Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Analyzed Sequences
2.2. Alignment and Phylogeny
3. Results and Discussion
On the Origin of DNA-Dependent DNA Polymerase
4. Bacterial DNA-Dependent DNA Polymerase
4.1. Family A
4.2. Family C
5. Archaeal and Eukaryotic DNA-Dependent DNA Polymerase
Family B
6. Viral DNA-Dependent DNA Polymerase
7. Last Considerations
Proposal of a Scenario for the Emergence of the DNA Genome in Cellular Lineages
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yarus, M. Boundaries for an RNA world. Curr. Opin. Chem. Biol. 1999, 3, 260–267. [Google Scholar] [CrossRef]
- Lazcano, A. The biochemical roots of the RNA world: From zymonucleic acid to ribozymes. Hist. Philos. Life Sci. 2012, 34, 407–423. [Google Scholar] [PubMed]
- Müller, U.F. Re-creating an RNA world. Cell. Mol. Life Sci. 2006, 63, 1278–1293. [Google Scholar] [CrossRef] [PubMed]
- Orgel, L.E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forterre, P. Genomics and early cellular evolution. The origin of the DNA world. Comptes Rendus Académie Sci. III 2001, 324, 1067–1076. [Google Scholar] [CrossRef]
- Forterre, P. The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie 2005, 87, 793–803. [Google Scholar] [CrossRef]
- Di Giulio, M. The late appearance of DNA, the nature of the LUCA and ancestors of the domains of life. Biosystems 2021, 202, 104330. [Google Scholar] [CrossRef]
- Leipe, D.D.; Aravind, L.; Koonin, E.V. Did DNA replication evolve twice independently? Nucleic Acids Res. 1999, 27, 3389–3401. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.K. Molecular evolution before the origin of species. Prog. Biophys. Mol. Biol. 2002, 79, 77–133. [Google Scholar] [CrossRef]
- Filée, J.; Forterre, P.; Sen-Lin, T.; Laurent, J. Evolution of DNA polymerase families: Evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 2002, 54, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Mushegian, A. Gene content of LUCA, the last universal common ancestor. Front. Biosci. 2008, 13, 4657–4666. [Google Scholar] [CrossRef]
- Goldman, A.D.; Bernhard, T.M.; Dolzhenko, E.; Landweber, L.F. LUCApedia: A database for the study of ancient life. Nucleic Acids Res. 2013, 41, D1079–D1082. [Google Scholar] [CrossRef] [Green Version]
- Glansdorff, N.; Xu, Y.; Labedan, B. The last universal common ancestor: Emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct. 2008, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giulio, M. The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J. Mol. Evol. 2011, 72, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Di Giulio, M. LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. Biosystems 2020, 198, 104239. [Google Scholar] [CrossRef] [PubMed]
- Di Giulio, M. The RNase P, LUCA, the ancestors of the life domains, the progenote, and the tree of life. Biosystems 2022, 212, 104604. [Google Scholar] [CrossRef]
- Di Giulio, M. The origins of the cell membrane, the progenote, and the universal ancestor (LUCA). Biosystems 2022, 222, 104799. [Google Scholar] [CrossRef]
- Farias, S.T.; Jose, M.V.; Prosdocimi, F. Is it possible that cells have had more than one origin? Biosystems 2021, 202, 104371. [Google Scholar] [CrossRef]
- Di Giulio, M. The universal ancestor, the deeper nodes of the tree of life, and the fundamental types of primary cells (cellular domains). J. Theor. Biol. 2019, 460, 142–143. [Google Scholar] [CrossRef]
- Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 2006, 117, 5–16. [Google Scholar] [CrossRef]
- Dos Santos Junior, P.A.; José, M.V.; Farias, S.T. From RNA to DNA: Insights about the transition of informational molecule in the biological systems based on the structural proximity between the polymerases. Biosystems 2021, 206, 104442. [Google Scholar] [CrossRef] [PubMed]
- Raia, P.; Delarue, M.; Sauguet, L. An updated structural classification of replicative DNA polymerases. Biochem. Soc. Trans. 2019, 47, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Mönttinen, H.A.; Ravantti, J.J.; Stuart, D.I.; Poranen, M.M. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol. Biol. Evol. 2014, 31, 2741–2752. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Schwartz, T.; Pickett, B.E.; He, S.; Klem, E.B.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; O’Leary, M.A. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol. Bioinform. Online 2015, 16, 43–48. [Google Scholar] [CrossRef]
- Farias, S.T.; Dos Santos Junior, A.P.; Rêgo, T.G.; José, M.V. Origin and Evolution of RNA-Dependent RNA Polymerase. Front. Genet. 2017, 20, 125. [Google Scholar] [CrossRef]
- Menéndez-Arias, L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 2009, 1, 1137–1165. [Google Scholar] [CrossRef] [Green Version]
- Bao, K.; Cohen, S.N. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc. Natl. Acad. Sci. USA 2004, 101, 14361–14366. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.S.; He, P.; Pothukuchy, A.; Gollihar, J.; Ellington, A.D.; Yang, W. How a B family DNA polymerase has been evolved to copy RNA. Proc. Natl. Acad. Sci. USA 2020, 117, 21274–21280. [Google Scholar] [CrossRef]
- Ricchetti, M.; Buc, H.E. coli DNA polymerase I as a reverse transcriptase. EMBO J. 1993, 12, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Albà, M. Replicative DNA polymerases. Genome Biol. 2001, 2, reviews3002.1. [Google Scholar] [CrossRef] [PubMed]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.P.; Ito, J. DNA polymerase C of the thermophilic bacterium Thermus aquaticus: Classification and phylogenetic analysis of the family C DNA polymerases. J. Mol. Evol. 1999, 48, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T. Days weaving the lagging strand synthesis of DNA-A personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 322–338. [Google Scholar] [CrossRef] [Green Version]
- Kazlauskas, D.; Krupovic, M.; Guglielmini, J.; Forterre, P.; Venclovas, Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res. 2020, 48, 10142–10156. [Google Scholar] [CrossRef]
- Nasir, A.; Sun, F.J.; Kim, K.M.; Caetano-Anollés, G. Untangling the origin of viruses and their impact on cellular evolution. Ann. N. Y. Acad. Sci. 2015, 1341, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Koonin, E.V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl. Acad. Sci. USA 2017, 114, E2401–E2410. [Google Scholar] [CrossRef] [Green Version]
- Sinkovics, J.; Horvath, J.; Horak, A. The origin and evolution of viruses (a review). Acta Microbiol. Immunol. Hung. 1998, 45, 349–390. [Google Scholar]
- Farias, S.T.; Jheeta, S.; Prosdocimi, F. Viruses as a survival strategy in the armory of life. Hist. Philos. Life Sci. 2019, 41, 45. [Google Scholar] [CrossRef]
- Edgell, D.R.; Doolittle, W.F. Archaea and the origin(s) of DNA replication proteins. Cell 1997, 89, 995–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Farias, S.T.; Furtado, A.N.M.; dos Santos Junior, A.P.; José, M.V. Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA. Viruses 2023, 15, 749. https://doi.org/10.3390/v15030749
de Farias ST, Furtado ANM, dos Santos Junior AP, José MV. Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA. Viruses. 2023; 15(3):749. https://doi.org/10.3390/v15030749
Chicago/Turabian Stylede Farias, Sávio Torres, Ariadne Nobrega Marinho Furtado, Ariosvaldo Pereira dos Santos Junior, and Marco V. José. 2023. "Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA" Viruses 15, no. 3: 749. https://doi.org/10.3390/v15030749
APA Stylede Farias, S. T., Furtado, A. N. M., dos Santos Junior, A. P., & José, M. V. (2023). Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA. Viruses, 15(3), 749. https://doi.org/10.3390/v15030749