Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission
Abstract
:1. Introduction
Global Control Programme Hopes and Ambitions
2. Materials and Methods
3. Results and Discussion
3.1. Post-Emergence and Dispersal
3.2. Behaviour and Biology: Mating
3.3. Behaviour and Biology: Host Seeking, Blood and Sugar Feeding
3.4. Behaviour and Biology: Resting and Oviposition
3.5. Modulation of behaviour through Memory and Learning
3.6. Recent Advances in Sensory Biology and Mechanisms of Host Discrimination
3.7. Which Phenotype of Aedes Aegypti am I Working With? A Note of Caution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gah, M. Speciation and evolution in Aedes. In Genetics of Insect Vectors of Disease; Pal, R., Wright, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; pp. 277–311. [Google Scholar]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti-a review. Memórias Inst. Oswaldo Cruz 2013, 108, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gloria-Soria, A.; Ayala, D.; Bheecarry, A.; Calderon-Arguedas, O.; Chadee, D.D.; Chiappero, M.; Coetzee, M.; Bin Elahee, K.; Fernandez-Salas, I.; Kamal, H.A.; et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 2016, 25, 5377–5395. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.E.; Alves, J.M.; Palmer, W.J.; Day, J.P.; Sylla, M.; Ramasamy, R.; Surendran, S.N.; Black, W.C.; Pain, A.; Jiggins, F.M. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rose, N.H.; Sylla, M.; Badolo, A.; Lutomiah, J.; Ayala, D.; Aribodor, O.B.; Ibe, N.; Akorli, J.; Otoo, S.; Mutebi, J.-P.; et al. Climate and Urbanization Drive Mosquito Preference for Humans. Curr. Biol. 2020, 30, 3570–3579.e6. [Google Scholar] [CrossRef]
- Aubry, F.; Dabo, S.; Manet, C.; Filipović, I.; Rose, N.H.; Miot, E.F.; Martynow, D.; Baidaliuk, A.; Merkling, S.H.; Dickson, L.B.; et al. Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations. Science 2020, 370, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.H.; Dabo, S.; Leal, S.D.V.; Sylla, M.; Diagne, C.T.; Faye, O.; Faye, O.; Sall, A.A.; McBride, C.S.; Lambrechts, L. Enhanced mosquito vectorial capacity underlies the Cape Verde Zika epidemic. PLOS Biol. 2022, 20, e3001864. [Google Scholar] [CrossRef] [PubMed]
- Dickson, L.B.; Sanchez-Vargas, I.; Sylla, M.; Fleming, K.; Iv, W.C.B. Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent. PLOS Neglected Trop. Dis. 2014, 8, e3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylla, M.; Bosio, C.; Urdaneta-Marquez, L.; Ndiaye, M.; Iv, W.C.B. Gene Flow, Subspecies Composition, and Dengue Virus-2 Susceptibility among Aedes aegypti Collections in Senegal. PLOS Neglected Trop. Dis. 2009, 3, e408. [Google Scholar] [CrossRef] [Green Version]
- Futami, K.; Iwashita, H.; Higa, Y.; Lutiali, P.A.; Sonye, G.O.; Mwatele, C.; Minakawa, N. Geographical Distribution of Aedes aegypti aegypti and Aedes aegypti formosus (Diptera: Culicidae) in Kenya and Environmental Factors Related to Their Relative Abundance. J. Med. Entomol. 2020, 57, 772–779. [Google Scholar] [CrossRef]
- Egid, B.R.; Coulibaly, M.; Dadzie, S.K.; Kamgang, B.; McCall, P.J.; Sedda, L.; Toe, K.H.; Wilson, A.L. Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. Curr. Res. Parasitol. Vector Borne Dis. 2021, 2, 100074. [Google Scholar] [CrossRef]
- Rose, N.H.; Badolo, A.; Sylla, M.; Akorli, J.; Otoo, S.; Gloria-Soria, A.; McBride, C.S. Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes. bioRxiv 2022, 9, 507331. [Google Scholar]
- Brown, J.E.; McBride, C.S.; Johnson, P.; Ritchie, S.; Paupy, C.; Bossin, H.; Powell, J.R. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 2011, 278, 2446–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2018, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Weetman, D.; Kamgang, B.; Badolo, A.; Moyes, C.L.; Shearer, F.M.; Coulibaly, M.; Pinto, J.; Lambrechts, L.; McCall, P.J. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. Int. J. Environ. Res. Public Health 2018, 15, 220. [Google Scholar] [CrossRef] [Green Version]
- Dadzie, S.K.; Akorli, J.; Coulibaly, M.B.; Ahadji-Dabla, K.M.; Baber, I.; Bobanga, T.; Boukhary, A.O.M.S.; Canelas, T.; Facchinelli, L.; Gonçalves, A.; et al. Building the capacity of West African countries in Aedes surveillance: Inaugural meeting of the West African Aedes Surveillance Network (WAASuN). Parasites Vectors 2022, 15, 1–4. [Google Scholar] [CrossRef]
- Shragai, T.; Tesla, B.; Murdock, C.; Harrington, L.C. Zika and chikungunya: Mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 2017, 1399, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Iwamura, T.; Guzman-Holst, A.; Murray, K.A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 2020, 11, 2130. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Higgs, S.; Vanlandingham, D. Chikungunya Virus and Its Mosquito Vectors. Vector-Borne Zoonotic Dis. 2015, 15, 231–240. [Google Scholar] [CrossRef]
- Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet 2017, 390, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
- Paules, C.I.; Fauci, A.S. Yellow Fever—Once Again on the Radar Screen in the Americas. N. Engl. J. Med. 2017, 376, 1397–1399. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.-P.; Chippaux, A. Yellow fever in Africa and the Americas: A historical and epidemiological perspective. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IuV, I.; Riabova, T.E.; NIa, M.; Bezzhonova, O.V.; Ganushkina, L.A.; Semenov, V.B.; Sergiev, V.P. First evidence for breeding Aedes aegypti L in the area of Greater Sochi and in some towns of Abkhasia. Meditsinskaia Parazitol. I Parazit. Bolezn. 2008, 77, 40–43. [Google Scholar]
- Almeida, A.P.G.; Gonçalves, Y.M.; Novo, M.T.; Sousa, C.; Melim, M.; Grácio, A.J.S. Vector monitoring of Aedes aegypti in the Autonomous Region of Madeira, Portugal. Eurosurveillance 2007, 12, 3311. [Google Scholar] [CrossRef]
- Lima, A.; Severson, D.W.; Hickner, P.V.; Lovin, D.D. Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC. Am. J. Trop. Med. Hyg. 2016, 94, 231–235. [Google Scholar] [CrossRef] [Green Version]
- De Majo, M.S.; Montini, P.; Fischer, S. Egg Hatching and Survival of Immature Stages of Aedes aegypti (Diptera: Culicidae) Under Natural Temperature Conditions During the Cold Season in Buenos Aires, Argentina. J. Med. Èntomol. 2016, 54, 106–113. [Google Scholar] [CrossRef]
- Kampen, H.; Jansen, S.; Schmidt-Chanasit, J.; Walther, D. Indoor development of Aedes aegypti in Germany, 2016. Eurosurveillance 2016, 21, 30407. [Google Scholar] [CrossRef] [Green Version]
- Giordano, B.V.; Gasparotto, A.; Liang, P.; Nelder, M.P.; Russell, C.; Hunter, F.F. Discovery of an Aedes (Stegomyia) albopictus population and first records of Aedes (Stegomyia) aegypti in Canada. Med. Vet. Entomol. 2020, 34, 10–16. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health 2011, 39 (Suppl. S4), S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Baly, A.; Flessa, S.; Cote, M.; Thiramanus, T.; Vanlerberghe, V.; Villegas, E.; Jirarojwatana, S.; Van Der Stuyft, P. The Cost of Routine Aedes aegypti Control and of Insecticide-Treated Curtain Implementation. Am. J. Trop. Med. Hyg. 2011, 84, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Massad, E.; Coutinho, F.A.B. The cost of dengue control. Lancet 2011, 377, 1630–1631. [Google Scholar] [CrossRef] [PubMed]
- Slosek, J. Aedes aegypti mosquitoes in the Americas: A review of their interactions with the human population. Soc. Sci. Med. 1986, 23, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Soper, F.L. The 1964 Status of Aedes Aegypti Eradication and Yellow Fever in the Americas *. Am. J. Trop. Med. Hyg. 1965, 14, 887–891. [Google Scholar] [CrossRef]
- Pan American Health Organization. The feasibility of eradicating Aedes aegypti in the Americas. Rev. Panam. Salud. Publica. 1997, 1, 68–72. [Google Scholar] [CrossRef] [Green Version]
- SB, H. Successes and failures in dengue control global experience. Dengue Bull. 2000, 24, 60–70. [Google Scholar]
- Dick, O.B.; San Martín, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The history of dengue outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584. [Google Scholar] [CrossRef] [Green Version]
- PAHO. Aedes aegypti Eradication in Cuba. Bull. Pan Am. Health Organ. 1981, 15, 267–270. [Google Scholar]
- PAHO. Aedes aegypti. CD39/16; PAHO: Washington, DC, USA, 1996. [Google Scholar]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Weetman, D. Correction: Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2021, 15, e0009084. [Google Scholar] [CrossRef]
- Chang, C.; Ortiz, K.; Ansari, A.; Gershwin, M.E. The Zika outbreak of the 21st century. J. Autoimmun. 2016, 68, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef] [PubMed]
- Dhang, P. (Ed.) Urban Pest Management: An Environmental Perspective; CABI: Wallingford, UK, 2011. [Google Scholar]
- Knols, B.G.J.; Scott, T.W. Ecological Challenges Concerning the Use of Genetically Modified Mosquitoes for Disease Control: Synthesis and Future Perspectives. In Ecological Aspects for Application of Genetically Modified Mosquitoes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 235–242. [Google Scholar]
- Clements, A.N. Chapter 4—Growth and Metamorphosis. In The Physiology of Mosquitoes; Pergamon: Oxford, UK, 1963; pp. 72–108. [Google Scholar]
- Nelson, M.J. Aedes Aegypti: Biology and Ecology; PAHO: Washington, DC, USA, 1986; PNSP 86-64. [Google Scholar]
- Theobald, F.V. A Monograph of the Culicidae of the World; British Museum, Longmans Co. 6 v.: London, UK, 1901. [Google Scholar]
- Lamb, C.G. The geometry of insect pairing. Proc. R. Soc. London. Ser. B Contain. Pap. A Biol. Character 1922, 94, 1–11. [Google Scholar]
- Marshall, J.F. The British Mosquitoes; Trustees of the British Museum: London, UK, 1938. [Google Scholar]
- Howell, P.I.; Knols, B.G. Male mating biology. Malar. J. 2009, 8, S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, R.W. The biology and bionomics of Aedes aegypti in the laboratory. Summ. Investig. 1964, 24, 129. [Google Scholar]
- Roth, L.M. A Study of Mosquito Behavior. An Experimental Laboratory Study of the Sexual Behavior of Aedes aegypti (Linnaeus). Am. Midl. Nat. 1948, 40, 265. [Google Scholar] [CrossRef]
- Macgeegoe, M.E. Notes on the Rearing of Stegomyia fasdata in London. J. Trop. Med. Hyg. 1915, 18, 265. [Google Scholar]
- Gwadz, R.W.; Craig, G.B., Jr. Sexual receptivity in female Aedes aegypti. Mosq. News 1968, 28, 586–593. [Google Scholar]
- Lea, A.O. Mating without insemination in virgin Aedes aegypti. J. Insect Physiol. 1968, 14, 305–308. [Google Scholar] [CrossRef]
- Gwadz, R.W.; Craig Jr, G.B.; Hickey, W.A. Female sexual behavior as the mechanism rendering Aedes aegypti refractory to insemination. Biol. Bull. 1971, 140, 201–214. [Google Scholar] [CrossRef]
- Nayar, J.K. Aedes aegypti (L.)(Diptera: Culicidae): Observations on dispersal, survival, insemination, ovarian development and oviposition characteristics of a Florida population. J. Fla. Anti Mosq. Assoc. 1981, 52, 24–40. [Google Scholar]
- Orr, C.W.M.; Hudson, A.; West, A.S. The salivary glands of aedes aegypti histological–histochemical studies. Can. J. Zool. 1961, 39, 265–272. [Google Scholar] [CrossRef]
- Howard, L.O. The Yellow-Fever Mosquito; Department of Agriculture: Washington, DC, USA, 1923.
- Johnson, H.A. Notes on the Continuous Rearing of aëdes Aegypti in the Laboratory. Public Health Rep. (1896-1970) 1937, 52, 1177. [Google Scholar] [CrossRef]
- Clements, A.N. The Physiology of Mosquitoes: International Series of Monographs on Pure and Applied Biology: Zoology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 17. [Google Scholar]
- Edman, J.D.; Strickman, D.; Kittayapong, P.; Scott, T.W. Female Aedes aegypti (Diptera: Culicidae) in Thailand Rarely Feed on Sugar. J. Med. Èntomol. 1992, 29, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Costero, A.; Edman, J.D.; Clark, G.G.; Scott, T.W. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. J. Med. Èntomol. 1998, 35, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.C.; Edman, J.D.; Scott, T.W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 2001, 38, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Van Handel, E.; Edman, J.D.; Day, J.F.; Scott, T.W.; Clark, G.G.; Reiter, P. Plant-sugar, glycogen, and lipid assay of Aedes aegypti collected in urban Puerto Rico and rural Florida. J. Am. Mosq. Control. Assoc. 1994, 10, 149–153. [Google Scholar]
- Scott, T.W.; Edman, J.D.; Kittayapong, P.; Day, J.F.; Naksathit, A. A Fitness Advantage for Aedes aegypti and the Viruses It Transmits When Females Feed Only on Human Blood. Am. J. Trop. Med. Hyg. 1997, 57, 235–239. [Google Scholar] [CrossRef] [PubMed]
- League, G.P.; Degner, E.C.; Pitcher, S.A.; Hafezi, Y.; Tennant, E.; Cruz, P.C.; Krishnan, R.S.; Castillo, S.S.G.; Alfonso-Parra, C.; Avila, F.W.; et al. The impact of mating and sugar feeding on blood-feeding physiology and behavior in the arbovirus vector mosquito Aedes aegypti. PLOS Neglected Trop. Dis. 2021, 15, e0009815. [Google Scholar] [CrossRef]
- Spencer, C.Y.; Pendergast, T.H.; Harrington, L.C. Fructose variation in the dengue vector, Aedes aegypti, during high and low transmission seasons in the Mae Sot region of Thailand. J. Am. Mosq. Control. Assoc. 2005, 21, 177–181. [Google Scholar] [CrossRef]
- Qualls, W.A.; Naranjo, D.P.; Subía, M.A.; Ramon, G.; Cevallos, V.; Grijalva, I.; Beier, J.C. Movement of Aedes aegypti following a sugar meal and its implication in the development of control strategies in Durán, Ecuador. J. Vector Ecol. 2016, 41, 224–231. [Google Scholar] [CrossRef]
- Martinez-Ibarra, J.A.; Rodriguez, M.H.; Arredondo-Jimenez, J.I.; Yuval, B. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico. J. Med. Èntomol. 1997, 34, 589–593. [Google Scholar] [CrossRef]
- Sissoko, F.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Dembele, S.M.; Müller, G.C. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PloS ONE 2019, 14, e0214170. [Google Scholar] [CrossRef] [Green Version]
- Hartberg, W.K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 1971, 45, 847–850. [Google Scholar]
- Bowen, M.F. The sensory physiology of host-seeking behavior in mosquitoes. Annu. Rev. Entomol. 1991, 36, 139–158. [Google Scholar] [CrossRef]
- Chadee, D.D. Resting behaviour of Aedes aegypti in Trinidad: With evidence for the re-introduction of indoor residual spraying (IRS) for dengue control. Parasites Vectors 2013, 6, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, D.O.; Morreale, R.; Stenhouse, S.; Hahn, D.A.; Gomez, M.; Lloyd, A.; Hoel, D. A sterile insect technique pilot trial on Captiva Island: Defining mosquito population parameters for sterile male releases using mark–release–recapture. Parasites Vectors 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Schmidt, T.L.; Filipović, I.; Hoffmann, A.A.; Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 2018, 120, 386–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winskill, P.; Carvalho, D.O.; Capurro, M.L.; Alphey, L.; Donnelly, C.A.; McKemey, A.R. Dispersal of Engineered Male Aedes aegypti Mosquitoes. PLOS Neglected Trop. Dis. 2015, 9, e0004156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.C.; Webb, C.E.; Williams, C.R.; Ritchie, S.A. Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med. Vet. Entomol. 2005, 19, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P. Oviposition, dispersal, and survival in Aedes aegypti: Implications for the efficacy of control strategies. Vector-Borne Zoonotic Dis. 2007, 7, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Rowley, W.A.; Graham, C.L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 1968, 14, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Wolfinsohn, M.; Galun, E. A method for determining the flight range of Aedes aegypti (Linn.). Bull. Res. Counc. Isr. 1953, 2, 433–436. [Google Scholar]
- Shannon, R.C.; Davis, N.C. The Flight of Stegomyia aegypti (L.)1. Am. J. Trop. Med. Hyg. 1930, s1—s10, 151–156. [Google Scholar] [CrossRef]
- Liew, C.; Curtis, C.F. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med. Veter Èntomol. 2004, 18, 351–360. [Google Scholar] [CrossRef]
- Brown, H.E.; Cox, J.; Comrie, A.C.; Barrera, R. Habitat and Density of Oviposition Opportunity Influences Aedes aegypti (Diptera: Culicidae) Flight Distance. J. Med. Èntomol. 2017, 54, 1385–1389. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.N. Host-Seeking Behaviour. In The Physiology of Mosquitoes Chapter 15; Pergamon: Oxford, UK, 1963; pp. 267–291. [Google Scholar]
- Teesdale, C. Studies on the Bionomics of Aëdes aegypti (L.) in its Natural Habitats in a Coastal Region of Kenya. Bull. Èntomol. Res. 1955, 46, 711–742. [Google Scholar] [CrossRef]
- Cabrera, M.; Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control. Assoc. 2007, 23, 1–10. [Google Scholar] [CrossRef]
- Cator, L.J.; Arthur, B.J.; Harrington, L.C.; Hoy, R.R. Harmonic Convergence in the Love Songs of the Dengue Vector Mosquito. Science 2009, 323, 1077–1079. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, E.Y.; Allan, S.A.; Bernier, U.R.; Obenauer, P.J.; Diclaro, J.W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 2014, 39, 347–354. [Google Scholar] [CrossRef]
- Polerstock, A.R.; Eigenbrode, S.D.; Klowden, M.J. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2002, 39, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Aldersley, A.; Cator, L.J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 2019, 9, 2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cator, L.J.; Harrington, L.C. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim. Behav. 2011, 82, 627–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielman, A.; Leahy, M.G.; Skaff, V. Seminal Loss in Repeatedly Mated Female Aedes Aegypti. Biol. Bull. 1967, 132, 404–412. [Google Scholar] [CrossRef]
- Helinski, M.E.H.; Scott, T.W.; Facchinelli, L.; Valerio, L.; Harrington, L.C.; Ramsey, J. Evidence of Polyandry for Aedes aegypti in Semifield Enclosures. Am. J. Trop. Med. Hyg. 2012, 86, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Degner, E.C.; Harrington, L.C. Polyandry Depends on Postmating Time Interval in the Dengue Vector Aedes aegypti. Am. J. Trop. Med. Hyg. 2016, 94, 780–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.B.; Gloria-Soria, A.; Powell, J.; Jameson, S.B.; Wesson, D.M. Evidence of Limited Polyandry in a Natural Population of Aedes aegypti. Am. J. Trop. Med. Hyg. 2015, 93, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M.S.; Craig, G.B.; Hiss, E.A. The biochemical basis of female monogamy in mosquitoes: I. Extraction of the active principle from Aedesaegypti. Life Sci. 1968, 7, 835–839. [Google Scholar] [CrossRef]
- Fuchs, M.; Hiss, E. The partial purification and separation of the protein components of matrone from Aedes aegypti. J. Insect Physiol. 1970, 16, 931–939. [Google Scholar] [CrossRef]
- Fuchs, M.; Craig, G.; Despommier, D. The protein nature of the substance inducing female monogamy in Aedes aegypti. J. Insect Physiol. 1969, 15, 701–709. [Google Scholar] [CrossRef]
- Helinski, M.E.H.; Harrington, L.C. Male Mating History and Body Size Influence Female Fecundity and Longevity of the Dengue Vector Aedes aegypti. J. Med. Èntomol. 2011, 48, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Chadee, D.D.; Gilles, J.R. The diel copulation periodicity of the mosquito, Aedes aegypti (L.)(Diptera: Culicidae) at indoor and outdoor sites in Trinidad, West Indies. Acta Trop. 2014, 132, S91–S95. [Google Scholar] [CrossRef] [PubMed]
- McClelland, G.A.H. Observations on the mosquito, Aëdes (Stegomyia) aegypti (L.), in East Africa. I.—The biting cycle in an outdoor population at Entebbe, Uganda. Bull. Entomol. Res. 1959, 50, 227–235. [Google Scholar] [CrossRef]
- Van Someren, E.C.C.; Heisch, R.B.; Furlong, M. Observations on the Behaviour of some Mosquitos of the Kenya Coast. Bull. Èntomol. Res. 1958, 49, 643–660. [Google Scholar] [CrossRef]
- Mutebi, J.-P.; Wilke, A.B.B.; Ostrum, E.; Vasquez, C.; Cardenas, G.; Carvajal, A.; Moreno, M.; Petrie, W.D.; Rodriguez, A.; Presas, H.; et al. Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX. Sci. Rep. 2022, 12, 5315. [Google Scholar] [CrossRef]
- Fuchs, M.S.; Kang, S.-H. Evidence for a Naturally Occurring Inhibitor of Oviposition in Aedes aegypti1. Ann. Èntomol. Soc. Am. 1978, 71, 473–475. [Google Scholar] [CrossRef]
- Chadee, D.D. Studies on the post-oviposition blood-feeding behaviour of Aedes aegypti (L.)(Diptera: Culicidae) in the laboratory. Pathog. Glob. Health 2012, 106, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Charlwood, J.D.; Thompson, R.; Madsen, H. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar. J. 2003, 2, 2. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zain, H.M.; Basheer, M.A.; Elhaj, H.-E.F.; El-Sayed, B.B. Swarming and mating behavior of male Anopheles arabiensis Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan. Acta Trop. 2014, 132, S64–S69. [Google Scholar] [CrossRef]
- Marchand, R. Field Observations On Swarming and Mating in Anopheles Gambiae Mosquitoes in Tanzania1. Neth. J. Zool. 1983, 34, 367–387. [Google Scholar] [CrossRef]
- Sawadogo, S.P.; Niang, A.; Bilgo, E.; Millogo, A.; Maïga, H.; Dabire, R.K.; Tripet, F.; Diabaté, A. Targeting male mosquito swarms to control malaria vector density. PLoS ONE 2017, 12, e0173273. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, S.A.; Hurk, A.F.V.D.; Smout, M.J.; Staunton, K.M.; Hoffmann, A.A. Mission Accomplished? We Need a Guide to the ‘Post Release’ World of Wolbachia for Aedes-borne Disease Control. Trends Parasitol. 2018, 34, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; McKemey, A.R.; Garziera, L.; Lacroix, R.; Donnelly, C.A.; Alphey, L.; Malavasi, A.; Capurro, M.L. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes. PLOS Negl. Trop. Dis. 2015, 9, e0003864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariew, A.; Lewontin, R.C. The confusions of fitness. Br. J. Philos. Sci. 2004, 55, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Takken, W.C. Mosquito mating behaviour In Bridging Laboratory and Field Researcy for Genetic Control of Disease Vectors; Knols, B.L., Louise, C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 183–188. [Google Scholar]
- Strauss, W.G.; Khan, A.A.; Maibach, H.I. Pertinacity of Host-seeking Behaviour of Aedes aegypti. Nature 1966, 210, 759–760. [Google Scholar] [CrossRef] [PubMed]
- McMeniman, C.J.; Corfas, R.A.; Matthews, B.J.; Ritchie, S.A.; Vosshall, L.B. Multimodal Integration of Carbon Dioxide and Other Sensory Cues Drives Mosquito Attraction to Humans. Cell 2014, 156, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Cardé, R.T. Multi-Cue Integration: How Female Mosquitoes Locate a Human Host. Curr. Biol. 2015, 25, R793–R795. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, W.W. Aedes Aegypti in Malaya: II.—Larval and adult biology. Ann. Trop. Med. Parasitol. 1956, 50, 399–414. [Google Scholar] [CrossRef]
- Trpis, M.; Hausermann, W. Demonstration of differential domesticity of Aedes aegypti (L.)(Diptera, Culicidae) in Africa by mark-release-recapture. Bull. Entomol. Res. 1975, 65, 199–208. [Google Scholar] [CrossRef]
- Gibson, G.; Torr, S.J. Visual and olfactory responses of haematophagous Diptera to host stimuli. Med. Veter Èntomol. 1999, 13, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Liebman, K.A.; Stoddard, S.T.; Jr, R.C.R.; Perkins, T.A.; Astete, H.; Sihuincha, M.G.; Halsey, E.S.; Kochel, T.J.; Morrison, A.C.; Scott, T.W. Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru. PLOS Neglected Trop. Dis. 2014, 8, e2702. [Google Scholar] [CrossRef] [Green Version]
- OECD. Anonymous-Consensus Document on the Biology of Mosquito Aedes aegypti; Series on Harmonisation of Regulatory Oversight in Biotechnology; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2018; No. 65 ENV/JM/MONO(2018)23. [Google Scholar]
- Badolo, A.; Sombié, A.; Yaméogo, F.; Wangrawa, D.W.; Sanon, A.; Pignatelli, P.M.; McCall, P.J. First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in west Africa: Dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Negl. Trop. Dis. 2022, 16, e0010059. [Google Scholar] [CrossRef] [PubMed]
- Thavara, U.; Tawatsin, A.; Chansang, C.; Kong-Ngamsuk, W.; Paosriwong, S.; Boon-Long, J.; Rongsriyam, Y.; Komalamisra, N. Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J. Vector Ecol. 2001, 26, 172–180. [Google Scholar] [PubMed]
- Chadee, D.D. Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation to the timing of insecticidal space-spraying. Med. Veter Èntomol. 1988, 2, 189–192. [Google Scholar] [CrossRef]
- Chandra, G.; Bhattacharjee, I.; Banerjee, R.; Talukdar, S.; Mondal, R.; Hati, A.K. Pattern of Human-biting Activity of Aedes aegypti L. and Aedes albopictus Skuse in a Garden Locale from City of Kolkata, India. J. Mosq. Res. 2015, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Casas-Martínez, M.; Orozco-Bonilla, A.; Muñoz-Reyes, M.; Ulloa-García, A.; Bond, J.G.; Valle-Mora, J.; Rojas, J.C. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus. J. Vector Ecol. 2013, 38, 277–288. [Google Scholar] [CrossRef]
- Morlan, H.B.; Hayes, R.O. Urban dispersal and activity of Aedes aegypti. Mosq. News 1958, 18, 137–144. [Google Scholar]
- Williams, C.R.; Long, S.A.; Webb, C.E.; Bitzhenner, M.; Geier, M.; Russell, R.C.; Ritchie, S.A. Aedes aegypti population sampling using BG-Sentinel traps in north Queensland Australia: Statistical considerations for trap deployment and sampling strategy. J. Med. Entomol. 2007, 44, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Finlay, C. The Mosquito Hypothetically Considered as an Agent in the Transmission of Yellow Fever Poison. Yale J. Biol. Med. 1937, 9, 589–604. [Google Scholar]
- Scott, T.W.; Clark, G.G.; Lorenz, L.H.; Amerasinghe, P.H.; Reiter, P.; Edman, J.D. Detection of Multiple Blood Feeding in Aedes aegypti (Diptera: Culicidae) During a Single Gonotrophic Cycle Using a Histologic Technique. J. Med. Èntomol. 1993, 30, 94–99. [Google Scholar] [CrossRef]
- Klowden, M.J.; Lea, A.O. Blood Meal Size as a Factor Affecting Continued Host-Seeking by Aedes aegypti (L.) *. Am. J. Trop. Med. Hyg. 1978, 27, 827–831. [Google Scholar] [CrossRef]
- Klowden, M.J.; Lea, A.O. Abdominal distention terminates subsequent host-seeking behaviour of Aedes aegypti following a blood meal. J. Insect Physiol. 1979, 25, 583–585. [Google Scholar] [CrossRef]
- Brown, M.R.; Klowden, M.J.; Crim, J.W.; Young, L.; Shrouder, L.A.; Lea, A.O. Endogenous regulation of mosquito host-seeking behavior by a neuropeptide. J. Insect Physiol. 1994, 40, 399–406. [Google Scholar] [CrossRef]
- Klowden, M.J.; Lea, A.O. Humoral inhibition of host-seeking in Aedes aegypti during oöcyte maturation. J. Insect Physiol. 1979, 25, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Klowden, M.J. Effects of sugar deprivation on the host-seeking behaviour of gravid Aedes aegypti mosquitoes. J. Insect Physiol. 1986, 32, 479–483. [Google Scholar] [CrossRef]
- Lee, J.J.; Klowden, M.J. A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. J. Am. Mosq. Control. Assoc. 1999, 15, 4–7. [Google Scholar]
- Fernandez, N.M.; Klowden, M.J. Male accessory gland substances modify the host-seeking behavior of gravid Aedes aegypti mosquitoes. J. Insect Physiol. 1995, 41, 965–970. [Google Scholar] [CrossRef]
- Kuno, G. Review of the Factors Modulating Dengue Transmission. Epidemiologic Rev. 1995, 17, 321–335. [Google Scholar] [CrossRef]
- Fiorenzano, J.M.; Koehler, P.G.; Xue, R.-D. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review. Int. J. Environ. Res. Public Health 2017, 14, 398. [Google Scholar] [CrossRef] [Green Version]
- Sippy, R.; Rivera, G.E.; Sanchez, V.; Heras, F.; Morejón, B.; Beltrán, E.; Neira, M. Ingested insecticide to control Aedes aegypti: Developing a novel dried attractive toxic sugar bait device for intra-domiciliary control. Parasites Vectors 2020, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Scott-Fiorenzano, J.M.; Fulcher, A.P.; Seeger, K.E.; Allan, S.A.; Kline, D.L.; Koehler, P.G.; Müller, G.C.; Xue, R.-D. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasites Vectors 2017, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Christophers, S.R. Aëdes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Dzul-Manzanilla, F.; Ibarra-López, J.; Bibiano Marín, W.; Martini-Jaimes, A.; Leyva, J.T.; Correa-Morales, F.; Vazquez-Prokopec, G.M. Indoor resting behavior of Aedes aegypti (diptera: Culicidae) in Acapulco, Mexico. J. Med. Entomol. 2017, 54, 501–504. [Google Scholar] [PubMed]
- Fay, R.W. A trap based on visual responses of adult mosquitoes. Mosq. News 1968, 28, 1–7. [Google Scholar]
- Sippell, W.L.; Brown, A.W.A. Studies of the responses of the female Aëdes mosquito. Part V. The role of visual factors. Bull. Entomol. Res. 1953, 43, 567–574. [Google Scholar] [CrossRef]
- Tainchum, K.; Polsomboon, S.; Grieco, J.P.; Suwonkerd, W.; Prabaripai, A.; Sungvornyothin, S.; Achee, N.L. Comparison of Aedes aegypti (Diptera: Culicidae) resting behavior on two fabric types under consideration for insecticide treatment in a push-pull strategy. J. Med. Entomol. 2013, 50, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoof, H.F. Mating, resting habits and dispersal of Aedes aegypti. Bull. World Health Organ. 1967, 36, 600–601. [Google Scholar]
- Clark, G.G.; Suarez, M.F. Mosquito vector control and biology in Latin America: A symposium. J. Am. Mosq. Control. Assoc. 1991, 7, 633–645. [Google Scholar]
- Perich, M.J.; Davila, G.; Turner, A.; Garcia, A.; Nelson, M. Behavior of Resting Aedes aegypti(Culicidae: Diptera) and Its Relation to Ultra-low Volume Adulticide Efficacy in Panama City, Panama. J. Med. Èntomol. 2000, 37, 541–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Santos, E.M.M.; de Melo-Santos, M.A.V.; de Oliveira, C.M.F.; Correia, J.C.; de Albuquerque, C.M.R. Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations. Parasites Vectors 2012, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Facchinelli, L.; Kijchalao, U.; Fanello, C.; Koenraadt, C.J.M.; Della Torre, A.; Scott, T.W.; Valerio, L.; Jones, J.W. Evaluation of a sticky trap for collecting Aedes (Stegomyia) adults in a dengue-endemic area in Thailand. Am. J. Trop. Med. Hyg. 2008, 78, 904–909. [Google Scholar] [CrossRef]
- A Ritchie, S.; Long, S.; Hart, A.; E Webb, C.; Russell, R.C. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am. Mosq. Control. Assoc. 2003, 19, 235–242. [Google Scholar]
- Ritchie, S.A.; Hanna, J.N.; Hills, S.L.; Piispanen, J.P.; McBride, W.J.H.; Pyke, A. Dengue control in north Queensland, Australia: Enhancement by early case recognition and interior spraying. Dengue Bull. 2002, 26, 7–13. [Google Scholar]
- Samuel, M.; Maoz, D.; Manrique, P.; Ward, T.; Runge-Ranzinger, S.; Toledo, J.; Boyce, R.; Horstick, O. Community effectiveness of indoor spraying as a dengue vector control method: A systematic review. PLOS Neglected Trop. Dis. 2017, 11, e0005837. [Google Scholar] [CrossRef] [PubMed]
- PAHO. Manual for Indoor Residual Spraying in Urban Areas for Aedes aegypti Control; PAHO Strategic Plan; Pan American Health Organization: Washington, DC, USA, 2019. [Google Scholar]
- Vazquez-Prokopec, G.M.; Galvin, W.A.; Kelly, R.; Kitron, U. A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. J. Med. Èntomol. 2009, 46, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Prokopec, G.M.; Montgomery, B.L.; Horne, P.; Clennon, J.A.; Ritchie, S.A. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Sci. Adv. 2017, 3, e1602024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwman, H.; Kylin, H.; Bornman, M. The paradox of the effectiveness of IRS insecticides (including DDT) and its impacts on human health-what can we fix if it isn’t broken? Malar. J. 2012, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Dzib-Florez, S.; Ponce-García, G.; Medina-Barreiro, A.; González-Olvera, G.; Contreras-Perera, Y.; Del Castillo-Centeno, F.; Ahmed, A.M.M.; Che-Mendoza, A.; McCall, P.J.; Vazquez-Prokopec, G.; et al. Evaluating Over-the-Counter Household Insecticide Aerosols for Rapid Vector Control of Pyrethroid-Resistant Aedes aegypti. Am. J. Trop. Med. Hyg. 2020, 103, 2108–2112. [Google Scholar] [CrossRef] [PubMed]
- Pant, C.P.Y.; Yasuno, M. Indoor Resting Sites of Aedes aegypti in Bangkok, Thailand; World Health Organization: Geneva, Switzerland, 1970; Volume 2, WHO/VBC/70.235. [Google Scholar]
- Kittayapong, P.; Linthicum, K.J.; Edman, J.D.; Scott, T.W. Further evaluation of indoor resting boxes for Aedes aegypti surveillance. Dengue Bull. 1997, 21, 77–83. [Google Scholar]
- Vanlerberghe, V.; Villegas, E.; Oviedo, M.; Baly, A.; Lenhart, A.; McCall, P.J.; Van Der Stuyft, P. Evaluation of the Effectiveness of Insecticide Treated Materials for Household Level Dengue Vector Control. PLOS Neglected Trop. Dis. 2011, 5, e994. [Google Scholar] [CrossRef] [Green Version]
- Quintero, J.; García-Betancourt, T.; Cortés, S.; García, D.; Alcalá, L.; González-Uribe, C.; Brochero, H.; Carrasquilla, G. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: A cluster randomised trial. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, N.; Gramajo, R.; Escobar, M.C.; Arana, B.; Kroeger, A.; Manrique-Saide, P.; Petzold, M. Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala. BMC Public Health 2012, 12, 931. [Google Scholar] [CrossRef] [Green Version]
- Ogoma, S.B.; Mmando, A.S.; Swai, J.; Horstmann, S.; Malone, D.; Killeen, G.F. A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria. PLOS Neglected Trop. Dis. 2017, 11, e0005455. [Google Scholar] [CrossRef] [Green Version]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C., Jr.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A Critical Assessment of Vector Control for Dengue Prevention. PLOS Neglected Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef] [Green Version]
- Ouédraogo, W.M.; Toé, K.H.; Sombié, A.; Viana, M.; Bougouma, C.; Sanon, A.; Weetman, D.; McCall, P.J.; Kanuka, H.; Badolo, A. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City, Burkina Faso. Parasites Vectors 2022, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Colton, Y.M.; Chadee, D.D.; Severson, D.W. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Veter Èntomol. 2003, 17, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Abreu, F.V.S.D.; Morais, M.M.; Ribeiro, S.P.; Eiras, Á.E. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti. Memórias Do Inst. Oswaldo Cruz 2015, 110, 669–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostol, B.L.; Black, W.C.; Reiter, P.; Miller, B.R. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am. J. Trop. Med. Hyg. 1994, 51, 89–97. [Google Scholar] [CrossRef]
- Reiter, P.; Clark, G.G.; Anderson, R.A.; Amador, M.A. Short Report: Dispersal of Aedes aegypti in an Urban Area after Blood Feeding as Demonstrated by Rubidium-Marked Eggs. Am. J. Trop. Med. Hyg. 1995, 52, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.R.; O’Connell, S.M. Oviposition by Aedes aegypti and Aedes albopictus: Influence of congeners and of oviposition site characteristics. J. Vector Ecol. 2014, 39, 190–196. [Google Scholar] [CrossRef]
- Harrington, L.C.; Edman, J.D. Indirect Evidence Against Delayed “Skip-Oviposition” Behavior by Aedes aegypti (Diptera: Culicidae) in Thailand. J. Med. Èntomol. 2001, 38, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Lam, W.K.; Dharmaraj, D. A survey on mosquitoes breeding in septic tanks in several residential areas around Ipoh municipality. Med. J. Malays. 1982, 37, 114–123. [Google Scholar]
- Irving-Bell, R.J.; Okoli, E.I.; Diyelong, D.Y.; Lyimo, E.O.; Onyia, O.C. Septic tank mosquitoes: Competition between species in central Nigeria. Med. Veter Èntomol. 1987, 1, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Suarez, M.F. Sewers: The principal Aedes aegypti breeding sites in Cali, Colombia. Am. J. Trop. Med. Hyg. 1995, 53 (Suppl. S2), 160. [Google Scholar]
- Barrera, R.; Amador, M.; Diaz, A.; Smith, J.; Munoz-Jordan, J.L.; Rosario, Y. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med. Veter Èntomol. 2008, 22, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.; Barrera, R.; Lewis, M.; Kluchinsky, T.; Claborn, D. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Med. Veter Èntomol. 2010, 24, 117–123. [Google Scholar] [CrossRef]
- Durant, A.C.; Donini, A. Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation. Sci. Rep. 2019, 9, 19028. [Google Scholar] [CrossRef] [Green Version]
- Wallis, G.P.; Tabachnick, W.J. Genetic analysis of rock hole and domestic Aedes aegypti on the Caribbean island of Anguilla. J. Am. Mosq. Control. Assoc. 1990, 6, 625–630. [Google Scholar]
- Tabachnick, W.J.; Kim, K.C.; McPherson, B.A. Patterns of genetic variation and the ecology of the yellow fever mosquito, Aedes aegypti; John Wiley Sons: Hoboken, NJ, USA, 1993; Volume 413–422. [Google Scholar]
- Mendki, M.J.; Ganesan, K.; Shri, P.; Suryanarayana, M.V.S.; Malhotra, R.C.; Rao, K.M.; Vaidyanathaswamy, R. Heneicosane: An oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. Curr. Sci. 2000, 78, 1295–1296. [Google Scholar]
- Zahiri, N.; Rau, M.E.; Lewis, D.J. Starved larvae of Aedes aegypti (Diptera: Culicidae) render waters unattractive to ovipositing conspecific females. Environ. Entomol. 1997, 26, 1087–1090. [Google Scholar] [CrossRef]
- Chadee, D.D.; Corbet, P.S.; Greenwood, J.J.D. Egg-laying yellow fever mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomol. Exp. Et Appl. 1990, 57, 295–298. [Google Scholar] [CrossRef]
- Torres-Estrada, J.L.; Rodríguez, M.H.; Cruz-López, L.; Arredondo-Jimenez, J.I. Selective Oviposition by Aedes aegypti (Diptera: Culicidae) in Response to Mesocyclops longisetus (Copepoda: Cyclopoidea) Under Laboratory and Field Conditions. J. Med. Èntomol. 2001, 38, 188–192. [Google Scholar] [CrossRef]
- Mulatier, M.; Boullis, A.; Vega-Rúa, A. Semiochemical oviposition cues to control Aedes aegypti gravid females: State of the art and proposed framework for their validation. Parasites Vectors 2022, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Melo, N.; Wolff, G.H.; Costa-Da-Silva, A.L.; Arribas, R.; Triana, M.F.; Gugger, M.; Riffell, J.A.; DeGennaro, M.; Stensmyr, M.C. Geosmin Attracts Aedes aegypti Mosquitoes to Oviposition Sites. Curr. Biol. 2019, 30, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccall, P.J.; Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Veter Èntomol. 2001, 15, 197–203. [Google Scholar] [CrossRef]
- Kaur, J.S.; Lai, Y.L.; Giger, A.D. Learning and memory in the mosquito Aedes aegypti shown by conditioning against oviposition deterrence. Med. Veter Èntomol. 2003, 17, 457–460. [Google Scholar] [CrossRef]
- Vinauger, C.; Lutz, E.K.; Riffell, J.A. Olfactory learning and memory in the disease vector mosquito, Aedes aegypti. J. Exp. Biol. 2014, 217, 2321–2330. [Google Scholar] [CrossRef] [Green Version]
- McCall, P.; Kelly, D.W. Learning and memory in disease vectors. Trends Parasitol. 2002, 18, 429–433. [Google Scholar] [CrossRef]
- Coutinho-Abreu, I.V.; Riffell, J.A.; Akbari, O.S. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol. 2021, 38, 246–264. [Google Scholar] [CrossRef]
- DeGennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Raji, J.I.; Melo, N.; Castillo, J.S.; Gonzalez, S.; Saldana, V.; Stensmyr, M.C.; DeGennaro, M. Aedes aegypti Mosquitoes Detect Acidic Volatiles Found in Human Odor Using the IR8a Pathway. Curr. Biol. 2019, 29, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- McBride, C.S.; Baier, F.; Omondi, A.B.; Spitzer, S.A.; Lutomiah, J.; Sang, R.; Ignell, R.; Vosshall, L.B. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 2014, 515, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zung, J.L.; Hinze, A.; Kriete, A.L.; Iqbal, A.; Younger, M.A.; Matthews, B.J.; Merhof, D.; Thiberge, S.; Ignell, R.; et al. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022, 605, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Herre, M.; Goldman, O.V.; Lu, T.-C.; Caballero-Vidal, G.; Qi, Y.; Gilbert, Z.N.; Gong, Z.; Morita, T.; Rahiel, S.; Ghaninia, M.; et al. Non-canonical odor coding in the mosquito. Cell 2022, 185, 3104–3123. [Google Scholar] [CrossRef] [PubMed]
- Van Breugel, F.; Riffell, J.; Fairhall, A.; Dickinson, M.H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 2015, 25, 2123–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isberg, E.; Ignell, R. Cattle-Derived Unsaturated Aldehydes Repel Biting Midges and Mosquitoes. J. Chem. Ecol. 2022, 48, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Jaleta, K.T.; Hill, S.R.; Birgersson, G.; Tekie, H.; Ignell, R. Chicken volatiles repel host-seeking malaria mosquitoes. Malar. J. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wondwosen, B.; Dawit, M.; Debebe, Y.; Tekie, H.; Hill, S.R.; Ignell, R. Development of a chimeric odour blend for attracting gravid malaria vectors. Malar. J. 2021, 20, 262. [Google Scholar] [CrossRef]
- Trpis, M.; Hausermann, W. )Genetics of house-entering behaviour in East African populations of Aedes aegypti (L.)(Diptera: Culicidae) and its relevance to speciation. Bull. Entomol. Res. 1978, 68, 521–532. [Google Scholar] [CrossRef]
- Xia, S.; Dweck, H.K.M.; Lutomiah, J.; Sang, R.; McBride, C.S.; Rose, N.H.; Ayala, D.; Powell, J.R. Larval sites of the mosquito Aedes aegypti formosus in forest and domestic habitats in Africa and the potential association with oviposition evolution. Ecol. Evol. 2021, 11, 16327–16343. [Google Scholar] [CrossRef]
- Elnour, M.-A.B.; Gloria-Soria, A.; Azrag, R.S.; Alkhaibari, A.M.; Powell, J.R.; Salim, B. Population Genetic Analysis of Aedes aegypti Mosquitoes From Sudan Revealed Recent Independent Colonization Events by the Two Subspecies. Front. Genet. 2022, 13, 104. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [Green Version]
- CDC. Dengue and the Aedes Aegypti Mosquito; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012.
- Dunbar, M.W.; Correa-Morales, F.; Dzul-Manzanilla, F.; Medina-Barreiro, A.; Bibiano-Marín, W.; Morales-Ríos, E.; Vazquez-Prokopec, G.M. Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypt i within experimental houses. PLoS Negl. Trop. Dis. 2019, 13, e0007203. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.L.; Barton, N.H.; Rašić, G.; Turley, A.P.; Montgomery, B.L.; Iturbe-Ormaetxe, I.; Cook, P.E.; Ryan, P.; Ritchie, S.A.; Hoffmann, A.; et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLOS Biol. 2017, 15, e2001894. [Google Scholar] [CrossRef] [PubMed]
- Abad-Franch, F.; Zamora-Perea, E.; Luz, S.L. Mosquito-disseminated insecticide for citywide vector control and its potential to block arbovirus epidemics: Entomological observations and modeling results from Amazonian Brazil. PLoS Med. 2017, 14, e1002213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Behaviour/Activity | Knowledge Gap | What is Missing?/ What’s to Investigate | Potential Use in Control | References |
---|---|---|---|---|
post emergence | 24 h resting not confirmed | behaviour unclear prior to mating/blood feeding | residual insecticides | [67,68] |
sugar feeding | contradictory results | possible geographic and/or seasonal and/or population variability | ATSBs | [59,60,61,62,63,64,65] |
mating | Control mechanisms unclear | molecular and physiological basis regulating mating | improve the use of SIT, Wolbachia, transgenic mosquitoes | [98] |
post-mating | 12 h resting not confirmed | lack of data | optimize use of indoor vs. outdoor control to | [68,89,90] |
endophagy | mainly described as indoor feeders but many studies report exophagic behaviour | to establish the degree of outdoor biting according to geographic and/or seasonal and/or population variability | optimize use of indoor vs. outdoor control tools | [105,106,107,108,109,110,111,112,113] |
endophily | detailed indoor resting behaviour | indoor preferred resting surfaces according to house structure and/or geographic and/or seasonal and/or population variability | Enables householders’ self-protection | [144] |
oviposition | Site location and selection entirely non-random; Role of vision or olfaction; though container breeders, unexpected larval sites exist | Pheromone role (attractant or repulsion), other semiochemicals; assess contribution of alternative sites (e.g., septic tanks) to Ae. aegypti population densities | Larval control | [154,155,156,157,158,159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facchinelli, L.; Badolo, A.; McCall, P.J. Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses 2023, 15, 636. https://doi.org/10.3390/v15030636
Facchinelli L, Badolo A, McCall PJ. Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses. 2023; 15(3):636. https://doi.org/10.3390/v15030636
Chicago/Turabian StyleFacchinelli, Luca, Athanase Badolo, and Philip J. McCall. 2023. "Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission" Viruses 15, no. 3: 636. https://doi.org/10.3390/v15030636
APA StyleFacchinelli, L., Badolo, A., & McCall, P. J. (2023). Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses, 15(3), 636. https://doi.org/10.3390/v15030636