Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder
Abstract
:1. Introduction
- (1)
- Persistence of symptoms or new symptoms more than 30 days post-SARS-CoV-2 infection. Post-COVID-19 condition occurs in individuals with a history of probable or confirmed SARS CoV-2 infection, usually 3 months from the onset of COVID-19 with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis.
- (2)
- Common symptoms include fatigue, shortness of breath and cognitive dysfunction, but also others, and generally have an impact on everyday functioning.
- (3)
- Symptoms may be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness. Symptoms may also fluctuate or relapse over time.
- (4)
- Acute and persisting: Occurring 0–30 days post-COVID-19 PCR and persisting 30–120 days post-test.
- (5)
- Late: Occurring initially 30–120 days post-test.
- One or more symptoms of altered voluntary motor or sensory function.
- Clinical findings provide evidence of incompatibility between the symptom and recognized neurological or medical conditions.
- The symptom or deficit is not better explained by another medical or mental disorder.
- The symptom or deficit causes clinically significant distress or impairment in social, occupational or other important areas of functioning, or warrants medical evaluation.
2. Materials and Methods
3. Results
3.1. Diagnostic Classification
3.2. How Diagnostic Processes Take Place
3.3. Pathogenetic Pathways
3.4. The Interface of Long COVID, Mental Disorders, and FND
3.5. Impact on Functioning
3.6. Prognosis
3.7. Addressing Clinical Need
4. Discussion
4.1. Clinical Implications
4.2. Research Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NICE. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19 2022. Available online: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742 (accessed on 1 March 2023).
- Ayoubkhani, D.; Pawelek, P. Infection Survey Data, Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/3november2022 (accessed on 3 November 2022).
- Spiers, N. Recognising and bearing the burden of long COVID-related disability. Br. J. Gen. Pract. 2022, 72, 70. [Google Scholar] [CrossRef]
- Hussain, F.A. Facilitating care: A biopsychosocial perspective on long COVID. Br. J. Gen. Pr. 2022, 72, 30–31. [Google Scholar] [CrossRef] [PubMed]
- UK Office for National Statistics. Prevalence of Ongoing Symptoms following Coronavirus (COVID-19) Infection in the UK: 2 February 2023. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/2february2023 (accessed on 19 February 2023).
- Bull-Otterson, L.; Baca, S.; Saydah, S.; Boehmer, T.K.; Adjei, S.; Gray, S.; Harris, A.M. Post–COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and ≥65 Years—United States, March 2020–November 2021. MMWR 2022, 71, 713–717. [Google Scholar] [CrossRef]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. Eclinicalmedicine 2023, 55, 101762. [Google Scholar] [CrossRef]
- World Health Organization (WHO). A Clinical Case Definition of Post COVID-19 Condition by a DELPHI Consensus, 6 October 2021. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 14 February 2022).
- Takao, M.; Ohira, M. Neurological post-acute sequelae of SARS-CoV-2 infection. Psychiatry Clin. Neurosci. 2023, 77, 72–83. [Google Scholar] [CrossRef]
- Salari, M.; Zaker Harofteh, B.; Etemadifar, M.; Sedaghat, N.; Nouri, H. Movement Disorders Associated with COVID-19. Park. Dis. 2021, 2021, 3227753. [Google Scholar] [CrossRef]
- Raveendran, A.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; Lone, N.I.; Leavy, O.C.; et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID). Lancet Respir. Med. 2021, 9, 1275–1287. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Deer, R.R.; Rock, M.A.; Vasilevsky, N.; Carmody, L.; Rando, H.; Anzalone, A.J.; Basson, M.D.; Bennett, T.D.; Bergquist, T.; Boudreau, E.A.; et al. Characterizing Long COVID. EBioMedicine 2021, 74, 103722. [Google Scholar] [CrossRef]
- Yılmaz, O.; Mutlu, B.Ö.; Yaman, D.; Bayazit, D.; Demirhan, H.; Bayazit, Y.A. Assessment of balance after recovery from COVID-19 disease. Auris Nasus Larynx 2022, 49, 291–298. [Google Scholar] [CrossRef]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 symptom burden. Lung 2021, 199, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Barnett, J.; Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- @LongTiredRoad Twitteraccount posted July 11 2022. Available online: https://twitter.com/LongTiredRoad/status/1546625708314820608?t=nrG4MFbLIkU9agsQ5Qtiiw&s=03 (accessed on 1 March 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text revision (DSM-5-TR); American Psychiatric Publishing: Arlington, VA, USA, 2022. [Google Scholar]
- World Health Organisation (WHO). The International Statistical Classification of Diseases and Related Health Problems (11th Rev. ICD-11); World Health Organisation (WHO): Geneva, Switzerland, 2019.
- Varley, D.; Sweetman, J.; Brabyn, S.; Lagos, D.; Van der Feltz-Cornelis, C. The clinical management of functional neurological disorder: A scoping review of the literature. J. Psychosom. Res. 2022, 165, 111121. [Google Scholar] [CrossRef]
- Forshaw, D.; Wall, E.C.; Prescott, G.; Dehbi, D.M.; Green, A.; Attree, E.; Hismeh, L.; Strain, W.D.; Crooks, M.G.; Watkins, C.; et al. STIMULATE-ICP: A pragmatic, multi-centre, cluster randomised trial of an integrated care pathway with a nested, Phase III, open label, adaptive platform randomised drug trial in individuals with Long COVID: A structured protocol. medRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Van der Feltz-Cornelis, C.M.; Sweetman, J.; Allsopp, G.; Attree, E.; Crooks, M.G.; Cuthbertson, D.J.; Forshaw, D.; Gabbay, M.; Green, A.; Heightman, M.; et al. STIMULATE-ICP-Delphi (Symptoms, Trajectory, Inequalities and Management: Understanding Long-COVID to Address and Transform Existing Integrated Care Pathways Delphi): Study protocol. PLoS ONE 2022, 17, e0277936. [Google Scholar] [CrossRef]
- STIMULATE-ICP. Symptoms, Trajectory, Inequalities and Management: Understanding Long-COVID to Address and Transform Existing Integrated Care Pathways. Available online: https://www.stimulate-icp.org/ (accessed on 17 January 2023).
- Van Der Feltz-Cornelis, C.M.; Brabyn, S.; Allen, S.F.; Reilly, J.; Clarke, C.; de Vroege, L.; Gilbody, S.; Whittington, M.; Lagos, D. Conversion and Neuro-inflammation Disorder Observational Study (CANDO). Protocol of a feasibility study. Eur. J. Psychiatry 2020, 34, 164–172. [Google Scholar] [CrossRef]
- Van der Feltz-Cornelis, C.; Brabyn, S.; Ratcliff, J.; Varley, D.; Allgar, V.; Gilbody, S.; Clarke, C.; Lagos, D. Assessment of cytokines, microRNA and patient related outcome measures in conversion disorder/functional neurological disorder (CD/FND): The CANDO clinical feasibility study. Brain Behav. Immun. Health 2021, 13, 100228. [Google Scholar] [CrossRef]
- Hoover, C.F. A new sign for the detection of malingering and functional paresis of the lower extremities. JAMA 1908, 51, 746–747. [Google Scholar] [CrossRef]
- Mehndiratta, M.M.; Kumar, M.; Nayak, R.; Garg, H.; Pandey, S. Hoover’s sign: Clinical relevance in Neurology. J. Postgrad. Med. 2014, 60, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Daum, C.; Hubschmid, M.; Aybek, S. The value of ‘positive’ clinical signs for weakness, sensory and gait disorders in conversion disorder: A systematic and narrative review. J. Neurol. Neurosurg. Psychiatry 2014, 85, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Ormiston, C.K.; Świątkiewicz, I.; Taub, P.R. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm. 2022, 19, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Gonzalez, A.B.; Master, H.; Gall, N.; Halpin, S.; Rogers, N.; Greenhalgh, T. Orthostatic tachycardia after COVID-19. BMJ 2023, 380, e073488. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Sánchez-Serrano, N.; Mielgo-Ayuso, J.; García-Hernández, J.L.; González-Bernal, J.J.; Seco-Calvo, J. Long COVID a New Derivative in the Chaos of SARS-CoV-2 Infection: The Emergent Pandemic? J. Clin. Med. 2021, 10, 5799. [Google Scholar] [CrossRef]
- Fedorowski, A.; Sutton, R. Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome. Nat. Rev. Cardiol. 2023, 1–2. [Google Scholar] [CrossRef]
- Hira, R.; Baker, J.R.; Siddiqui, T.; Ranada, S.I.; Soroush, A.; Karalasingham, K.; Ahmad, H.; Mavai, V.; Ayala Valani, L.M.; Ambreen, S.; et al. Objective hemodynamic cardiovascular autonomic abnormalities in postacute sequelae of COVID-19. Can. J. Cardiol. 2022; Advance online publication. [Google Scholar] [CrossRef]
- van der Feltz-Cornelis, C.M.; Allen, S.F.; van Eck van der Sluijs, J.F. Misdiagnosis of an underlying medical condition as Conversion Disorder/Functional Neurological Disorder (CD/FND) still occurs. Gen. Hosp. Psychiatry 2020, 65, 43–46. [Google Scholar] [CrossRef]
- Ghosh, R.; Biswas, U.; Roy, D.; Pandit, A.; Lahiri, D.; Kanti Ray, B.; Benito-Leon, J. De Novo Movement Disorders and COVID-19. Mov. Disord. Clin. Pract. 2021, 8, 669–680. [Google Scholar] [CrossRef]
- Lou, J.J.; Movassaghi, M.; Gordy, D.; Olson, M.G.; Zhang, T.; Khurana, M.S.; Chen, Z.; Perez-Rosendahl, M.; Thammachantha, S.; Singer, E.J.; et al. Neuropathology of COVID-19 (neuro-COVID). Free Neuropathol. 2021, 18, 2. [Google Scholar]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Kwe Yinda, C.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef]
- Son, K.; Jamil, R.; Chowdhury, A.; Mukherjee, M.; Venegas, C.; Miyasaki, K.; Zhang, K.; Patel, Z.; Salter, B.; Yuen, A.C.Y.; et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur. Respir. J. 2023, 61, 2200970. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Iwasaki, A. The neurobiology of long COVID. Neuron 2022, 110, 3484–3496. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Novak, P.; Mukerji, S.S.; Alabsi, H.S.; Systrom, D.; Marciano, S.P.; Felsenstein, D.; Mullally, W.J.; Pilgrim, D.M. Multisystem Involvement in Post-Acute Sequelae of Coronavirus Disease 19. Ann. Neurol. 2022, 91, 367–379. [Google Scholar] [CrossRef]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef]
- Swank, Z.; Senussi, Y.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Walt, D.R. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 2022, 76, e487–e490. [Google Scholar] [CrossRef]
- Proal, A.D.; Van Elzakker, M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lau, E.H.Y.; Wu, P.; He, X.; Lau, E.H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batra, A.; Clark JRKang, A.K.; Batra, A.; Clark, J.R.; Kang, A.K.; Ali, S.; Patel, T.R.; Shlobin, N.A.; Hoffman, S.C.; Lim, P.H.; et al. Persistent viral RNA shedding of SARS-CoV-2 is associated with delirium incidence and six-month mortality in hospitalized COVID-19 patients. GeroScience 2022, 44, 1241–1254. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Zhou, Y.; Wang, B.; Zhang, J. Persistent viral shedding lasting over 60 days in a mild COVID-19 patient with ongoing positive SARS-CoV-2. Quant. Imaging Med. Surg. 2020, 10, 5. Available online: https://qims.amegroups.com/article/view/41170 (accessed on 1 March 2023). [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Tejerina, F.; Catalan, P.; Rodriguez-Grande, C.; Adan, J.; Rodriguez-Gonzalez, C.; Muñoz, P.; Aldamiz, T.; Diez, C.; Perez, L.; Fanciulli, C.; et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect. Dis. 2022, 22, 211. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.A.; Neves, P.F.; Lima, S.S.; Lopes, J.D.C.; Torres, M.K.D.S.; Vallinoto, I.M.; Bichara, C.D.; Dos Santos, E.F.; de Brito, M.T.; da Silva, A.L.S.; et al. Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 922422. [Google Scholar] [CrossRef] [PubMed]
- Bègue, I.; Adams, C.; Stone, J.; Perez, D.L. Structural alterations in functional neurological disorder and related conditions: A software and hardware problem? NeuroImage Clin. 2019, 22, 101798. [Google Scholar] [CrossRef]
- Saunders, C.; Sperling, S.; Bendstrup, E. A new paradigm is needed to explain long COVID. Lancet Respir. Med. 2023, 11, e12–e13. Available online: 2213-2600(22)00501-X (accessed on 1 March 2023). [CrossRef]
- Wang, S.; Quan, L.; Chavarro, J.E.; Slopen, N.; Kubzansky, L.D.; Koenen, K.C.; Kang, J.H.; Weisskopf, M.G.; Branch-Elliman, W.; Roberts, A.L. Associations of Depression, Anxiety, Worry, Perceived Stress, and Loneliness Prior to Infection With Risk of Post–COVID-19 Conditions. JAMA Psychiatry 2022, 79, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Ludman, E.J.; Katon, W.; Russo, J.; Von Korff, M.; Simon, G.; Ciechanowski, P.; Lin, E.; Bush, T.; Walker, E.; Young, B. Depression and diabetes symptom burden. Gen. Hosp. Psychiatry 2004, 26, 430–436. [Google Scholar] [CrossRef]
- Prasannan, N.; Heightman, M.; Hillman, T.; Wall, E.; Bell, R.; Kessler, A.; Neave, L.; Doyle, A.; Devaraj, A.; Singh, D.; et al. Impaired exercise capacity in post-COVID-19 syndrome: The role of VWF-ADAMTS13 axis. Blood Adv. 2022, 6, 4041–4048. [Google Scholar] [CrossRef]
- Wright, J.; Astill, S.L.; Sivan, M. The Relationship between Physical Activity and Long COVID: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 5093. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics. National Vital Statistics System. Available online: https://www.cdc.gov/nchs/products/index.htm (accessed on 1 March 2023).
- Zhang, L.; Beghi, E.; Tomson, T.; Beghi, M.; Erba, G.; Chang, Z. Mortality in patients with psychogenic non-epileptic seizures a population-based cohort study. J. Neurol. Neurosurg. Psychiatry 2022, 93, 379–385. [Google Scholar] [CrossRef]
- Nightscales, R.; McCartney, L.; Auvrez, C.; Tao, G.; Barnard, S.; Malpas, C.B.; Perucca, P.; McIntosh, A.; Chen, Z.; Sivathamboo, S.; et al. Mortality in patients with psychogenic nonepileptic seizures. Neurology 2020, 95, e643–e652. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.B.; Anderson, R.N.; Cisewski, J.A.; Sutton, P.D. Identification of Deaths With Post-Acute Sequelae of COVID-19 from Death Certificate Literal Text: United States, January 1, 2020–June 30, 2022; Vital statistics Survey Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022.
- Moretzky, B.A. Mortality in Patients with Psychogenic Non-Epileptic Seizures. Comment. Practice Update Neurology 26 August 2020. Available online: https://www.practiceupdate.com/content/mortality-in-patients-with-psychogenic-nonepileptic-seizures/105154 (accessed on 17 January 2023).
- NHS England. National Guidance for Post-COVID Syndrome Assessment Clinics: NHS England and NHS Improvement; NHS England: Leeds, UK, 2021.
- New Clinical Trial Aims to Improve Diagnosis, Treatment and Rehabilitation of Long COVID. 19 July 2021. Available online: https://www.arc-nt.nihr.ac.uk/news-and-events/2021/july/new-clinical-trial-aims-to-improve-diagnosis-treatment-and-rehabilitation-of-long-covid/ (accessed on 1 March 2023).
- Teodoro, T.; Chen, J.; Gelauff, J.; Edwards, M.J. Functional Neurological Disorder in people with Long-Covid: A Systematic Review. Eur. J. Neurol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Van der Feltz-Cornelis, C.M.; Heightman, M.; Allssop, G. Learning from Long COVID. Integrated care for Multiple Long Term Conditions. Br. J. Gen. Pract. Submitted.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Feltz-Cornelis, C.M.; Moriarty, A.S.; Strain, W.D. Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder. Viruses 2023, 15, 783. https://doi.org/10.3390/v15030783
Van der Feltz-Cornelis CM, Moriarty AS, Strain WD. Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder. Viruses. 2023; 15(3):783. https://doi.org/10.3390/v15030783
Chicago/Turabian StyleVan der Feltz-Cornelis, Christina M., Andrew S. Moriarty, and William David Strain. 2023. "Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder" Viruses 15, no. 3: 783. https://doi.org/10.3390/v15030783
APA StyleVan der Feltz-Cornelis, C. M., Moriarty, A. S., & Strain, W. D. (2023). Neurological Dysfunction in Long COVID Should Not Be Labelled as Functional Neurological Disorder. Viruses, 15(3), 783. https://doi.org/10.3390/v15030783