Topical Protease Inhibitor Decreases Anal Carcinogenesis in a Transgenic Mouse Model of HPV Anal Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Topical Saquinavir (SQV)
2.3. 7,12-Dimethylbenz[a]anthracene (DMBA) Treatment
2.4. Tumor Assessments
2.5. Blood and Tissue Collection
2.6. Histology
2.7. Immunohistochemistry (IHC) Staining
2.8. Imaging and Image Analysis
2.9. LC/MS Quantitative Analyses
2.10. Statistical Analysis
3. Results
3.1. Gradient Curve
3.2. Side Effect Profile and Drug Concentrations
3.3. Mice Treated with SQV Did Not Demonstrate Improved Tumor-Free Survival
3.4. SQV Led to Regression of Histologic Disease in Female Mice
3.5. SQV Did Not Mediate Significant Changes in Overall Oncoprotein Expression or Their Targets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer of the Anus, Anal Canal, and Anorectum—Cancer Stat Facts. SEER. Available online: https://seer.cancer.gov/statfacts/html/anus.html (accessed on 9 August 2022).
- HPV Vaccination|Cancer Trends Progress Report. Available online: https://progressreport.cancer.gov/prevention/hpv_immunization (accessed on 23 December 2022).
- Goldstone, S.E.; Johnstone, A.A.; Moshier, E.L. Long-term outcome of ablation of anal high-grade squamous intraepithelial lesions: Recurrence and incidence of cancer. Dis. Colon. Rectum. 2014, 57, 316–323. [Google Scholar] [CrossRef]
- Elorza, G.; Saralegui, Y.; Enríquez-Navascués, J.M.; Placer, C.; Velaz, L. Anal intraepitelial neoplasia: A narrative review. Rev. Esp. Enferm. Dig. 2016, 108, 31–39. [Google Scholar] [CrossRef]
- Weis, S. Current treatment options for management of anal intraepithelial neoplasia. Onco Targets Ther 2013, 6, 651–655. [Google Scholar] [CrossRef]
- Leeds, I.L.; Fang, S.H. Anal cancer and intraepithelial neoplasia screening: A review. World J. Gastrointest. Surg. 2016, 8, 41–51. [Google Scholar] [CrossRef]
- Roman, A.; Munger, K. The papillomavirus E7 proteins. Virology 2013, 445, 138–168. [Google Scholar] [CrossRef]
- Vande Pol, S.B.; Klingelhutz, A.J. Papillomavirus E6 oncoproteins. Virology 2013, 445, 115–137. [Google Scholar] [CrossRef]
- Thomas, J.T.; Laimins, L.A. Human Papillomavirus Oncoproteins E6 and E7 Independently Abrogate the Mitotic Spindle Checkpoint. J. Virol. 1998, 72, 1131–1137. [Google Scholar] [CrossRef]
- Wells, S.I.; Francis, D.A.; Karpova, A.Y.; Dowhanick, J.J.; Benson, J.D.; Howley, P.M. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J. 2000, 19, 5762–5771. [Google Scholar] [CrossRef]
- Hwang, E.S.; Riese, D.J., 2nd; Settleman, J.; Nilson, L.A.; Honig, J.; Flynn, S.; DiMaio, D. Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J. Virol. 1993, 67, 3720–3729. [Google Scholar] [CrossRef]
- Jabbar, S.F.; Abrams, L.; Glick, A.; Lambert, P.F. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res. 2009, 69, 4407–4414. [Google Scholar] [CrossRef]
- Goodwin, E.C.; DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA 2000, 97, 12513–12518. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Auyeung, A.; Lee, D.L.; Lambert, P.F.; Carchman, E.H.; Sherer, N.M. HIV-1 Protease Inhibitors Slow HPV16-Driven Cell Proliferation through Targeted Depletion of Viral E6 and E7 Oncoproteins. Cancers 2021, 13, 949. [Google Scholar] [CrossRef] [PubMed]
- Palefsky, J. HIV protease inhibitors to prevent progression of cervical intraepithelial neoplasia to cervical cancer: Therapeutic opportunities and challenges. AIDS 2012, 26, 1035–1036. [Google Scholar] [CrossRef]
- Qiu, Y.; Maione, F.; Capano, S.; Meda, C.; Picconi, O.; Brundu, S.; Pisacane, A.; Sapino, A.; Palladino, C.; Barillari, G.; et al. HIV Protease Inhibitors Block HPV16-Induced Murine Cervical Carcinoma and Promote Vessel Normalization in Association with MMP-9 Inhibition and TIMP-3 Induction. Mol. Cancer Ther. 2020, 19, 2476–2489. [Google Scholar] [CrossRef] [PubMed]
- Barillari, G.; Monini, P.; Sgadari, C.; Ensoli, B. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies. IJMS 2018, 19, 1418. [Google Scholar] [CrossRef]
- Hampson, L.; Maranga, I.O.; Masinde, M.S.; Oliver, A.W.; Batman, G.; He, X.; Desai, M.; Okemwa, P.M.; Stringfellow, H.; Martin-Hirsch, P.; et al. A Single-Arm, Proof-of-Concept Trial of Lopimune (Lopinavir/Ritonavir) as a Treatment for HPV-Related Pre-Invasive Cervical Disease. PLoS ONE 2016, 11, e0147917. [Google Scholar] [CrossRef] [PubMed]
- Gunder, L.C.; Blaine-Sauer, S.; Johnson, H.R.; Shin, M.K.; Auyeung, A.S.; Zhang, W.; Leverson, G.E.; Ward-Shaw, E.T.; King, R.E.; McGregor, S.M.; et al. Efficacy of Topically Administered Dihydroartemisinin in Treating Papillomavirus-Induced Anogenital Dysplasia in Preclinical Mouse Models. Viruses 2022, 14, 1632. [Google Scholar] [CrossRef]
- Stelzer, M.K.; Pitot, H.C.; Liem, A.; Schweizer, J.; Mahoney, C.; Lambert, P.F. A mouse model for human anal cancer. Cancer Prev. Res. 2010, 3, 1534–1541. [Google Scholar] [CrossRef]
- Herber, R.; Liem, A.; Pitot, H.; Lambert, P.F. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 1996, 70, 1873–1881. [Google Scholar] [CrossRef]
- Carchman, E.H.; Matkowskyj, K.A.; Meske, L.; Lambert, P.F. Dysregulation of Autophagy Contributes to Anal Carcinogenesis. PLoS ONE 2016, 11, e0164273. [Google Scholar] [CrossRef]
- Rademacher, B.L.; Matkowskyj, K.A.; Meske, L.M.; Romero, A.; Sleiman, H.; Carchman, E.H. The role of pharmacologic modulation of autophagy on anal cancer development in an HPV mouse model of carcinogenesis. Virology 2017, 507, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, B.L.; Matkowskyj, K.A.; LaCount, E.D.; Carchman, E.H. Topical application of a dual PI3K/mTOR inhibitor prevents anal carcinogenesis in a human papillomavirus mouse model of anal cancer. Eur. J. Cancer Prev. 2019, 28, 483–491. [Google Scholar] [CrossRef]
- Gunder, L.C.; Moyer, T.H.; Rademacher, B.L.; Auyueng, A.S.; Leverson, G.; Zhang, W.; Matkowskyj, K.A.; Carchman, E.H. PI3K/mTOR inhibition prevents anal cancer in mice with established low-grade anal dysplasia. Exp. Mol. Pathol. 2022, 125, 104752. [Google Scholar] [CrossRef]
- Gunder, L.C.; Moyer, T.H.; Ziolkowski, M.R.; Keating, M.K.; Leverson, G.E.; Zhang, W.; Carchman, E.H. Systemic Delivery of a Dual PI3K/mTOR Inhibitor More Effective than Topical Delivery in Preventing Anal Carcinogenesis in an HPV Transgenic Mouse Model. J. Cancer Sci. Clin. Ther. 2022, 6, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Gunder, L.C.; Johnson, H.R.; Green, H.A.; Bilger, A.; Moyer, T.H.; Zhang, W.; Ziolkowski, M.R.; Bertrang, P.A.; Carchman, E.H. The use of a topical protease inhibitor, Saquinavir, to alleviate mouse papillomavirus-mediated anal disease. Virology 2022, 576, 96–104. [Google Scholar] [CrossRef]
- Kersemans, V.; Cornelissen, B.; Allen, P.D.; Beech, J.S.; Smart, S.C. Subcutaneous tumor volume measurement in the awake, manually restrained mouse using MRI. J. Magn. Reson. Imaging 2013, 37, 1499–1504. [Google Scholar] [CrossRef]
- Faustino-Rocha, A.; Oliveira, P.A.; Pinho-Oliveira, J.; Teixeira-Guedes, C.; Soares-Maia, R.; Da Costa, R.G.; Colaco, B.; Pires, M.J.; Colaco, J.; Ferreira, R.; et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab. Anim. 2013, 42, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Stier, E.A.; Chigurupati, N.L.; Fung, L. Prophylactic HPV vaccination and anal cancer. Hum. Vaccin. Immunother. 2016, 12, 1348–1351. [Google Scholar] [CrossRef]
- Bernstein, W.B.; Dennis, P.A. Repositioning HIV protease inhibitors as cancer therapeutics. Curr. Opin. HIV AIDS 2008, 3, 666–675. [Google Scholar] [CrossRef]
- Makgoo, L.; Mosebi, S.; Mbita, Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front. Mol. Biosci. 2022, 9, 875208. [Google Scholar] [CrossRef]
- Subeha, M.R.; Telleria, C.M. The Anti-Cancer Properties of the HIV Protease Inhibitor Nelfinavir. Cancers 2020, 12, E3437. [Google Scholar] [CrossRef] [PubMed]
- Chun, C.H.A.O.; Leyden, W.A.; Lanfang, X.U.; Horberg, M.A.; Klein, D.; Towner, W.J.; Quesenberry Jr, C.P.; Abrams, D.I.; Silverberg, M.J. Exposure to antiretroviral therapy and risk of cancer in HIV-infected persons. AIDS 2012, 26, 2223–2231. [Google Scholar] [CrossRef]
- Mbang, P.A.; Kowalkowski, M.A.; Amirian, E.S.; Giordano, T.P.; Richardson, P.A.; Hartman, C.M.; Chiao, E.Y. Association between Time on Protease Inhibitors and the Incidence of Squamous Cell Carcinoma of the Anus among U.S. Male Veterans. PLoS ONE 2015, 10, e0142966. [Google Scholar] [CrossRef]
- Bruyand, M.; Ryom, L.; Shepherd, L.; Fatkenheuer, G.; Grulich, A.; Reiss, P.; De Wit, S.; Furrer, H.; Pradier, C.; Lundgren, J.; et al. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy: The D: A: D study. J. Acquir. Immune Defic. Syndr. 2015, 68, 568–577. [Google Scholar] [CrossRef]
- Böttinger, P.; Schreiber, K.; Hyjek, E.; Krausz, T.; Spiotto, M.T.; Steiner, M.; Idel, C.; Booras, H.; Beck-Engeser, G.; Riederer, J.; et al. Cooperation of genes in HPV16 E6/E7-dependent cervicovaginal carcinogenesis trackable by endoscopy and independent of exogenous estrogens or carcinogens. Carcinogenesis 2020, 41, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
mg SQV Per g of Tissue | ng SQV Per mL of Sera | ||||||
---|---|---|---|---|---|---|---|
Treatment Group | N | Mean | SD | SEM | Mean | SD | SEM |
SQV-treated mice | 35 | 236.5 | 213.3 | 36.1 | ND * | NA * | NA * |
SQV-treated mice (Female) | 20 | 245.7 | 214.8 | 48.0 | ND | NA | NA |
SQV-treated mice (Male) | 15 | 224.1 | 218.22 | 56.3 | ND * | NA * | NA * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunder, L.C.; Johnson, H.R.; Yao, E.; Moyer, T.H.; Green, H.A.; Sherer, N.; Zhang, W.; Carchman, E.H. Topical Protease Inhibitor Decreases Anal Carcinogenesis in a Transgenic Mouse Model of HPV Anal Disease. Viruses 2023, 15, 1013. https://doi.org/10.3390/v15041013
Gunder LC, Johnson HR, Yao E, Moyer TH, Green HA, Sherer N, Zhang W, Carchman EH. Topical Protease Inhibitor Decreases Anal Carcinogenesis in a Transgenic Mouse Model of HPV Anal Disease. Viruses. 2023; 15(4):1013. https://doi.org/10.3390/v15041013
Chicago/Turabian StyleGunder, Laura C., Hillary R. Johnson, Evan Yao, Tyra H. Moyer, Heather A. Green, Nathan Sherer, Wei Zhang, and Evie H. Carchman. 2023. "Topical Protease Inhibitor Decreases Anal Carcinogenesis in a Transgenic Mouse Model of HPV Anal Disease" Viruses 15, no. 4: 1013. https://doi.org/10.3390/v15041013
APA StyleGunder, L. C., Johnson, H. R., Yao, E., Moyer, T. H., Green, H. A., Sherer, N., Zhang, W., & Carchman, E. H. (2023). Topical Protease Inhibitor Decreases Anal Carcinogenesis in a Transgenic Mouse Model of HPV Anal Disease. Viruses, 15(4), 1013. https://doi.org/10.3390/v15041013