Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomics and Transcriptional Profiling
2.2. Targeted LC-MS/MS Metabolomics
2.2.1. Infection Parameters
2.2.2. Sample Collection and Processing
2.2.3. Detection and Quantification of the Metabolites
2.2.4. Raw Data
3. Results
3.1. Chlorovirus PBCV-1 Encodes Multiple Pyrimidine Biosynthesis Augmenting Proteins
3.1.1. Chlorella Variabilis NC64A Genome Annotations for Nucleic Acid Biosynthesis Pathways
3.1.2. PBCV-1 Genome Annotations for Nucleic Acid Biosynthesis Pathways
3.2. By-Passes, Passing Lanes and Traffic Control Predictions
3.2.1. By-Passes: Overriding Regulatory Control and Portals to Other Pathways
3.2.2. Passing Lane: Viral Enzymes That Augment Cellular Function
3.2.3. Traffic Control: Feedback Control Loops to Speed Up or Slow Down Metabolic Fluxes
3.3. Metabolomic Analyses of Targeted Pyrimidine Biosynthetic Pathway Intermediates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Etten, J.L.; Dunigan, D.D. Chloroviruses: Not your everyday plant virus. Trends Plant Sci. 2012, 17, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Etten, J.L.; Agarkova, I.V.; Dunigan, D.D. Chloroviruses. Viruses 2020, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.C. Proposal to conserve the name Chlorella against Zoochlorella (Chlorophyceae). Taxon 1999, 48, 135–136. [Google Scholar] [CrossRef]
- Van Etten, J.L.; Burbank, D.E.; Kuczmarski, D.; Meints, R.H. Virus infection of culturable chlorella-like algae and dlevelopment of a plaque assay. Science 1983, 219, 994–996. [Google Scholar] [CrossRef]
- DeLong, J.P.; Al-Sammak, M.A.; Al-Ameeli, Z.T.; Dunigan, D.D.; Edwards, K.F.; Fuhrmann, J.J.; Gleghorn, J.P.; Li, H.; Haramoto, K.; Harrison, A.O.; et al. Towards an integrative view of virus phenotypes. Nat. Rev. Microbiol. 2022, 20, 83–94. [Google Scholar] [CrossRef]
- Quispe, C.F.; Sonderman, O.; Seng, A.; Rasmussen, B.; Weber, G.; Mueller, C.; Dunigan, D.D.; Van Etten, J.L. Three-year survey of abundance, prevalence and genetic diversity of chlorovirus populations in a small urban lake. Arch. Virol. 2016, 161, 1839–1847. [Google Scholar] [CrossRef] [Green Version]
- Van Etten, J.L.; Lane, L.C.; Meints, R.H. Viruses and viruslike particles of eukaryotic algae. Microbiol. Rev. 1991, 55, 586–620. [Google Scholar] [CrossRef] [PubMed]
- Dunigan, D.D.; Cerny, R.L.; Bauman, A.T.; Roach, J.C.; Lane, L.C.; Agarkova, I.V.; Wulser, K.; Yanai-Balser, G.M.; Gurnon, J.R.; Vitek, J.C.; et al. Paramecium bursaria Chlorella Virus 1 proteome reveals novel architectural and regulatory features of a giant virus. J. Virol. 2012, 86, 8821–8834. [Google Scholar] [CrossRef] [Green Version]
- Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gurnon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22, 2943–2955. [Google Scholar] [CrossRef] [Green Version]
- Yanai-Balser, G.M.; Duncan, G.A.; Eudy, J.D.; Wang, D.; Li, X.; Agarkova, I.V.; Dunigan, D.D.; Van Etten, J.L. Microarray analysis of Chlorella virus PBCV-1 transcription. J. Virol. 2010, 84, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Meints, R.H.; Lee, K.; Van Etten, J.L. Assembly site of the virus PBCV-1 in a chlorella-like green alga: Ultrastructural studies. Virology 1986, 154, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, J.L.; Burbank, D.E.; Joshi, J.; Meints, R.H. DNA synthesis in a chlorella-like alga following infection with the virus PBCV-1. Virology 1984, 134, 443–449. [Google Scholar] [CrossRef]
- Agarkova, I.; Dunigan, D.; Gurnon, J.; Greiner, T.; Barres, J.; Thiel, G.; Van Etten, J.L. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J. Virol. 2008, 82, 12181–12190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarkova, I.V.; Dunigan, D.D.; Van Etten, J.L. Virion-associated restriction endonucleases of chloroviruses. J. Virol. 2006, 80, 8114–8123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Blanc, G.; Mozar, M.; Agarkova, I.V.; Gurnon, J.R.; Yanai-Balser, G.M.; Rowe, J.M.; Xia, Y.; Riethoven, J.-J.; Dunigan, D.D.; Van Etten, J.L. Deep RNA sequencing reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1. PLoS ONE 2014, 9, e90989. [Google Scholar] [CrossRef] [Green Version]
- Van Etten, J.L.; Burbank, D.E.; Xia, Y.; Meints, R.H. Growth cycle of a virus, PBCV-1, that infects chlorella-like algae. Virology 1983, 126, 117–125. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Maley, F.; Maley, G.F.; Duncan, G.; Dunigan, D.D.; Van Etten, J.L. Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J. Virol. 2007, 81, 7662–7671. [Google Scholar] [CrossRef] [Green Version]
- Landstein, D.; Mincberg, M.; Arad, S.; Tal, J. An early gene of the Chlorella virus PBCV-1 encodes a functional aspartate transcarbamylase. Virology 1996, 221, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Moriyama, H.; Homma, K.; Van Etten, J.L. Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima. J. Virol. 2005, 79, 9945–9953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziani, S.; Xia, Y.; Gurnon, J.R.; Van Etten, J.L.; Leduc, D.; Skouloubris, S.; Myllykallio, H.; Liebl, U. Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria Chlorella virus-1. J. Biol. Chem. 2004, 279, 54340–54347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenz, R.; Giese, B. Studies on the mechanism of ribonucleotide reductases. J. Am. Chem. Soc. 1997, 119, 2784–2794. [Google Scholar] [CrossRef]
- Seitzer, P.; Jeanniard, A.; Ma, F.; Van Etten, J.L.; Facciotti, M.T.; Dunigan, D.D. Gene gangs of the chloroviruses: Conserved clusters of collinear monocistronic genes. Viruses 2018, 10, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanniard, A.; Dunigan, D.D.; Gurnon, J.R.; Agarkova, I.V.; Kang, M.; Vitek, J.; Duncan, G.; McClung, O.W.; Larsen, M.; Claverie, J.-M.; et al. Towards defining the chloroviruses: A genomic journey through a genus of large DNA viruses. BMC Genom. 2013, 14, 158. [Google Scholar] [CrossRef] [Green Version]
- Scarano, E. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides: I. the enzymatic deamination of deoxycytidine 5′-phosphate and of 5-methyldeoxycytidine 5′-phosphate. J. Biol. Chem. 1960, 235, 706–713. [Google Scholar] [CrossRef]
- Lipscomb, W.N. Aspartate transcarbamylase from Escherichia coli: Activity and regulation. In Advances in Enzymology and Related Areas of Molecular Biology; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 67–151. [Google Scholar]
- Del Caño-Ochoa, F.; Moreno-Morcillo, M.; Ramón-Maiques, S. CAD, A multienzymatic protein at the head of de novo pyrimidine biosynthesis. In Macromolecular Protein Complexes II: Structure and Function; Harris, J.R., Marles-Wright, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 505–538. [Google Scholar]
- Goodwin, C.M.; Xu, S.; Munger, J. Stealing the keys to the kitchen: Viral manipulation of the host cell metabolic network. Trends Microbiol. 2015, 23, 789–798. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, I.; Munger, J. Meal for two: Human cytomegalovirus-induced activation of cellular metabolism. Viruses 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-L.; Chien, K.-Y.; Lai, C.-H.; Li, G.-J.; Lin, J.-F.; Ho, H.-Y. Metabolic reprogramming of host cells in response to enteroviral infection. Cells 2020, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Munger, J.; Bajad, S.U.; Coller, H.A.; Shenk, T.; Rabinowitz, J.D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2006, 2, e132. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.C.; Johnson, R.M.; Ayyanathan, K.; Miller, J.; Whig, K.; Kamalia, B.; Dittmar, M.; Weston, S.; Hammond, H.L.; Dillen, C.; et al. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature 2022, 604, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.M.; Jeanniard, A.; Gurnon, J.R.; Xia, Y.; Dunigan, D.D.; Van Etten, J.L.; Blanc, G. Global analysis of Chlorella variabilis NC64A mRNA profiles during the early phase of Paramecium bursaria chlorella virus-1 infection. PLoS ONE 2014, 9, e90988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevallereau, A.; Blasdel, B.G.; De Smet, J.; Monot, M.; Zimmermann, M.; Kogadeeva, M.; Sauer, U.; Jorth, P.; Whiteley, M.; Debarbieux, L.; et al. Next-Generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS Genet. 2016, 12, e1006134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Functional Annotation | Genes | RefSeq | KEGG Number | EC Number | Reaction (IUBMB) [KEGG Reaction] | Expression Pattern a | Virion Association b |
---|---|---|---|---|---|---|---|
Ribonucleotide reductase (small subunit) | a476r | NP_048832.1 | K00524 | 1.17.4.1 | 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-diphosphate + thioredoxin [RN:R04294] | early | yes |
Ribonucleotide reductase (large subunit) | a629r | NP_048985.1 | K00524 | 1.17.4.1 | 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-diphosphate + thioredoxin [RN:R04294] | early | yes |
Cytosine deaminase | a200r | NP_048547.1 | K01485 | 3.5.4.1 | cytosine + H2O = uracil + NH3 [RN:R00974] | early | ND c |
* Aspartate/ornithine carbamoyltransferase [20] | a169r | NP_048517.1 | K11540 | 2.1.3.2 | carbamoyl phosphate + L-aspartate = phosphate + N-carbamoyl-L-aspartate [RN:R01397] | early | ND |
* dUTP pyrophosphatase [21] | a551l | NP_048907.1 | K01520 | 3.6.1.23 | dUTP + H2O = dUMP + diphosphate [RN:R02100] | early-late | ND |
Deoxynucleoside kinase/Dephospho-coenzyme A kinase/Deoxyadenosine/deoxycytidine kinase | a416r | NP_048773.1 | K13800 | 2.7.4.14 | (1) ATP + (d)CMP = ADP + (d)CDP [RN:R00512 R01665]; (2) ATP + UMP = ADP + UDP [RN:R00158] | early-late | ND |
Thioredoxin | a427l | NP_048784.1 | K00384 | 1.8.1.9 | 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-diphosphate + thioredoxin [RN:R04294] | early-late | ND |
Phosphoribosyl pyrophosphate synthetase | a568l | NP_048924.1 | K00948 | 2.7.6.1 | ATP + D-Ribose 5-phosphate <=> AMP + 5-Phospho-alpha-D-ribose 1-diphosphate | early-late | ND |
* dCMP deaminase [19] | a596r | NP_048952.1 | K01493 | 3.5.4.12 | dCMP + H2O = dUMP + NH3 [RN:R01663] | early-late | ND |
* dCTP deaminase [19] | a596r | NP_048952.1 | K01494 | 3.5.4.13 | dCTP + H2O = dUTP + NH3 [RN:R02325] | early-late | ND |
* Thymidylate synthase X [22] | a674r | NP_049030.1 | K03465 | 2.1.1.148 | 5,10-methylenetetrahydrofolate + dUMP + NADPH + H+ = dTMP + tetrahydrofolate + NADP+ [RN:R06613] | early-late | ND |
Initial Value (Zeptomole */Cell) | Fold Change Compared to t = 0 mpi (zmol per Cell @ t = x mpi/zmol per Cell @ t = 0 mpi) | |||||||
---|---|---|---|---|---|---|---|---|
Analytes | 0 mpi | 0 mpi | 7 mpi | 14 mpi | 20 mpi | 40 mpi | 60 mpi | 90 mpi |
Uridine | 1,010,260.11 | 1.0 | 2.2 | 2.2 | 2.7 | 2.5 | 2.9 | 3.5 |
UMP | 3,462,328.07 | 1.0 | 0.6 | 0.6 | 0.6 | 0.7 | 0.8 | 0.9 |
UDP | 248.24 | 1.0 | 0.7 | 0.7 | 0.6 | 1.1 | 1.4 | 1.9 |
UTP | 56.39 | 1.0 | 0.6 | 0.6 | 0.5 | 1.0 | 1.3 | 2.0 |
Cytidine | 236.46 | 1.0 | 1.5 | 2.0 | 2.0 | 3.4 | 4.4 | 4.3 |
CDP | 99.48 | 1.0 | 0.6 | 0.6 | 0.6 | 1.5 | 1.7 | 1.6 |
CTP | 39.31 | 1.0 | 0.6 | 0.6 | 0.5 | 1.3 | 1.5 | 1.5 |
dCDP | 7.16 | 1.0 | 0.5 | 0.7 | 1.4 | 11.3 | 15.7 | 11.3 |
dCTP | 42.75 | 1.0 | 0.5 | 0.5 | 0.4 | 2.2 | 2.9 | 2.2 |
Deoxyuridine | 14.96 | 1.0 | 1.1 | 3.1 | 9.8 | 43.0 | 40.8 | 23.1 |
dUMP | 4.50 | 1.0 | 0.5 | 0.9 | 1.9 | 9.2 | 14.9 | 23.8 |
dUTP | Bdl # | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
Thymidine | 12.83 | 1.0 | 1.6 | 6.6 | 24.2 | 76.8 | 57.4 | 30.0 |
dTMP | 13.54 | 1.0 | 0.8 | 3.0 | 8.0 | 18.3 | 20.5 | 15.6 |
dTDP | 18.67 | 1.0 | 0.6 | 1.7 | 4.8 | 25.4 | 27.5 | 17.7 |
dTTP | 9.47 | 1.0 | 0.5 | 1.1 | 2.3 | 17.1 | 19.5 | 13.7 |
dGTP | 891.04 | 1.0 | 0.6 | 0.6 | 0.5 | 0.7 | 0.7 | 0.8 |
ATP | 846.96 | 1.0 | 0.6 | 0.6 | 0.5 | 0.7 | 0.7 | 0.8 |
dATP | 12.20 | 1.0 | 0.5 | 0.7 | 0.9 | 6.6 | 6.8 | 4.9 |
N-Carbamoyl-L-aspartate | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunigan, D.D.; Agarkova, I.V.; Esmael, A.; Alvarez, S.; Van Etten, J.L. Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism. Viruses 2023, 15, 911. https://doi.org/10.3390/v15040911
Dunigan DD, Agarkova IV, Esmael A, Alvarez S, Van Etten JL. Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism. Viruses. 2023; 15(4):911. https://doi.org/10.3390/v15040911
Chicago/Turabian StyleDunigan, David D., Irina V. Agarkova, Ahmed Esmael, Sophie Alvarez, and James L. Van Etten. 2023. "Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism" Viruses 15, no. 4: 911. https://doi.org/10.3390/v15040911
APA StyleDunigan, D. D., Agarkova, I. V., Esmael, A., Alvarez, S., & Van Etten, J. L. (2023). Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism. Viruses, 15(4), 911. https://doi.org/10.3390/v15040911