Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment
Abstract
:1. Introduction
2. Methods
2.1. CMV Reactivation in Critical Illness
2.2. CMV Reactivation in COVID-19 Patients
2.3. Understanding the Pathophysiology
2.4. A Word in Diagnosis
2.5. CMV Treatment and Prophylaxis in the ICU
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015, 235, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Boeckh, M.; Geballe, A.P. Cytomegalovirus: Pathogen, paradigm, and puzzle. J. Clin. Investig. 2011, 121, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Schildermans, J.; De Vlieger, G. Cytomegalovirus: A Troll in the ICU? Overview of the Literature and Perspectives for the Future. Front. Med. 2020, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- Söderberg-Nauclér, C.J.J.o.I.M. Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J. Intern. Med. 2006, 259, 219–246. [Google Scholar] [CrossRef]
- Pérez-Granda, M.J.; Catalán, P.; Muñoz, P.; Aldámiz, T.; Barrios, J.C.; Ramírez, C.; García-Martínez, R.; Villalba, M.V.; Puente, L.; Bouza, E. Cytomegalovirus reactivation in patients diagnosed with severe COVID-19: A point prevalence study in a general hospital. Rev. Esp. Quimioter. Publ. Of. Soc. Esp. Quimioter. 2023, 36, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Kehl, V.; Erber, J.; Wagner, K.I.; Jetzlsperger, A.-M.; Burrell, T.K.; Schober, K.; Schommers, P.; Augustin, M.; Crowell, C.S.; et al. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients. PLoS ONE 2022, 17, e0268530. [Google Scholar] [CrossRef]
- Naendrup, J.-H.; Garcia Borrega, J.; Eichenauer, D.A.; Shimabukuro-Vornhagen, A.; Kochanek, M.; Böll, B.J.J.o.I.C.M. Reactivation of EBV and CMV in Severe COVID-19—Epiphenomena or Trigger of Hyperinflammation in Need of Treatment? A Large Case Series of Critically ill Patients. J. Intensive Care Med. 2021, 37, 1152–1158. [Google Scholar] [CrossRef]
- Söderberg-Nauclér, C. Does reactivation of cytomegalovirus contribute to severe COVID-19 disease? Immun. Ageing 2021, 18, 12. [Google Scholar] [CrossRef]
- Freeman, M.L.; Oyebanji, O.A.; Moisi, D.; Payne, M.; Sheehan, M.L.; Balazs, A.B.; Bosch, J.; King, C.L.; Gravenstein, S.; Lederman, M.M.; et al. Association of Cytomegalovirus Serostatus With Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Responsiveness in Nursing Home Residents and Healthcare Workers. Open Forum Infect. Dis. 2023, 10, ofad063. [Google Scholar] [CrossRef]
- Schoninger, S.; Dubrovskaya, Y.; Marsh, K.; Altshuler, D.; Prasad, P.J.; Louie, E.; Weisenberg, S.; Hochman, S.E.; Fridman, D.; Trachuk, P. Outcomes of Cytomegalovirus Viremia Treatment in Critically Ill Patients With COVID-19 Infection. Open Forum Infect. Dis. 2022, 9, ofac286. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Shiroyama, T.; Hirata, H.; Kuge, T.; Matsumoto, K.; Yoneda, M.; Yamamoto, M.; Uchiyama, A.; Takeda, Y.; Kumanogoh, A. Prolonged corticosteroid therapy and cytomegalovirus infection in patients with severe COVID-19. J. Med. Virol. 2022, 94, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Saade, A.; Moratelli, G.; Azoulay, E.; Darmon, M. Herpesvirus reactivation during severe COVID-19 and high rate of immune defect. Infect. Dis. Now 2021, 51, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Talan, L.; Akdemir Kalkan, I.; Altintas, N.D.; Yoruk, F. Cytomegalovirus Reactivation in Critically-ill COVID-19 Patients. Balkan. Med. J. 2022, 39, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, T.; Shiroyama, T.; Hirata, H.; Noda, Y.; Adachi, Y.; Enomoto, T.; Hara, R.; Amiya, S.; Uchiyama, A.; Takeda, Y.; et al. Cytomegalovirus infection in critically ill patients with COVID-19. J. Infect. 2021, 83, 496–522. [Google Scholar] [CrossRef] [PubMed]
- Gatto, I.; Biagioni, E.; Coloretti, I.; Farinelli, C.; Avoni, C.; Caciagli, V.; Busani, S.; Sarti, M.; Pecorari, M.; Gennari, W.; et al. Cytomegalovirus blood reactivation in COVID-19 critically ill patients: Risk factors and impact on mortality. Intensive Care Med. 2022, 48, 706–713. [Google Scholar] [CrossRef]
- Ong, D.S.Y.; Chong, G.-L.M.; Chemaly, R.F.; Cremer, O.L. Comparative clinical manifestations and immune effects of cytomegalovirus infections following distinct types of immunosuppression. Clin. Microbiol. Infect. 2022, 28, 1335–1344. [Google Scholar] [CrossRef]
- Al-Omari, A.; Aljamaan, F.; Alhazzani, W.; Salih, S.; Arabi, Y. Cytomegalovirus infection in immunocompetent critically ill adults: Literature review. Ann. Intensive Care 2016, 6, 110. [Google Scholar] [CrossRef]
- Osawa, R.; Singh, N. Cytomegalovirus infection in critically ill patients: A systematic review. Crit. Care 2009, 13, R68. [Google Scholar] [CrossRef]
- Lachance, P.; Chen, J.; Featherstone, R.; Sligl, W.I. Association Between Cytomegalovirus Reactivation and Clinical Outcomes in Immunocompetent Critically Ill Patients: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2017, 4, ofx029. [Google Scholar] [CrossRef]
- Limaye, A.P.; Kirby, K.A.; Rubenfeld, G.D.; Leisenring, W.M.; Bulger, E.M.; Neff, M.J.; Gibran, N.S.; Huang, M.L.; Santo Hayes, T.K.; Corey, L.; et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 2008, 300, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Heininger, A.; Haeberle, H.; Fischer, I.; Beck, R.; Riessen, R.; Rohde, F.; Meisner, C.; Jahn, G.; Koenigsrainer, A.; Unertl, K.; et al. Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit. Care 2011, 15, R77. [Google Scholar] [CrossRef] [PubMed]
- Frantzeskaki, F.G.; Karampi, E.-S.; Kottaridi, C.; Alepaki, M.; Routsi, C.; Tzanela, M.; Vassiliadi, D.A.; Douka, E.; Tsaousi, S.; Gennimata, V.; et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: Incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J. Crit. Care 2015, 30, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Sang, L.; Chen, S.; Wu, Z.; Zhang, J.; Sun, Y.; Huang, Y.; Xu, Y.; He, W.; et al. Cytomegalovirus reactivation in immunocompetent mechanical ventilation patients: A prospective observational study. BMC Infect. Dis. 2021, 21, 1026. [Google Scholar] [CrossRef]
- Chiche, L.; Forel, J.M.; Roch, A.; Guervilly, C.; Pauly, V.; Allardet-Servent, J.; Gainnier, M.; Zandotti, C.; Papazian, L. Active cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit. Care Med. 2009, 37, 1850–1857. [Google Scholar] [CrossRef]
- Yeh, P.-J.; Chiu, C.-T.; Lai, M.-W.; Wu, R.-C.; Chen, C.-M.; Kuo, C.-J.; Hsu, J.-T.; Su, M.-Y.; Lin, W.-P.; Chen, T.-H.; et al. Clinical manifestations, risk factors, and prognostic factors of cytomegalovirus enteritis. Gut Pathog. 2021, 13, 53. [Google Scholar] [CrossRef]
- Imlay, H.; Dasgupta, S.; Boeckh, M.; Stapleton, R.D.; Rubenfeld, G.D.; Chen, Y.; Limaye, A.P. Risk Factors for Cytomegalovirus Reactivation and Association with Outcomes in Critically Ill Adults With Sepsis: A Pooled Analysis of Prospective Studies. J. Infect. Dis. 2021, 223, 2108–2112. [Google Scholar] [CrossRef]
- De Vlieger, G.; Meersseman, W.; Lagrou, K.; Wouters, P.; Wilmer, A.; Peetermans, W.E.; Van den Berghe, G.; Van Wijngaerden, E. Cytomegalovirus serostatus and outcome in nonimmunocompromised critically ill patients. Crit. Care Med. 2012, 40, 36–42. [Google Scholar] [CrossRef]
- Ong, D.S.; Klein Klouwenberg, P.M.; Verduyn Lunel, F.M.; Spitoni, C.; Frencken, J.F.; Dekker, H.A.; Schultz, M.J.; Bonten, M.J.; Cremer, O.L. Cytomegalovirus seroprevalence as a risk factor for poor outcome in acute respiratory distress syndrome*. Crit. Care Med. 2015, 43, 394–400. [Google Scholar] [CrossRef]
- Banko, A.; Miljanovic, D.; Cirkovic, A. Systematic review with meta-analysis of active herpesvirus infections in patients with COVID-19: Old players on the new field. Int. J. Infect. Dis. 2023, 130, 108–125. [Google Scholar] [CrossRef]
- Shafiee, A.; Teymouri Athar, M.M.; Amini, M.J.; Hajishah, H.; Siahvoshi, S.; Jalali, M.; Jahanbakhshi, B.; Mozhgani, S.H. Reactivation of herpesviruses during COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2437. [Google Scholar] [CrossRef] [PubMed]
- Moniz, P.; Brito, S.; Póvoa, P. SARS-CoV-2 and Cytomegalovirus Co-Infections-A Case Series of Critically Ill Patients. J. Clin. Med. 2021, 10, 2792. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jacob, J.; Mayer, D.; Eckardt, P.A. Cytomegalovirus reactivation in critically-ill Coronavirus Disease 2019 patients: A case series of 11 patients. IDCases 2022, 27, e01402. [Google Scholar] [CrossRef] [PubMed]
- Willette, A.A.; Willette, S.A.; Wang, Q.; Pappas, C.; Klinedinst, B.S.; Le, S.; Larsen, B.; Pollpeter, A.; Li, T.; Brenner, N.; et al. Using machine learning to predict COVID-19 infection and severity risk among 4,510 aged adults: A UK Biobank cohort study. Sci. Rep. 2022, 12, 7736. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.; Tridello, G.; Piñana, J.L.; Ciceri, F.; Sengeloev, H.; Kulagin, A.; Mielke, S.; Yegin, Z.A.; Collin, M.; Einardottir, S.; et al. Improved outcomes over time and higher mortality in CMV seropositive allogeneic stem cell transplantation patients with COVID-19; An infectious disease working party study from the European Society for Blood and Marrow Transplantation registry. Front. Immunol. 2023, 14, 1125824. [Google Scholar] [CrossRef]
- Papazian, L.; Hraiech, S.; Lehingue, S.; Roch, A.; Chiche, L.; Wiramus, S.; Forel, J.M. Cytomegalovirus reactivation in ICU patients. Intensive Care Med. 2016, 42, 28–37. [Google Scholar] [CrossRef]
- Azevedo, L.S.; Pierrotti, L.C.; Abdala, E.; Costa, S.F.; Strabelli, T.M.; Campos, S.V.; Ramos, J.F.; Latif, A.Z.; Litvinov, N.; Maluf, N.Z.; et al. Cytomegalovirus infection in transplant recipients. Clinics 2015, 70, 515–523. [Google Scholar] [CrossRef]
- Perera, M.R.; Greenwood, E.J.D.; Crozier, T.W.M.; Elder, E.G.; Schmitt, J.; Crump, C.M.; Lehner, P.J.; Wills, M.R.; Sinclair, J.H.; Cambridge Institute of Therapeutic, I.; et al. Human Cytomegalovirus Infection of Epithelial Cells Increases SARS-CoV-2 Superinfection by Upregulating the ACE2 Receptor. J. Infect. Dis. 2023, 227, 543–553. [Google Scholar] [CrossRef]
- Frozza, F.T.B.; Fazolo, T.; de Souza, P.O.; Lima, K.; da Fontoura, J.C.; Borba, T.S.; Polese-Bonatto, M.; Kern, L.B.; Stein, R.T.; Pawelec, G.; et al. A high CMV-specific T cell response associates with SARS-CoV-2-specific IL-17 T cell production. Med. Microbiol. Immunol. 2023, 212, 75–91. [Google Scholar] [CrossRef]
- Ibanez-Prada, E.D.; Fish, M.; Fuentes, Y.V.; Bustos, I.G.; Serrano-Mayorga, C.C.; Lozada, J.; Rynne, J.; Jennings, A.; Crispin, A.M.; Santos, A.M.; et al. Comparison of systemic inflammatory profiles in COVID-19 and community-acquired pneumonia patients: A prospective cohort study. Respir. Res. 2023, 24, 60. [Google Scholar] [CrossRef]
- Cano, P.; Han, F.S.; Wang, H.L.; Fernandez-Vina, M.; Han, X.Y. Cytokine gene polymorphisms affect reactivation of cytomegalovirus in patients with cancer. Cytokine 2012, 60, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Zedtwitz-Liebenstein, K.; Jaksch, P.; Wulkersdorfer, B.; Friehs, H.; Pempelfort, S.D.; Burgmann, H.; Frass, M. Usefulness of interleukin-10 detection in lung transplant patients with human cytomegalovirus infection with respect to virus persistence. Transplantation 2007, 84, 268–271. [Google Scholar] [CrossRef]
- Cook, C.H.; Trgovcich, J.; Zimmerman, P.D.; Zhang, Y.; Sedmak, D.D. Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in immunocompetent mice. J. Virol. 2006, 80, 9151–9158. [Google Scholar] [CrossRef] [PubMed]
- Goodier, M.R.; Jonjić, S.; Riley, E.M.; Juranić Lisnić, V. CMV and natural killer cells: Shaping the response to vaccination. Eur. J. Immunol. 2018, 48, 50–65. [Google Scholar] [CrossRef]
- Giannella, A.; Riccetti, S.; Sinigaglia, A.; Piubelli, C.; Razzaboni, E.; Di Battista, P.; Agostini, M.; Dal Molin, E.; Manganelli, R.; Gobbi, F.; et al. Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Diggins, N.L.; Skalsky, R.L.; Hancock, M.H. Regulation of Latency and Reactivation by Human Cytomegalovirus miRNAs. Pathogens 2021, 10, 200. [Google Scholar] [CrossRef]
- Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Lazzaro, R.; Aityan, S.K.; Maggiore, M.E.; Mancini, A.; Laforgia, R.; et al. SARS-CoV-2 Virus Infection May Interfere CD34+ Hematopoietic Stem Cells and Megakaryocyte-Erythroid Progenitors Differentiation Contributing to Platelet Defection towards Insurgence of Thrombocytopenia and Thrombophilia. Microorganisms 2021, 9, 1632. [Google Scholar] [CrossRef]
- Poole, E.; Neves, T.C.; Oliveira, M.T.; Sinclair, J.; da Silva, M.C.C. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front. Cell Infect. Microbiol. 2020, 10, 245. [Google Scholar] [CrossRef]
- Lin, A.; Xu, H.; Yan, W. Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol. Immunol. 2007, 4, 91–98. [Google Scholar]
- Kuo, C.W.; Wang, S.Y.; Tsai, H.P.; Su, P.L.; Cia, C.T.; Lai, C.H.; Chen, C.W.; Shieh, C.C.; Lin, S.H. Invasive pulmonary aspergillosis is associated with cytomegalovirus viremia in critically ill patients—A retrospective cohort study. J. Microbiol. Immunol. Infect. = Wei Mian Yu Gan Ran Za Zhi 2022, 55, 291–299. [Google Scholar] [CrossRef]
- Loewendorf, A.I.; Arens, R.; Purton, J.F.; Surh, C.D.; Benedict, C.A. Dissecting the requirements for maintenance of the CMV-specific memory T-cell pool. Viral Immunol. 2011, 24, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Ward, I.; Nafilyan, V. Comparing the Risk of Death Involving Coro-Navirus (COVID-19) by Variant, England: December 2021. 24 February 2022. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/articles/comparingtheriskofdeathinvolvingcoronaviruscovid19byvariantengland/december2021 (accessed on 1 May 2023).
- Hui, J.; Qu, Y.Y.; Tang, N.; Liu, Y.M.; Zhong, H.; Wang, L.M.; Feng, Q.; Li, Z.; He, F. Association of cytomegalovirus infection with hypertension risk: A meta-analysis. Wien. Klin. Wochenschr. 2016, 128, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.; Eytan, O.; Justo, D. Thrombosis associated with acute cytomegalovirus infection: A narrative review. Arch. Med. Sci. AMS 2014, 10, 1186–1190. [Google Scholar] [CrossRef]
- Taherifard, E.; Movahed, H.; Kiani Salmi, S.; Taherifard, A.; Abdollahifard, S.; Taherifard, E. Cytomegalovirus coinfection in patients with severe acute respiratory syndrome coronavirus 2 infection: A systematic review of reported cases. Infect. Dis. 2022, 54, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Batty, G.D.; Kivimäki, M. Obesity, metabolic health, and history of cytomegalovirus infection in the general population. J. Clin. Endocrinol. Metab. 2016, 1014, 1680–1685. [Google Scholar] [CrossRef]
- Fleck-Derderian, S.; McClellan, W.; Wojcicki, J.M. The association between cytomegalovirus infection, obesity, and metabolic syndrome in U.S. adult females. Obesity 2017, 25, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Froberg, M.K.; Seacotte, N.; Dahlberg, E. Cytomegalovirus seropositivity and serum total cholesterol levels in young patients. Ann. Clin. Lab. Sci. 2001, 31, 157–161. [Google Scholar]
- Le Balc’h, P.; Pinceaux, K.; Pronier, C.; Seguin, P.; Tadie, J.M.; Reizine, F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit. Care 2020, 24, 530. [Google Scholar] [CrossRef]
- Roży, A.; Duk, K.; Szumna, B.; Skrońska, P.; Gawryluk, D.; Chorostowska-Wynimko, J. Effectiveness of PCR and Immunofluorescence Techniques for Detecting Human Cytomegalovirus in Blood and Bronchoalveolar Lavage Fluid. Adv. Exp. Med. Biol. 2016, 921, 21–26. [Google Scholar] [CrossRef]
- Coisel, Y.; Bousbia, S.; Forel, J.M.; Hraiech, S.; Lascola, B.; Roch, A.; Zandotti, C.; Million, M.; Jaber, S.; Raoult, D.; et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS ONE 2012, 7, e51340. [Google Scholar] [CrossRef]
- Brantsaeter, A.B.; Holberg-Petersen, M.; Jeansson, S.; Goplen, A.K.; Bruun, J.N. CMV quantitative PCR in the diagnosis of CMV disease in patients with HIV-infection—A retrospective autopsy based study. BMC Infect. Dis. 2007, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Y.; Xu, Z.; Zhang, R.; Liu, X.; Li, Y.; Mao, P. Cytomegalovirus infection and outcome in immunocompetent patients in the intensive care unit: A systematic review and meta-analysis. BMC Infect. Dis. 2018, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Florescu, D.F. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit. Care Med. 2009, 37, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Wang, S.C.; Chen, Y.C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2020, 12. [Google Scholar] [CrossRef]
- Humar, A. Reactivation of Viruses in Solid Organ Transplant Patients Receiving Cytomegalovirus Prophylaxis. Transplantation 2006, 82, S9–S14. [Google Scholar] [CrossRef]
- Forster, M.R.; Trgovcich, J.; Zimmerman, P.; Chang, A.; Miller, C.; Klenerman, P.; Cook, C.H. Antiviral prevention of sepsis induced cytomegalovirus reactivation in immunocompetent mice. Antivir. Res. 2010, 85, 496–503. [Google Scholar] [CrossRef]
- Papazian, L.; Jaber, S.; Hraiech, S.; Baumstarck, K.; Cayot-Constantin, S.; Aissaoui, N.; Jung, B.; Leone, M.; Souweine, B.; Schwebel, C.; et al. Preemptive ganciclovir for mechanically ventilated patients with cytomegalovirus reactivation. Ann. Intensive Care 2021, 11, 33. [Google Scholar] [CrossRef]
- Cowley, N.J.; Owen, A.; Shiels, S.C.; Millar, J.; Woolley, R.; Ives, N.; Osman, H.; Moss, P.; Bion, J.F. Safety and Efficacy of Antiviral Therapy for Prevention of Cytomegalovirus Reactivation in Immunocompetent Critically Ill Patients: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 774–783. [Google Scholar] [CrossRef]
- Limaye, A.P.; Stapleton, R.D.; Peng, L.; Gunn, S.R.; Kimball, L.E.; Hyzy, R.; Exline, M.C.; Files, D.C.; Morris, P.E.; Frankel, S.K.; et al. Effect of Ganciclovir on IL-6 Levels Among Cytomegalovirus-Seropositive Adults with Critical Illness: A Randomized Clinical Trial. JAMA 2017, 318, 731–740. [Google Scholar] [CrossRef]
Study/Citation | Type of Study | Country/Time Period | Patients Population and Severity Level (n) | IMV (%) | CMV Reactivation Rate (%) | Sample Type/Detection Cut-off/Recurrence of CMV Testing | Immunosuppression/Immunomodulatory Drugs Used | Viral Load/Organ System Manifestations | Mortality | Antiviral Treatment | Safety/Adverse Events of CMV Treatment |
---|---|---|---|---|---|---|---|---|---|---|---|
[Schoninger, Scott et al., doi:10.1093/ofid/ofac286] | Retrospective cohort study | United States/1 March 2020–30 April 2021 | Critically ill adult COVID-19 patients with detected CMV viremia were admitted to MICUs (n = 80); treatment group (n = 43), control group (n = 37) | 87.5% overall: treatment group (83.7%), control group (91.9%) | 100% | Plasma, serum, or whole blood sample: Detection cut-off—CMV viral load ≥1000 copies/mL (positive) and CMV viral load <1000 copies/mL (low positivity) | Glucocorticoids: 99% of overall patients; treatment group (100%), control group (97%), p-value = 0.462 Median total dexamethasone dose equivalents: treatment group (309 mg), control group (188 mg), p-value = 0.017 Tocilizumab: 45% of overall patients; treatment group (51.2%), control group (37.8%), p-value = 0.333 | Median maximum CMV viral load (IQR) was 1741 (308–8260) for the mortality group and 613 (183–1243) for the surviving group | Overall, in-hospital mortality—Treatment group: 37.2%, Control group: 43.2% (p = 0.749) ICU mortality—Treatment group: 37.2%, Control group: 37.8% (p = 0.954) | Treatment group received ganciclovir and/or valganciclovir for at least 5 days; Median duration of ganciclovir (IQR): 15 (8–27) days; Median duration of valganciclovir (IQR): 11 (7–15) days; Median duration of ganciclovir plus valganciclovir (IQR): 19 (9–30) days | Myelosuppression (defined as absolute neutrophil count (ANC) <1000 cells/μL (neutropenia) or <500 cells/μL (severe neutropenia) during the time period in which ganciclovir or valganciclovir was administered in a patient who previously had an ANC above these values before the start of ganciclovir or valganciclovir) was examined as a potential adverse event. No cases of myelosuppression in treatment group |
[Yamamoto, Yuji, et al. doi:10.1002/jmv.27421] | Retrospective observational study | Japan/1 April–31 May 2021 | 59 patients with severe COVID-19 admitted to ICU | 100% | 25.4% (15 patients) | Plasma CMV-DNA/CMV-DNAemia > 200 IU/mL/Weekly follow-up measurements | Prior to admission, intensive immunosuppressive treatment was used in 8 patients (53.3%) with CMV infection and 14 patients (31.8%) without CMV infection. Of these, corticosteroid pulse therapy was administered to 5 patients (33.3%) with CMV infection and 8 patients (18.2%) without CMV infection. Tocilizumab was used in 3 patients (20.0%) with CMV infection and 6 patients (13.6%) without CMV infection. Baricitinib was administered to 3 patients (20.0%) with CMV infection and 3 patients (6.8%) without CMV infection. | Two patients with possible CMV gastrointestinal disease, two patients with possible CMV pneumonia | 4 patients with CMV infection (26.7%), 0 patients without CMV infection | 6 patients required antiviral treatment; 1 patient died due to possible CMV pneumonia | Not reported |
[Talan L, et al. doi:10.4274/balkanmedj.galenos.2022.2022-2-2] | Retrospective Study | Turkey/March 2020–May 2021 | 218 ICU treated COVID-19 patients | 100% | 4.59% (10/218) | CMV viral load higher than 500 copies/mL | Corticosteroids (9/10 patients) Tocilizumab (4/10 patients) | Nonbacterial pneumonia | 7/10 | Standard CMV viremia treatment with ganciclovir or valganciclovir | Not reported |
[Saade, A et al. doi:10.1016/j.idnow.2021.07.005] | Post-hoc analysis of a retrospective single-center study | France/30 February–10 May 2020 | 100 critically ill COVID-19 patients | 54% | 19% >3.5 log (significant reactivation) in 2 patients | Whole blood/Twice weekly and repeated in case of sepsis | All the information below concerned reactivation of all herpesviruses. Dexamethasone: 6 (16%) patients without viral reactivation and 27 (44%) patients with viral reactivation received dexamethasone. Eculizumab: 2 (5%) patients without viral reactivation and 8 (13%) patients with viral reactivation received eculizumab. Tocilizumab: 3 (8%) patients without viral reactivation and 2 (3%) patients with viral reactivation received tocilizumab. | One patient with esophagitis (CMV disease) | 28% (ICU mortality) CMV reactivation was not associated with mortality (p = 0.31) | 2 patients received valganciclovir (both solid organ transplant recipients). No specific outcomes reported | Not reported |
[Simonnet, A et al. doi:10.1016/j.idnow.2021.01.005] | Single center retrospective study | France/16 March–6 August 2020 | 34 patients admitted to ICU for SARS-CoV-2-associated acute respiratory failure | 88% | 15% (5/34 patients) with CMV DNA detection | Quantitative PCR in whole blood, DNAemia detection was performed on average 3.7 times (range 1–15) per patient during ICU stay | Tocilizumab (3%), Corticosteroid treatment (88%) | Median blood viral load in patients with quantifiable CMV replication 4930 IU/mL (range 805–32,221) | 18% (6/34 patients) died while in the ICU | 3 patients with CMV reactivation were treated (ganciclovir in 2 cases, valganciclovir in 1 case) and were treated successfully | Not reported |
[Naendrup, Jan-Hendrik et al. doi:10.1177/08850666211053990] | Retrospective single-center cohort study | Germany/March 2020–March 2021 | 117 patients with severe COVID-19 treated in ICU | Not reported | 9% (11/117) | Whole blood, DNA levels higher than 1000 IU/mL | Systemic corticosteroid treatment (majority of CMV reactivations—55%) | Maximum viral copies in IU/mL for CMV reactivation: 4440 (1030–36,900) | ICU survival for CMV reactivation: 6/11 (55%) | Ganciclovir treatment in 6 patients (5/6, 83% survival); no treatment in 4 patients (0% survival); p = 0.048 | Not reported |
[Pérez-Granda, M J et al. doi:10.37201/req/068.2022] | Point prevalence study | Spain/30 February–10 May 2020 | 140 hospitalized adult patients with severe COVID-19; 26.42% (37 patients) ICU patients | 19.28% (27 patients) | 11.42% (16 patients); Patients with positive CMV viral load were mainly ICU patients (11/37–29.7%) while only 5/103 cases (4.85%) were hospitalized into general wards. | Plasma samples—threshold of detection: 31 IU/mL (20 copies/mL) | Tocilizumab (11.42%) for 16 patients Corticosteroids (prednisone) with a median dose of 225 mg | No specific manifestations mentioned. CMV viral loads ranged from 72 to 3126 IU, with a median of 328 IU (IQR 245.50 to 625.50) | 13.57% (19 patients); In CMV positive cases death occurred in 8/16 cases (50%) compared with 11/124 (8.87%) in CMV negative patients (p < 0.001). CMV was an independent risk factor for death OR 12.31 (95% CI: 3.62–41.87, p < 0.001) | Ganciclovir treatment for 8 patients (5.71%), 6 of them CMV positive, none of them died | Not reported |
[Niitsu, Takayuki et al. doi:10.1016/j.jinf.2021.07.004] | Retrospective study | Japan/April 2020-February 2021 | Critically ill patients with COVID-19 requiring invasive mechanical ventilation for more than one week (n = 26) | 100% | 23.1% (6 patients) | CMV antigenemia assay for detecting pp65 antigen in peripheral blood leukocytes; CMV infection was defined as ≥1 antigen-positive cell per 50,000 leukocytes and two consecutive positive assays. | Corticosteroid use (100%) | CMV pneumonia in one patient (Case 1) | CMV group: 2 out of 6 patients (33.3%); Non-CMV group: 0 out of 20 patients (0%) | Ganciclovir therapy for CMV infection; two patients in the CMV group died from refractory respiratory failure, one of whom was diagnosed with CMV pneumonia. | Not reported |
[Gatto, Ilenia et al. doi:10.1007/s00134-022-06716-y] | Prospective study | Italy/22 February–21 July 2021 | 431 patients with moderate to severe ARDS | 64% (276 patients) | 20.4% (88 patients) | Patients were screened at ICU admission and twice (in invasive mechanically ventilated patients). Quantitative CMV-DNAemia in the blood. Threshold > 62 UI/mL in whole blood | Steroids (methylprednisolone, dexamethasone)—91.4% (393 patients) Tocilizumab—82.6% (356 patients) Acyclovir prophylaxis—73.8% (318 patients) A larger proportion of patients with CMV reactivation received steroids (i.e., dexamethasone, methylprednisolone or both) (p = 0.005) | CMV-related pneumonia detected in 34.1% (30) of CMV reactivated patients. Median onset of 17 days (IQR 5–26) after ICU admission for CMV reactivation | The hospital mortality was larger (p < 0.001) in patients with CMV reactivation than without reactivation. No independent relationship between CMV pneumonia and mortality at day 60 (HR 1248; 95% CI: 0.732–2129; p = 0.415) was observed. | Ganciclovir treatment was given to 30 patients (6.9%) with CMV reactivation and clinical signs of CMV-related pneumonia. Among patients with CMV reactivation, patients with CMV-related pneumonia and treated with ganciclovir showed higher (p = 0.063) mortality (24/30; 80%) than patients without signs of CMV-related clinical pneumonia (35/58; 30%). | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schinas, G.; Moustaka, V.; Polyzou, E.; Almyroudi, M.P.; Dimopoulos, G.; Akinosoglou, K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023, 15, 1165. https://doi.org/10.3390/v15051165
Schinas G, Moustaka V, Polyzou E, Almyroudi MP, Dimopoulos G, Akinosoglou K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses. 2023; 15(5):1165. https://doi.org/10.3390/v15051165
Chicago/Turabian StyleSchinas, Georgios, Vasiliki Moustaka, Eleni Polyzou, Maria Panagiota Almyroudi, George Dimopoulos, and Karolina Akinosoglou. 2023. "Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment" Viruses 15, no. 5: 1165. https://doi.org/10.3390/v15051165
APA StyleSchinas, G., Moustaka, V., Polyzou, E., Almyroudi, M. P., Dimopoulos, G., & Akinosoglou, K. (2023). Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses, 15(5), 1165. https://doi.org/10.3390/v15051165