Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022)
Abstract
:1. Introduction
1.1. The Epidemiological Situation in Spain: A Timeline
1.2. The Importance of Data Visualization
1.3. Objectives of This Research Study
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analyses
2.3. Data Visualization
3. Results
3.1. General Characteristics and Waves
3.2. Analyses by Sex and Age
3.3. ICU Admissions
3.4. Mortality
3.5. The Pandemic in the Area Attended to by Our Hospital
4. Discussion
4.1. Epidemiological Modeling
4.2. Public Health Measures
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
COVID-19 | Coronavirus disease 2019 |
ICUs | Intensive care units |
RENAVE | Red Nacional de Vigilancia Epidemiologica (Epidemiological Surveillance National System) |
Appendix A
References
- Lovato, A.; De Filippis, C. Clinical presentation of COVID-19: A systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020, 99, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020—who.int. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-COVID-19—11-march-2020 (accessed on 28 June 2023).
- Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV)—who.int. Available online: https://www.who.int/news/item/30-01-2020-statement-onthe-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novelcoronavirus-(2019-ncov) (accessed on 28 June 2023).
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pustake, M.; Tambolkar, I.; Giri, P.; Gandhi, C. SARS, MERS and COVID-19: An overview and comparison of clinical, laboratory and radiological features. J. Fam. Med. Prim. Care 2022, 11, 10. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Lazzerini, M.; Putoto, G. COVID-19 in Italy: Momentous decisions and many uncertainties. Lancet Glob. Health 2020, 8, e641–e642. [Google Scholar] [CrossRef] [Green Version]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [Green Version]
- Bignami-Van Assche, S.; Ghio, D. A demographic adjustment to improve measurement of COVID-19 severity at the developing stage of the pandemic. medRxiv 2020, 27, e03. [Google Scholar] [CrossRef]
- Ghio, D.; Acosta, E.; Fisman, D.; Noymer, A.; Stilianakis, N.I.; Assche, S.B.V. Population health and COVID-19 in Canada: A demographic comparative perspective. Can. Stud. Popul. 2021, 48, 131–137. [Google Scholar] [CrossRef]
- Aburto, J.M.; Schöley, J.; Kashnitsky, I.; Zhang, L.; Rahal, C.; Missov, T.I.; Mills, M.C.; Dowd, J.B.; Kashyap, R. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: A population-level study of 29 countries. Int. J. Epidemiol. 2022, 51, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Kashnitsky, I.; Aburto, J.M. COVID-19 in unequally ageing European regions. World Dev. 2020, 136, 105170. [Google Scholar] [CrossRef] [PubMed]
- Jamil, Z.; Khan, A.A.; Yousuf, H.; Khalid, K.; Abbasi, S.M.; Waheed, Y. Role of therapeutic plasmapheresis in SARS-CoV-2 induced cytokine release syndrome: A retrospective cohort study on COVID-19 patients. Int. J. Gen. Med. 2022, 15, 4907–4916. [Google Scholar] [CrossRef]
- Jamil, Z.; Khan, A.A.; Khalid, S.; Asghar, M.; Muhammad, K.; Waheed, Y. Beneficial effects of anticoagulants on the clinical outcomes of COVID-19 patients. Antibiotics 2021, 10, 1394. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Huet, T.; Cavalli, G.; Gori, A.; Kyprianou, M.; Pickkers, P.; Eugen-Olsen, J.; Clerici, M.; Veas, F.; Chatellier, G.; et al. Effect of anakinra on mortality in patients with COVID-19: A systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021, 3, e690–e697. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Wolfe, C.R.; Tomashek, K.M.; Patterson, T.F.; Gomez, C.A.; Marconi, V.C.; Jain, M.K.; Yang, O.O.; Paules, C.I.; Palacios, G.M.R.; Grossberg, R.; et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): A randomised, double-blind, double placebo-controlled trial. Lancet Respir. Med. 2022, 10, 888–899. [Google Scholar] [CrossRef]
- Marconi, V.C.; Ramanan, A.V.; de Bono, S.; Kartman, C.E.; Krishnan, V.; Liao, R.; Piruzeli, M.L.B.; Goldman, J.D.; Alatorre-Alexander, J.; de Cassia Pellegrini, R.; et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 2021, 9, 1407–1418. [Google Scholar] [CrossRef]
- Rosas, I.O.; Bräu, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; et al. Tocilizumab in hospitalized patients with severe COVID-19 pneumonia. N. Engl. J. Med. 2021, 384, 1503–1516. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in patients hospitalized with COVID-19 pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- Casas-Rojo, J.; Antón-Santos, J.; Millán-Núñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincón, J.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñén, J.; Vargas-Núñez, J.; et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev. Clínica Española (Engl. Ed.) 2020, 220, 480–494. [Google Scholar] [CrossRef]
- Vidal-Cortés, P.; Martín, M.C.; Díaz, E.; Bodí, M.; Igeño, J.C.; Garnacho-Montero, J. Impact of one year of pandemic on Spanish Intensive Care Units. 2022. Rev. Esp. Quimioter. 2022, 35, 392–400. [Google Scholar] [CrossRef]
- Pastor-Barriuso, R.; Perez-Gomez, B.; Hernan, M.A.; Perez-Olmeda, M.; Yotti, R.; Oteo-Iglesias, J.; Sanmartín, J.L.; Leon-Gomez, I.; Fernandez-Garcia, A.; Fernández-Navarro, P.; et al. Infection fatality risk for SARS-CoV-2 in community dwelling population of Spain: Nationwide seroepidemiological study. BMJ 2020, 371, m4509. [Google Scholar] [CrossRef] [PubMed]
- Dahal, S.; Mizumoto, K.; Rothenberg, R.; Chowell, G. Investigating spatial variability in COVID-19 pandemic severity across 19 geographic areas, Spain, 2020. medRxiv 2020, 17. [Google Scholar] [CrossRef] [Green Version]
- BOE-A-2020-3692 Real Decreto 463/2020, de 14 de Marzo, por el que se Declara el Estado de Alarma para la Qestión de la Situación de Crisis Sanitaria Ocasionada por el COVID-19—boe.es. Available online: https://www.boe.es/eli/es/rd/2020/03/14/463 (accessed on 29 June 2023).
- Briz-Redón, Á.; Serrano-Aroca, Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Sci. Total Environ. 2020, 728, 138811. [Google Scholar] [CrossRef]
- Frias, L. ISCIII CNE-RENAVE—cnecovid.isciii.es. Available online: https://cnecovid.isciii.es/ (accessed on 29 June 2023).
- Informes COVID-19—isciii.es. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/InformesCOVID-19.aspx (accessed on 29 June 2023).
- Epi, A. The Epidemiologist R Handbook—Appliedepi.org. Available online: https://appliedepi.org/epirhandbook/ (accessed on 29 June 2023).
- Ministerio de Sanidad-Ciudadanos-Prestaciones y centro sanitarios-Centros y servicios del SNS-Instituto de Informacion Sanitaria-Centros y servicios del SNS-Hospitales—sanidad.gob.es. Available online: https://www.sanidad.gob.es/en/ciudadanos/centrosCA.do (accessed on 29 June 2023).
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 656. [Google Scholar]
- Howell, D.C. Statistical Methods for Psychology; Cengage Learning: Belmont, CA, USA, 2012. [Google Scholar]
- Allen, M.; Poggiali, D.; Whitaker, K.; Marshall, T.R.; Kievit, R.A. Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res. 2019, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- COVID 19-TIA Zonas Básicas de Salud-Datos Abiertos Comunidad de Madrid—datos.comunidad.madrid. Available online: https://datos.comunidad.madrid/catalogo/dataset/covid19_tia_zonas_basicas_salud (accessed on 29 June 2023).
- Burki, T. The indirect impact of COVID-19 on women. Lancet Infect. Dis. 2020, 20, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Bwire, G.M. Coronavirus: Why men are more vulnerable to COVID-19 than women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Group, R.C. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Sterne, J.A.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
- Sentís, A.; Kislaya, I.; Nicolay, N.; Meijerink, H.; Starrfelt, J.; Martínez-Baz, I.; Castilla, J.; Nielsen, K.F.; Hansen, C.H.; Emborg, H.D.; et al. Estimation of COVID-19 vaccine effectiveness against hospitalisation in individuals aged ≥ 65 years using electronic health registries; a pilot study in four EU/EEA countries, October 2021 to March 2022. Eurosurveillance 2022, 27, 2200551. [Google Scholar] [CrossRef]
- Monge, S.; Mazagatos, C.; Olmedo, C.; Rojas-Benedicto, A.; Simón, F.; Vega-Piris, L.; Sierra, M.J.; Limia, A.; Larrauri, A. Effectiveness of vaccines against SARS-CoV-2 used in Spain: Infection, hospitalization and mortality in people aged fifty/fifty-nine. Rev. Esp. Salud Publica 2022, 96, e202209060. [Google Scholar]
- Barandalla, I.; Alvarez, C.; Barreiro, P.; de Mendoza, C.; González-Crespo, R.; Soriano, V. Impact of scaling up SARS-CoV-2 vaccination on COVID-19 hospitalizations in Spain. Int. J. Infect. Dis. 2021, 112, 81–88. [Google Scholar] [CrossRef]
- Rodriguez-Maroto, G.; Atienza-Diez, I.; Ares, S.; Manrubia, S. Vaccination strategies in structured populations under partial immunity and reinfection. J. Phys. A Math. Theor. 2023, 56, 204003. [Google Scholar] [CrossRef]
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Tracking SARS-CoV-2 Variants—who.int. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 29 June 2023).
- Thakur, V.; Bhola, S.; Thakur, P.; Patel, S.K.S.; Kulshrestha, S.; Ratho, R.K.; Kumar, P. Waves and variants of SARS-CoV-2: Understanding the causes and effect of the COVID-19 catastrophe. Infection 2022, 50, 309–325. [Google Scholar] [CrossRef] [PubMed]
- López, M.G.; Chiner-Oms, Á.; García de Viedma, D.; Ruiz-Rodriguez, P.; Bracho, M.A.; Cancino-Muñoz, I.; D’Auria, G.; de Marco, G.; García-González, N.; Goig, G.A.; et al. The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nat. Genet. 2021, 53, 1405–1414. [Google Scholar] [CrossRef]
- Hodcroft, E.B.; Zuber, M.; Nadeau, S.; Vaughan, T.G.; Crawford, K.H.; Althaus, C.L.; Reichmuth, M.L.; Bowen, J.E.; Walls, A.C.; Corti, D.; et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 2021, 595, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Rashedi, R.; Samieefar, N.; Akhlaghdoust, M.; Mashhadi, M.; Darzi, P.; Rezaei, N. Delta variant: The new challenge of COVID-19 pandemic, an overview of epidemiological, clinical, and immune characteristics. Acta Bio Medica Atenei Parm. 2022, 93, e2022179. [Google Scholar]
- Papanikolaou, V.; Chrysovergis, A.; Ragos, V.; Tsiambas, E.; Katsinis, S.; Manoli, A.; Papouliakos, S.; Roukas, D.; Mastronikolis, S.; Peschos, D.; et al. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene 2022, 814, 146134. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.; de Mendoza, C.; Gómez-Gallego, F.; Corral, O.; Barreiro, P. Third wave of COVID-19 in Madrid, Spain. Int. J. Infect. Dis. 2021, 107, 212–214. [Google Scholar] [CrossRef]
- Taboada, M.; González, M.; Alvarez, A.; Eiras, M.; Costa, J.; Álvarez, J.; Seoane-Pillado, T. First, second and third wave of COVID-19. What have we changed in the ICU management of these patients? J. Infect. 2021, 82, e14–e15. [Google Scholar] [CrossRef]
- Tandon, P.; Leibner, E.S.; Hackett, A.; Maguire, K.; Mashriqi, N.; Kohli-Seth, R. The third wave: Comparing seasonal trends in COVID-19 patient data at a large hospital system in New York City. Crit. Care Explor. 2022, 4, e0653. [Google Scholar] [CrossRef]
- Tandon, P.; Leibner, E.; Ahmed, S.; Acquah, S.O.; Kohli-Seth, R. Comparing seasonal trends in coronavirus disease 2019 patient data at a quaternary hospital in New York City. Crit. Care Explor. 2021, 3, e0381. [Google Scholar] [CrossRef]
- Matsunaga, N.; Hayakawa, K.; Asai, Y.; Tsuzuki, S.; Terada, M.; Suzuki, S.; Ohtsu, H.; Kitajima, K.; Toyoda, A.; Suzuki, K.; et al. Clinical characteristics of the first three waves of hospitalised patients with COVID-19 in Japan prior to the widespread use of vaccination: A nationwide observational study. Lancet Reg. Health-West. Pac. 2022, 22, 100421. [Google Scholar] [CrossRef]
- Fox, S.J.; Lachmann, M.; Tec, M.; Pasco, R.; Woody, S.; Du, Z.; Wang, X.; Ingle, T.A.; Javan, E.; Dahan, M.; et al. Real-time pandemic surveillance using hospital admissions and mobility data. Proc. Natl. Acad. Sci. USA 2022, 119, e2111870119. [Google Scholar] [CrossRef]
- Du, Z.; Wang, L.; Bai, Y.; Wang, X.; Pandey, A.; Fitzpatrick, M.C.; Chinazzi, M.; y Piontti, A.P.; Hupert, N.; Lachmann, M.; et al. Cost-effective proactive testing strategies during COVID-19 mass vaccination: A modelling study. Lancet Reg. Health-Am. 2022, 8, 100182. [Google Scholar] [CrossRef]
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef]
- Baral, S.; Chandler, R.; Prieto, R.G.; Gupta, S.; Mishra, S.; Kulldorff, M. Leveraging epidemiological principles to evaluate Sweden’s COVID-19 response. Ann. Epidemiol. 2021, 54, 21–26. [Google Scholar] [CrossRef]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; de Larrea, N.F.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Laage-Thomsen, J.; Frandsen, S.L. Pandemic preparedness systems and diverging COVID-19 responses within similar public health regimes: A comparative study of expert perceptions of pandemic response in Denmark, Norway, and Sweden. Glob. Health 2022, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- De Foo, C.; Verma, M.; Tan, S.M.; Haldane, V.; Reyes, K.A.; Garcia, F.; Canila, C.; Orano, J.; Ballesteros, A.J.; Marthias, T.; et al. COVID-19 public health and social measures: A comprehensive picture of six Asian countries. BMJ Glob. Health 2022, 7, e009863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Barr, B.; Green, M.; Hughes, D.; Ashton, M.; Charalampopoulos, D.; García-Fiñana, M.; Buchan, I. Impact of community asymptomatic rapid antigen testing on COVID-19 related hospital admissions: Synthetic control study. BMJ 2022, 379, e071374. [Google Scholar] [CrossRef] [PubMed]
- Micah, A.E.; Bhangdia, K.; Cogswell, I.E.; Lasher, D.; Lidral-Porter, B.; Maddison, E.R.; Nguyen, T.N.N.; Patel, N.; Pedroza, P.; Solorio, J.; et al. Global investments in pandemic preparedness and COVID-19: Development assistance and domestic spending on health between 1990 and 2026. Lancet Glob. Health 2023, 11, e385–e413. [Google Scholar] [CrossRef]
- Sutkowska, E.; Stanek, A.; Madziarska, K.; Jakubiak, G.K.; Sokołowski, J.; Madziarski, M.; Sutkowska-Stępień, K.; Biernat, K.; Mazurek, J.; Borowkow-Bulek, A.; et al. Physical Activity Modifies the Severity of COVID-19 in Hospitalized Patients—Observational Study. J. Clin. Med. 2023, 12, 4046. [Google Scholar] [CrossRef]
- Babar, I.; Ekenna, O.; Clarkson, M.R.; Boudreaux, D.; Bennett, W.; Roth, R. COVID-19 in a Mississippi Community Hospital. South. Med. J. 2021, 114, 305–310. [Google Scholar] [CrossRef]
- Abdulah, D.M.; Mirza, A.M.S. Receiving COVID-19 vaccine, hospitalization, and outcomes of patients with COVID-19: A prospective study. Monaldi Arch. Chest Dis. 2023, 93, e2194. [Google Scholar] [CrossRef]
- Darwish, I.; Harrison, L.B.; Passos-Castilho, A.M.; Labbé, A.C.; Barkati, S.; Luong, M.L.; Kong, L.Y.; Tutt-Guérette, M.A.; Kierans, J.; Rousseau, C.; et al. In-hospital outcomes of SARS-CoV-2-infected health care workers in the COVID-19 pandemic first wave, Quebec, Canada. PLoS ONE 2022, 17, e0272953. [Google Scholar] [CrossRef] [PubMed]
- Abeysuriya, V.; Seneviratne, S.L.; De Silva, A.P.; Mowjood, R.; Mowjood, S.; de Silva, T.; de Mel, P.; de Mel, C.; Wijesinha, R.; Fernando, A.; et al. Postdischarge outcomes of COVID-19 patients from South Asia: A prospective study. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
First Wave | Second Wave | Third Wave | Fourth Wave | Fifth Wave | Sixth Wave | All Waves | |
---|---|---|---|---|---|---|---|
Patients, n (%) | 1024 (30.9%) | 652 (19.7%) | 646 (19.4%) | 278 (8.3%) | 202 (6.2%) | 513 (15.5%) | 3315 |
Sex | |||||||
Men | 553 | 363 | 359 | 164 | 105 | 279 | 1823 (55%) |
Women | 471 | 289 | 287 | 114 | 97 | 234 | 1492 (45%) |
Age, median (IQR) | 70 (22.2) | 65 (26) | 66 (23) | 60 (21) | 47 (32.8) | 70 (26) | 67 (25) |
Age ranges | |||||||
<20 | 3 | 8 | 10 | 4 | 12 | 31 | 68 |
21–40 | 43 | 68 | 48 | 24 | 51 | 32 | 266 |
41–60 | 246 | 181 | 186 | 112 | 64 | 96 | 885 |
61–80 | 476 | 273 | 284 | 119 | 47 | 223 | 1422 |
>80 | 256 | 122 | 118 | 19 | 28 | 131 | 674 |
Comorbidities | |||||||
Type 2 diabetes | 19.3% | 21.8% | 21.7% | 16.4% | 18.4% | 21.2% | 20% |
Hypertension | 33.7% | 33.2% | 34.7% | 29.7% | 25.5% | 32.4% | 32.7% |
Obesity | 8.4% | 0.13% | 13.6% | 15.6% | 14.1% | 12.4% | 11.8% |
AMI | 6.8% | 0.07% | 7.5% | 4.8% | 0.06% | 6.6% | 6.7% |
CHF | 6.1% | 0.08% | 0.08% | 3.8% | 7.8% | 7.3% | 6.9% |
Dementia | 5.2% | 4.6% | 4.4% | 1.9% | 4.6% | 4.3% | 4.5% |
Kidney disease | 8.9% | 9.4% | 0.1% | 5.3% | 9.4% | 0.1% | 8.9% |
Liver disease | 0.5% | 0.5% | 0.5% | 0.4% | 0.4% | 0.6% | 0.5% |
Malignancy | 5.3% | 5.9% | 0.06% | 3.9% | 5.6% | 7.5% | 5.5% |
COPD | 7.1% | 7.3% | 8.1% | 0.06% | 7.4% | 8.9% | 7.3% |
CEVD | 0.7% | 0.8% | 0.8% | 0.5% | 0.7% | 0.01% | 0.7% |
Drug therapy, n (%) | |||||||
Dexamethasone | 131 (12.8%) | 614 (94.2%) | 641 (99.2%) | 275 (98.9%) | 200 (99%) | 502 (97.9%) | 2763 (83.3%) |
Remdesivir | 0 (0%) | 230 (35.3%) | 156 (24.1%) | 96 (34.5%) | 41 (20.3%) | 79 (15.4%) | 602 (18.2%) |
Baricitinib | 44 (4.3%) | 95 (14.6 %) | 130 (20.1%) | 63 (22.7%) | 39 (19.3%) | 46 (9%) | 417 (12.6%) |
Tocilizumab | 137 (13.4%) | 222 (34%) | 90 (13.9%) | 61 (21.9%) | 21 (10.4%) | 27 (5.3%) | 558 (4.1%) |
Anakinra | 12 (1.2%) | 19 (2.9%) | 13 (2%) | 1 (0.4%) | 0 (0%) | 3 (0.6%) | 48 (1.4%) |
LPV/r, HCQ, AZM | 830 (81.1%) | 57 (8.7%) | 0 (0% | 0 (0%) | 0 (0%) | 0 (0%) | 887 (26.8%) |
Total Patients | Men | Women | p Value | |
---|---|---|---|---|
Age | 67.0 (25.0) | 66.0 (24.0) | 68.0 (25.0) | 0.001 * |
First wave | 70.0 (22.2) | 68.0 (20.0) | 72.0 (24.0) | 0.001 |
Second wave | 65.0 (26.0) | 64.0 (24.0) | 67.0 (27.0) | 0.159 |
Third wave | 66.0 (23.0) | 65.0 (25.0) | 68.0 (21.5) | 0.004 |
Fourth wave | 60.0 (21.0) | 59.0 (20.0) | 65.5 (22.8) | 0.211 |
Fifth wave | 47.0 (32.8) | 47.0 (32.0) | 47.0 (34.0) | 0.566 |
Sixth wave | 70.0 (26.0) | 72.0 (25.5) | 69.0 (26.0) | 0.2 |
Hospital stay (days) | 7.0 (8.0) | 7.0 (8.0) | 6.0 (7.0) | 0.001 * |
First wave | 8.0 (9.0) | 8.0 (10.0) | 7.0 (8.0) | 0.103 |
Second wave | 7.0 (9.0) | 7.0 (8.0) | 7.0 (8.0) | 0.068 |
Third wave | 6.0 (7.0) | 6.0 (8.0) | 6.0 (5.0) | 0.028 |
Fourth wave | 7.0 (7.8) | 8.0 (7.2) | 7.0 (7.8) | 0.586 |
Fifth wave | 5.0 (6.0) | 5.0 (6.0) | 5.0 (5.0) | 0.353 |
Sixth wave | 5.0 (6.0) | 5.0 (6.0) | 5.0 (6.0) | 0.588 |
ICU admissions | 154 (4.6%) | 108 (5.9%) | 46 (3.1%) | 0.001 ** |
First wave | 59 (5.8%) | 46 (8.3%) | 13 (2.8%) | 0.001 |
Second wave | 27 (4.1%) | 16 (4.4%) | 11 (3.8%) | 0.853 |
Third wave | 27 (4.2%) | 18 (5.0%) | 9 (3.1%) | 0.323 |
Fourth wave | 17 (6.1%) | 11 (6.7%) | 6 (5.3%) | 0.81 |
Fifth wave | 8 (4.0%) | 7 (6.7%) | 1 (1.0%) | 0.067 |
Sixth wave | 16 (3.1%) | 10 (3.6%) | 6 (2.6%) | 0.614 |
ICU stay (days) | 19.0 (27.0) | 18.0 (24.5) | 21.5 (35.5) | 0.492 * |
First wave | 7.0 (6.8) | 7.0 (7.2) | 2.0 (5.0) | 0.023 |
Second wave | 6.0 (4.0) | 7.0 (4.0) | 8.0 (4.8) | 0.347 |
Third wave | 5.0 (5.0) | 5.0 (5.0) | 5.0 (5.8) | 0.998 |
Fourth wave | 7.0 (6.0) | 10.5 (5.5) | 8.5 (10.2) | 0.263 |
Fifth wave | 5.0 (5.0) | 14.0 (4.8) | 49 (5.8) | 0.001 |
Sixth wave | 5.0 (5.0) | 15.5 (5.0) | 17.5 (5.8) | 0.625 |
Deaths | 310 (9.4%) | 197 (10.8%) | 113 (7.6%) | 0.002 ** |
First wave | 170 (16.6%) | 108 (19.5%) | 62 (13.2%) | 0.008 |
Second wave | 40 (6.1%) | 27 (7.4%) | 13 (4.5%) | 0.165 |
Third wave | 53 (8.2%) | 33 (9.2%) | 20 (6.9%) | 0.379 |
Fourth wave | 12 (4.3%) | 9 (5.5%) | 3 (2.6%) | 0.37 |
Fifth wave | 8 (4.0%) | 4 (3.8%) | 4 (4.1%) | 1 |
Sixth wave | 27 (5.3%) | 16 (5.7%) | 11 (4.7%) | 0.746 |
Age Group | 1st Wave | 2nd Wave | 3rd Wave | 4th Wave | 5th Wave | 6th Wave |
---|---|---|---|---|---|---|
Men | ||||||
<20 | 0 | 0 | 0 | 0 | 0 | 0 |
21–40 | 0 | 0 | 0 | 0 | 0 | 0 |
41–60 | 11 | 1 | 2 | 1 | 2 | 2 |
61–80 | 58 | 11 | 17 | 7 | 1 | 5 |
>80 | 39 | 15 | 14 | 1 | 1 | 9 |
Women | ||||||
<20 | 0 | 0 | 0 | 0 | 0 | 0 |
21–40 | 0 | 0 | 0 | 0 | 0 | 0 |
41–60 | 5 | 0 | 0 | 0 | 0 | 2 |
61–80 | 19 | 4 | 5 | 3 | 1 | 5 |
>80 | 38 | 9 | 15 | 0 | 3 | 4 |
Total | ||||||
<20 | 0 | 0 | 0 | 0 | 0 | 0 |
21–40 | 0 | 0 | 0 | 0 | 0 | 0 |
41–60 | 16 | 1 | 2 | 1 | 2 | 4 |
61–80 | 77 | 15 | 22 | 10 | 2 | 10 |
>80 | 77 | 24 | 29 | 1 | 4 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Carretero, R.; Vazquez-Gomez, O.; Ordoñez-Garcia, M.; Garrido-Peño, N.; Gil-Prieto, R.; Gil-de-Miguel, A. Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022). Viruses 2023, 15, 1616. https://doi.org/10.3390/v15071616
Garcia-Carretero R, Vazquez-Gomez O, Ordoñez-Garcia M, Garrido-Peño N, Gil-Prieto R, Gil-de-Miguel A. Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022). Viruses. 2023; 15(7):1616. https://doi.org/10.3390/v15071616
Chicago/Turabian StyleGarcia-Carretero, Rafael, Oscar Vazquez-Gomez, María Ordoñez-Garcia, Noelia Garrido-Peño, Ruth Gil-Prieto, and Angel Gil-de-Miguel. 2023. "Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022)" Viruses 15, no. 7: 1616. https://doi.org/10.3390/v15071616
APA StyleGarcia-Carretero, R., Vazquez-Gomez, O., Ordoñez-Garcia, M., Garrido-Peño, N., Gil-Prieto, R., & Gil-de-Miguel, A. (2023). Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022). Viruses, 15(7), 1616. https://doi.org/10.3390/v15071616