., Kwatra, G., Myers, J. E., Jassat, W., Dhar, N., Mukendi, C. K., Blumberg, L., Welch, R., Izu, A., & Mutevedzi, P. C. (2023). Sustained Low Incidence of Severe and Fatal COVID-19 Following Widespread Infection Induced Immunity after the Omicron (BA.1) Dominant in Gauteng, South Africa: An Observational Study. Viruses, 15(3), 597. https://doi.org/10.3390/v15030597